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Abstract

Priority inversion occurs in concurrent programs when
low-priority threads hold shared resources needed by some
high-priority thread, causing them to block indefinitely.
Shared resources are usually guarded by low-level syn-
chronization primitives such as mutual-exclusion locks,
semaphores, or monitors. There are two existing solu-
tions to priority inversion. The first, establishing high-
level scheduling invariants over synchronization primitives
to eliminate priority inversiona priori, is difficult in practice
and undecidable in general. Alternatively, run-time avoid-
ance mechanisms such as priority inheritance still force
high-priority threads to wait until desired resources are re-
leased.

We describe a novel compiler and run-time solution to
the problem of priority inversion, along with experimental
evaluation of its effectiveness. Our approach allows pre-
emption of any thread holding a resource needed by higher-
priority threads, forcing it to release its claim on the re-
source, roll back its execution to the point at which the
shared resource was first acquired, and discard any updates
made in the interim.

The compiler inserts code at synchronization points, per-
mitting rollback of thread execution, and efficient revoca-
tion of interim updates. Our design and implementation are
realized in the context of IBM’s Jikes RVM, a high-quality
compiler and runtime system for Java. Our performance
results show that throughput of high-priority threads using
our scheme can be improved by 30% to 100% when com-
pared with a classical scheduler that does not address pri-
ority inversion.

1 Introduction

Modern programming languages (eg, ML, Java, C++,
and Modula-3) support concurrent programming, either
through built-in language primitives, or via a set of external
libraries. In general, the basic units of concurrent execution
are threads. Threads can interact by accessing and modi-
fying objects in their shared address space, synchronizing

their actions via mutual exclusionlocks.
The resulting programming model is reasonably simple,

but unfortunately unwieldy for large-scale applications.A
significant problem with using low-level, lock-based syn-
chronization primitives is priority inversion. We proposea
new solution for priority inversion that exploits close coop-
eration between the compiler and the run-time system. Our
approach is applicable to any language that offers the fol-
lowing mechanisms:

• Multithreading: concurrent threads of control execut-
ing over objects in a shared address space.

• Synchronized sections: lexically-delimited blocks
of code, guarded by dynamically-scoped monitors.
Threads synchronize on a given monitor, acquiring it
on entry to the block and releasing it on exit. Only
one thread may execute within a synchronized section
at any time, ensuring exclusive access to all monitor-
protected blocks. Monitors are usually implemented
using locking, with acquisition of a mutual exclusion
lock on entry, and release of the lock on exit.

• Exception scopes: blocks of code in which an error
condition can change the normal flow of control of the
active thread, by exiting active scopes, and transferring
control to a handler associated with each block.

The advantages of multithreading, for I/O-bound appli-
cations, human interfaces, distributed and parallel systems
are established and well-understood. However, the difficul-
ties in using locking with multiple threads are also widely-
recognized.

A low-priority thread may hold a lock even while other
threads, which may have higher priority, are waiting to
acquire it. Priority inversion results when a low-priority
threadTl holds a lock required by some high-priority thread
Th, forcing the high-priorityTh to wait until Tl releases
the lock. Even worse, an unbounded number of runnable
medium-priority threadsTm may exist, thus preventingTl
from running and making unbounded the time thatTl (and
henceTh) must wait. Such situations can play havoc in
real-time systems where high-priority threads demand some
level of guaranteed throughput.



The ease with which even experienced programmers
can write programs that exhibit priority inversion makes
it worthwhile to explore transparent solutions that dynam-
ically resolve priority inversion by reverting programs to
consistent states when it occurs, while preserving source
program semantics. For real-world concurrent programs
with complex module and dependency structures, it is diffi-
cult to perform an exhaustive exploration of the space of
possible interleavings to statically determine when prior-
ity inversion may arise. For such applications, the abil-
ity to transparently redress undesirable interactions between
scheduling decisions and lock management is very useful.

In this paper, we propose a scheme to deal with prior-
ity inversion for monitor-based prorgrams that differ from
existing solutions such aspriority ceiling andpriority in-
heritance. These latter techniques, although useful for cer-
tain applications, suffer from several significant drawbacks.
Priority ceiling requires a programmer to manually specify
the ceiling (the highest priority of any thread that uses the
lock) for every lock, and is therefore not transparent to ap-
plications. Although priority inheritance does not exhibit
this particular problem, it has several other notable disad-
vantages [25] that encourage us to explore alternative ap-
proaches: (a) It is non-trivial to implement; (b) Because it
is a transitive operation, it may lead to unpredictable per-
formance degradation when nested regions are protected
by priority inheritance locks; (c) The existence of non-
inheriting blocking operations (eg, synchronous inter-thread
communication) may lead to unbounded inversion delay.

1.1 Our contribution: Monitor rollback

Our approach is to combine compiler techniques with
run-time detection and resolution of priority inversion. Hav-
ing detected priority inversion, the run-time system selec-
tively revokes the effects of the offending thread within a
synchronized section in order to resolve the problem. The
compiler provides support by injectingwrite barriersto log
updates to shared state performed by threads active in syn-
chronized sections and generating code that allows inter-
ruption and revocation of the active thread. Note that this
meansall compiled code needs at least a fast-path test on
every non-local update to check if the thread is executing
within a synchronized section, with the slow path logging
the update if it is. Compiler analyses and optimization may
elide these run-time checks when the update can be shown
statically never to occur within a synchronized section.

Detection of priority inversion (either at lock acquisition,
or periodically in the background) by the run-time system
triggers revocation of the relevant critical section for its as-
sociated thread. The run-time system interrupts the target
thread, revokes the updates for the section, and transfers
control for the thread back to the beginning of the section
for retry. Externally, the end effect of the rollback is as if
the low-priority thread never executed the section.

The process of revoking effects performed by a thread
within a synchronized section is illustrated in Figure 1,
where wavy lines represent threadsTl andTh, circles repre-

sent objectso1 ando2, updated objects are marked grey, and
the box represents the dynamic scope of a common monitor
guarding some (set of) synchronized section(s) executed by
the threads. In Figure 1(a) low-priority threadTl is about to
enter the synchronized section, which it does in Figure 1(b),
modifying objecto1. High-priority threadTh tries to acquire
the same monitor, but is blocked by low-priorityTl (1(c)).
Here, a priority inheritance [21] approach would raise the
priority of threadTl to that ofTh but Th would still have to
wait for Tl to release the lock. Instead, our approach pre-
emptsTl , undoing any updates too1, and transfers control
in Tl back to the point of entry to the synchronized section
(1(d). HereTl must wait whileTh now enters the monitor,
and updates objectso1 (1(e)) ando2, before leaving (1(f)).
At this point the monitor is released andTl will gain re-
entry.

Note that the same technique can also be used to detect
and resolvedeadlock. Deadlock results when two or more
threads are unable to proceed because each is waiting on a
lock held by another. Such a situation is easily constructed
for two threads,T1 andT2: T1 first acquires lockL1 while
T2 acquiresL2, then T1 tries to acquireL2 while T2 tries
to acquireL1, resulting in deadlock. Generally, deadlocks
may occur among more than two threads, and deadlocking
programs are often difficult to diagnose and fix. As a re-
sult, many deployed applications may execute under sched-
ules in which deadlock may occur. Using our techniques,
such deadlocks can be detected and resolved automatically,
permitting the application to make progress. Of course,
applications that deadlock are intrinsically incorrect; our
approach is not intended to mask such errors. However,
for mission-critical applications in which running programs
cannot be summarily terminated, our approach provides an
opportunity for corrective action to be undertaken grace-
fully. Note that while deadlocks can be handled using our
technique, without taking additional precautions a sequence
of deadlock revocations may result in livelock.

The remainder of this paper details design choices and
modifications made to IBM’s Jikes Research Virtual Ma-
chine (Jikes RVM) to implement our approach. Section 2
outlines the design. Section 3 details several implementa-
tion choices for efficiently implementing rollbacks. Perfor-
mance results are given in Section 4. Related work is dis-
cussed in Section 5.

2 Design

One of the main principles underlying our design is a
compliance requirement: programmers must perceive all
programs executing in our system to behave exactly the
same as on all other existing platforms implemented ac-
cording to the specification of a given language. In order
to achieve this goal we must adhere to the execution seman-
tics of a given language and follow the memory access rules
defined by the language.

Our work is couched in terms of the Java language. In
Java, every object can act as amonitor. A thread holding a
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Figure 1. Revoking synchronized sections

monitor may enter another synchronized section guarded by
the same or a completely different monitor. This action may
be repeated an arbitrary number of times thus permitting
monitors to be arbitrarily nested dynamically.

We fulfill the compliance requirement byloggingall up-
dates to shared data performed by a thread executing within
a monitor. We use the information from the log toroll back
updates whenever the monitor is revoked to permit a higher
priority thread to run. In effect, synchronized sections exe-
cute speculatively, and their updates may be revoked at any
time until the section exits. However, the introduction of
revocable synchronized sections requires a careful consid-
eration of the interaction between revocation and the Java
Memory Model (JMM) [16].

2.1 The Java memory model

The JMM defines ahappens-beforerelation (written
hb
→)

among the actions performed by threads in a given exe-
cution of a program. For single-threaded execution the
happens-before relation is defined by program order. For
multi-threaded execution a happens-before relation is in-
duced between an unlockuM (release) and a subsequent

lock lM (acquire) operation on a given monitorM (uM
hb
→

lM). The happens-before relation is transitive:x
hb
→y and

y
hb
→z imply x

hb
→z. The JMM shared data visibility rule is

defined using the happens-before relation: a readrv is al-
lowed to observe a writewv to a given variable variablev
if rv does not happen beforewv and there is no intervening

write w′v such thatrv
hb
→ w′v

hb
→ wv (we say that a read be-

comesread-write dependenton the write that it isallowed
to see). As a consequence, it is possible that partial results
computed by some threadT executing within monitorM
become visible to (and are used by) another threadT ′ even
before threadT releasesM if accesses to those updated ob-
jects performed byT ′ are not mediated by first acquiring
M. However, a subsequent revocation of monitorM would
undo the update and remove the happens-before relation,
making a value seen byT ′ appear “out of thin air” and thus
the execution ofT ′ inconsistent with the JMM.

ACQUIRE(inner)

WRITE(v)

RELEASE(inner)

ACQUIRE(inner)

READ(v)

RELEASE(inner)

T ′

ROLL-BACK

T

ACQUIRE(outer)

Figure 2. Bad revocation: nesting

An example of such an execution appears in Figure 2:
threadT acquires monitorouter and subsequently monitor
inner, writes to a shared variablev and releases monitor
inner. Then threadT ′ acquires monitorinner, reads vari-
ablev and releases monitorinner. The execution is JMM-
consistent up to the rollback point: the read performed by
T ′ is allowedbut the subsequent rollback ofT would violate
consistency.

A similar problem occurs whenvolatile variables are
used. The Java Language Specification (JLS) [8] states that
updates to volatile variables immediately become visible
to all program threads. Thus, there also exists a happens-
before relation between a volatile write and all subsequent
volatile reads of the same (volatile) variable. For the exe-
cution presented in Figure 3vol is a volatile variable and
edges depict a happens-before relation. As in the previous
example, the execution is JMM-consistent up to the rollback
point because a read performed byT ′ is allowed, but the
rollback would violate consistency. We now discuss possi-
ble solutions to these JMM-consistency preservation prob-
lems.

2.2 Preserving JMM-consistency

Several solutions to the problem of partial results of a
monitored computation being exposed to other threads can
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Figure 3. Bad revocation: volatile access

static boolean v=false;

T T ′

synchronized(outer) {

synchronized(inner) {

v=true;

}

// ROLL-BACK

}

while (true) {

synchronized(inner) {

if (v) break;

}

}

Figure 4. Impossible re-schedule

be considered. We might trace read-write dependencies
among all threads and upon rollback of a monitor trigger
a cascade of rollbacks for threads whose read-write depen-
dencies are violated. An obvious disadvantage of this ap-
proach is the need to considerall operations (including non-
monitored ones) for a potential rollback. In the execution of
Figure 3 the volatile read performed byT ′ would have to be
rolled back even though it is not guarded by any monitor.
Furthermore, to apply this solution, the full execution con-
text of program threads would have to be logged in addition
to shared data operations performed by the threads. Con-
sider a situation based on the example of Figure 2 where
threadT ′ returns(from the current method) after releasing
monitorinner but before threadT is asked to roll back the
execution of monitorouter. Without the ability to restore
the full execution context ofT ′, the subsequent rollback of
monitorinner by that thread becomes infeasible.

Another potential solution is to re-schedule the execution
of threads in problematic cases. In both of the examples
presented above, if threadT ′ executes fully before thread
T, the execution will still be JMM-consistent. The roll-
back of T does not violate consistency since none of the
updates performed byT are visible toT ′. Besides the ob-
vious question about the practicality of this solution (some
knowledge about future actions performed by threads would
be required), there also remains the issue of correctness.
While correct in some cases, this solution is not necessarily
correct in others. Consider the Java program presented in
Figure 4. We cannot re-schedule threadT ′ to execute fully
before threadT because of semantic constraints: termina-
tion of T ′ depends on threadT performing the operation
v=true.

The solution that does seem flexible enough to handle

all possible problematic cases, and simple enough to avoid
using complex analyses and/or maintaining significant ad-
ditional meta-data, is to disable the revocability of moni-
tors whose rollback could create inconsistencies with re-
spect to the JMM. As a consequence, not all instances of
priority inversion can be resolved. We mark a monitorM
non-revocablewhen a read-write dependency is created be-
tween a write performed withinM1 and a read performed by
another thread. We believe this solution does not severely
penalize the effectiveness of our technique. Intuitively,pro-
grammers guard accesses to the same subset of shared data
using the same set of monitors; in such cases, there is no
need to force non-revocability of any of the monitors (even
if they are nested) since mutual-exclusion induced by mon-
itor acquisition prevents generation of problematic depen-
dencies among these threads. Determining the precise im-
pact of this design choice on the effectiveness of our tech-
nique is an integral part of future research.

There exist other Java constructs that affect revocability
of the monitors. Calling a native method within a moni-
tor also forces non-revocability of the monitor (and all of
its enclosing monitors if it is nested), since the effects ofa
native method cannot generally be revoked (eg, printing a
message to the console is irrevocable). The same applies to
executions where await method is invoked within a nested
monitor.2 A revocation of the wait call would result in a
situation where a respectivenotify call (that “woke up” the
waiting thread) “disappears” (ie, does not get delivered to
any thread) which would violate the Java execution seman-
tics. A call to notify does not enforce the irrevocability of
the enclosing monitors: Java VM implementations are per-
mitted [16] to perform “spurious wake-ups” so a rolled back
notification can be considered as such.

3 Implementation

In order to demonstrate the validity of our approach,
we base our implementation on a well-known Java exe-
cution environment with a high-quality compiler. We use
IBM’s Jikes RVM [2], a state-of-the-art research virtual ma-
chine (VM) for Java with performance comparable to many
production VMs. Java bytecodes in Jikes RVM are com-
piled directly to machine code using either a low-cost non-
optimizing “baseline” compiler or an aggressive optimizing
compiler.

When discussing the details of our approach, we con-
centrate on what we believe is the main contribution of this
paper, namelyhow to resolve a priority inversion problem
once detected (though later parts of the paper also briefly
discuss how the VM determineswhena priority inversion
situation occurs and needs to be resolved). In other words

1The write may additionally be guarded by other monitors nested
within M.

2A monitor object associated with the receiver object is released upon
a call to wait and reacquired after returning from the call. In the case of
a non-nested monitor a potential rollback will therefore not reach beyond
the point when wait was called.



we concentrate on the description of necessary compiler and
run-time support that allows the VM to interrupt execution
of synchronized sections at arbitrary points without induc-
ing any observable effects on an application’s execution be-
havior. In subsequent sections, we describe how to imple-
ment the re-execution procedure itself: transparently return
control from an arbitrary point during a synchronized sec-
tion’s execution to that section’s starting point, restorethe
state of the VM, and re-execute the synchronized section’s
code.

3.1 Our strategy

Our implementation uses bytecode rewriting3 to save
program state (values of local variables and method param-
eters) for re-execution and to return control to the begin-
ning of the synchronized section. We modify the compiler
and run-time system to suppress generation (and invocation)
of undesirable exception handlers during a rollback opera-
tion, to insert write barriers for logging, to revert updates
performed during the unfinished execution of a synchro-
nized section, and to augment context-switch code invoked
at yield points4 to check also whether a rollback action must
be initiated.

3.1.1 Bytecode transformation

There exist two different synchronization constructs in Java:
synchronized methods and synchronized blocks. To treat
them uniformly, we transform synchronized methods into
non-synchronized equivalents whose entire body is en-
closed in a synchronized block. For each synchronized
method we create a non-synchronized wrapper with a signa-
ture identical to the original method. We fill the body of the
wrapper method with a synchronized block enclosing in-
vocation of the original (non-synchronized) method, which
has been appropriately renamed to avoid name clash. We
also instruct the VM to inline the original method within the
wrapper to avoid performance penalties related to the addi-
tional method invocation. This approach greatly simplifies
the implementation,5 is extremely simple, robust, and also
efficient, because of inlining directives.

Each synchronized section (bracketed bymonitorenter
andmonitorexitoperations) is wrapped within an exception
scope that catches a special type ofrollback exception. The
rollback exception is thrown internally by the VM (see be-
low), but the code to catch it is injected into the bytecode.
Since a rollback may involve a nested synchronized section,

3We use the Bytecode Engineering Library (BCEL) from Apache for
this purpose. Note that our solution does not preclude the use of lan-
guages that do not have a similar intermediate representation – we could
use source-code rewriting instead.

4Threads in the Jikes RVM are pseudo-preemptive: thread context-
switches can happen only at pre-specified yield points inserted by the com-
piler.

5We need only handle explicitmonitorenter and monitorexit byte-
codes, without worrying about implicit monitor operationsfor synchro-
nized methods.

each rollback exception catch handler invokes an internal
VM method to check if it corresponds to the synchronized
section that is to be re-executed. If it does, then the han-
dler releases the monitor associated with its synchronized
section, and returns control to the beginning of the section.
Otherwise, the handler re-throws the rollback exception to
the next outer synchronized section.

There is an additional complication related to the re-
turn of control to the beginning of the section. The con-
tents of the VM’s operand stack before executing amoni-
torenteroperation must be the same at the first invocation
and at all subsequent invocations resulting from that sec-
tion’s re-execution. However, according to the Java VM
specification [14], the run-time system erases the operand
stack of the method activation that will catch the exception.
To handle this, we inject bytecode to save the values on
the operand stack just before each rollback-scope’smoni-
torenteropcode, and to restore the stack state in the handler
before transferring control back to themonitorenter.

3.1.2 Compiler and run-time modifications

The rollback operation is initiated by throwing the rollback
exception (as described in the previous section). However,
we cannot rely on the default exception handling mecha-
nism to propagate the rollback exception up the activation
stack to the synchronized section being rolled back, since it
will also run “default” exception handlers in nested excep-
tion scopes as it unwinds the stack up to the rollback scope.
Such “default” handlers include bothfinally blocks, and
catch blocks for exceptions of typeThrowable, of which
all exceptions (includingrollback) are instances. Running
these intervening handlers would violate our semantics that
an aborted synchronized block produces no side-effects.

To handle this, the augmented exception handling rou-
tine ignores all handlers (includingfinally blocks) that
do not explicitly catch therollback exception, when one is
thrown. The default behavior still applies for all other ex-
ceptions, to preserve the standard semantics. We are careful
to release monitors as necessary wherever the Jikes RVM
optimizing compiler releases them explicitly in its imple-
mentation of synchronized blocks.

We also modified both compilers to inject write barriers
before every store operation (represented by the bytecodes:
putfield for object stores,putstatic for static variable
stores, andXastore for array stores). The barrier records
in the log every modification performed by a thread exe-
cuting a synchronized section. We implemented the log as
a sequential buffer. For object and array stores, three val-
ues are recorded: object or array reference, value offset and
the (old) value itself. For static variable stores two values
are recorded: the offset of the static variable in the global
symbol table and the old value of the static variable.

If the execution of a synchronized section is interrupted
and needs to be re-executed then the log is processed in re-
verse to restore modified locations to their original values.
The procedure to do this is invoked before a thread that has
been interrupted releases any of its locks. Since partial re-



sults of a computation performed by a thread executing the
interrupted synchronized section are reverted before any of
the locks are released, they do not become visible to any
other thread, in accordance with Java execution semantics.

3.2 Discussion

Rather than using bytecode transformations, we note that
an alternative strategy would implement the re-execution
procedure entirely at the VM level (ie, all the code modifica-
tions necessary to support rollbacks would only involve the
compiler and the Java run-time system). This approach sim-
ply requires that the current state of the VM (ie, contents of
local variables, non-volatile registers, stack pointer,etc) be
remembered upon entry to a synchronized section, and re-
stored when a rollback is required. Unfortunately, this strat-
egy has the significant drawback that it introduces implicit
control-flow edges in the program’s control-flow graph that
are not visible to the compiler. Consequently, liveness in-
formation necessary for the garbage collector may be incor-
rectly computed, since a rollback action may require stack
slots to remain live that would ordinarily be marked dead.
Resolving these issues would entail substantial changes to
the compiler and runtime system.

A second alternative we considered (and discarded) was
a fully portable user-level implementation that would not re-
quire any modifications to the VM or the compiler. Instead,
this solution would take advantage of language-level excep-
tions and use bytecode rewriting techniques exclusively to
provide all the support necessary to perform a rollback oper-
ation. Unfortunately, in the absence of any compiler mod-
ifications, the built-in exception handling mechanism may
execute an arbitrary number of other user-defined excep-
tion handlers and finalizers, violating the transparency of
the design. Moreover, inserting write-barriers at the byte-
code level to log changes would require optimizations to re-
move them to be re-implemented at this level as well, since
existing optimizations are currently implemented internally
by Jikes on a different intermediate representation.

The middle-ground approach that we adopted fulfills all
our design requirements and was relatively easy to imple-
ment. We also managed to keep the number of modifica-
tions to the virtual machine and the compilers small, and
they are mostly machine independent.6 Thus, our imple-
mentation is easily portable.

4 Experimental evaluation

We quantify the overhead of the mechanism using a de-
tailed micro-benchmark. We measure programs that exhibit
priority inversion to verify if the increased overheads in-
duced by our implementation are mitigated by higher over-
all throughput of high-priority threads.

Our algorithm to detect priority inversion is reasonably
simple. A thread acquiring a monitor deposits its priority in

6The exception is the insertion of the barriers in the baseline compiler,
which had to be implemented in assembly language.

the header of the monitor object. Before another thread can
attempt acquisition of the same monitor, it checks whether
its own priority is higher than the priority of the thread cur-
rently executing within the synchronized section. If it is,the
scheduler initiates a context-switch and triggers rollback of
the low priority thread at the next yield point. After the low-
priority thread rolls back its changes and releases the moni-
tor, the high-priority thread acquires control of the synchro-
nized section. If the incoming thread’s priority is lower, it
blocks on the monitor and waits for the other thread to com-
plete execution of the synchronized section.

The Jikes RVM does not include a priority scheduler;
threads are scheduled in a round-robin fashion. This does
not affect the generality of our solution nor does it inval-
idate the results obtained, since problems solved by the
mechanism proposed in this work cannot be solved sim-
ply by using a priority scheduler. However, in order to
make the measurements independent of the random order
in which threads arrive at a monitor, we implemented prior-
itized monitor queues. A thread can have either high or low
priority. When a thread releases a monitor, another thread
is scheduled from the queue. If it is a high-priority thread,
it is allowed to acquire the monitor. If it is a low-priority
thread, it is allowed to run only if there are no other waiting
high-priority threads.

4.1 Benchmark program

The micro-benchmark executes several low and high-
priority threads contending on the same lock. Regardless of
their priority, all threads are compiled identically, withwrite
barriers inserted to log updates, and special exception han-
dlers injected to restart synchronized sections. Our bench-
mark is structured so that only low-priority threads will ac-
tually employ this functionality.7 Every thread executes 100
synchronized sections. Each synchronized section contains
an inner loop executing an interleaved sequence of read and
write operations. We emphasize that our micro-benchmark
has been constructed to gauge overheads inherent in our
technique (the costs of re-execution, logging,etc) and not
necessarily to simulate any particular workload of a real-
life application. We strived to avoid biasing the benchmark
structure toward our solution by artificially extending the
execution time using benign (with respect to logging) oper-
ations (eg, method calls). Therefore, we decided to make
the execution time of a synchronized section directly pro-
portional to the number of shared data operations performed
within that section. We fixed the number of iterations of the
inner loop for low-priority threads at 500K, and varied it for
the high-priority threads (100K and 500K). The remaining
parameters for our benchmark include:

• the ratio of high-priority threads to low-priority threads
– we used three configurations: 2+8, 5+5, and 8+2,
high-priority plus low-priority threads, respectively.

7However, updates of both low-priority and high-priority threads are
logged for fairness, even though in the case of this micro-benchmark high-
priority threads can never be rolled back.



• the ratio of write to read operations performed within
a synchronized section – we used six different config-
urations ranging from 0% writes (ie, 100% reads) to
100% writes (ie, 0% reads)

Our benchmark also includes a short random pause time
(on average equal to a single thread quantum in Jikes RVM)
right before an entry to the synchronized section, to ensure
random arrival of threads at the monitors guarding the sec-
tions.

Our thesis is that the total elapsed time of high-priority
threads can be improved using the rollback scheme, at the
expense of longer elapsed time for low-priority threads. Im-
provement is measured against a priority scheduling imple-
mentation that provides no remedy for priority inversion.
Thus, for every run of the micro-benchmark, we compare
the total time it takes for all high-priority threads to com-
plete their execution for the following two settings:

• An unmodifiedVM that does not allow execution of
a synchronized section to be interrupted and revoked:
when a high-priority thread wants to acquire a lock al-
ready held by a low-priority thread, it waits until the
low-priority thread exits the synchronized section. The
benchmark code executed on this VM is compiled us-
ing the Jikes RVM optimizing compiler without any
modification.

• A modified VMequipped with the compiler and run-
time changes to interrupt and revoke execution of syn-
chronized sections by low-priority threads: when a
high-priority thread wants to acquire a lock held by a
low-priority thread, it signals its intent, resulting in the
low-priority thread exiting the synchronized section at
the next yield point, rolling back any changes to shared
data made from the time it began executing inside the
section. The benchmark code executed on this VM is
compiled using the modified version of the Jikes RVM
optimizing compiler described in Section 3.1.2.

To measure the total elapsed time of high-priority threads
we take the first time-stamp at the beginning of therun()
method of every high priority thread and the second time-
stamp at the end of therun()method of every high-priority
thread. We compute the total elapsed time for all high-
priority threads by calculating the time elapsed from the
earliest time-stamp of the first set (ie, start times) to the
latest time-stamp of the second set (ie, end times). We
also present the impact that our solution has on the overall
elapsed time of the entire micro-benchmark, including low-
priority elapsed times; this is a simple generalization of the
above description, with time-stamps taken at the beginning
and end of therun() method for all threads, regardless of
their priority.

The measurements were taken on an 800MHz Intel Pen-
tium III (Coppermine) with 1024MB of RAM running
Linux kernel version 2.4.20-13.7 (RedHat 7.0) in single-
user mode. We ran each benchmark in its own invocation
of the VM, repeating the benchmark six times in each in-
vocation, and discarding the results of the first iteration,in

which the benchmark classes are loaded and compiled, to
eliminate the overheads of compilation. We report the av-
erage elapsed time for the five subsequent iterations, and
show 90% confidence intervals in our results. Our system is
based on Jikes RVM 2.2.1 and we use a configuration where
both the Jikes RVM (which is itself implemented and boot-
strapped in Java) and dynamically loaded classes are com-
piled using the optimizing compiler. Even in this configura-
tion there remain some methods (eg, class initializers) that
are still baseline compiled, in both the original and modified
VMs alike.

4.2 Results

Figures 5 and 6 plot elapsed times for high priority
threads executed on both the modified (solid line) and un-
modified (dotted line) VM, normalized with respect to the
configuration executing 100% reads on an unmodified VM.
In Figure 5 every high priority thread executes 100K inter-
nal iterations; in Figure 6 the iteration count is 500K. In
each figure: the graph labeled (a) reflects a workload con-
sisting of two high-priority threads, and eight low-priority
threads; the graph labeled (b) reflects a workload consist-
ing of five high-priority and five low-priority threads; and,
the graph labeled (c) reflects a workload consisting of eight
high-priority threads and two low-priority ones.

If the ratio of high-priority threads to low-priority
threads is relatively low (Figures 5-6 (a)(b)), our hybrid im-
plementation improves throughput for high-priority threads
by 25% to 100% over the unmodified implementation. Av-
erage elapsed-time percentage gain across all the configu-
rations, including those where the number of high-priority
threads is greater than the number of low-priority threads,is
78%. If we discard the configuration where there are eight
high-priority threads competing with only two low-priority
ones, with larger numbers of high-priority threads than low-
priority ones, the average elapsed time of a high-priority
thread is twice as fast as in the reference implementation.

Note that the influence of different read-write ratios on
overall performance is small; recall that all threads, regard-
less of their priority, log all updates within a synchronized
section. This implies that the cost of operations related to
log maintenance and rollback of partial results is also small,
compared to the elapsed time of the entire benchmark. In-
deed, the actual “workload” (contents of the synchronized
section) in the benchmark consists entirely of data access
operations – no delays (method calls, empty loops,etc) are
inserted in order to artificially extend its execution time.
Since realistic programs are likely to have a more diverse
mix of operations, the overheads would be even smaller in
practice.

As expected, if the number of write operations within a
synchronized section is sufficiently large, the overhead of
logging and rollbacks may start outweighing potential ben-
efit. For example, in Figure 6(c), under a 100% write con-
figuration, every high priority thread writes, and thus logs,
approximately 500K words of data in every execution of
a synchronized section. We believe that synchronized sec-
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Figure 5. Total time for high-priority threads, 100K iterat ions
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Figure 6. Total time for high-priority threads, 500K iterat ions
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Figure 7. Overall time, 100K iterations
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Figure 8. Overall time, 500K iterations



tions that consist entirely of write operations of this magni-
tude are relatively rare.

As the ratio of high-priority threads to low-priority
threads increases, the benefit of our strategy diminishes (see
Figures 5(c) and 6(c)). This is expected: since there are rel-
atively fewer low-priority threads in the system, there is less
opportunity to “steal” cycles from them to improve through-
put of higher priority ones. We note, however, that even
when the rollback-enabled VM has weaker performance
than the unmodified implementation, the average difference
in execution time is only a few percent.

Figures 7 and 8 plot overall elapsed times for the entire
application executed on both modified (solid line) and un-
modified (dotted line) VMs. These graphs are also normal-
ized with respect to a configuration executing 100% reads
on the unmodified VM. Note that the overall elapsed time
for the modified VM must always be longer than for the
unmodified VM. If we disallowed revocability of synchro-
nized sections, threads executing on both VMs would need
exactly the same amount of time to execute their workloads
(modulo costs related to the implementation of our mecha-
nism for the modified VM: barriers, log maintenance,etc).
However, if the execution of synchronized sections can be
interrupted and revoked, low-priority threads executing on
the modified VM will re-execute parts of their synchronized
sections thus lengthening overall elapsed time. Since our
focus is on lowering elapsed times of high priority threads,
we consider the impact on overall elapsed time (on aver-
age 30% higher on the modified VM) to be acceptable. If
our mechanism is used to resolve deadlocks then these over-
heads may be an even more acceptable price to pay to obtain
progress by breaking deadlocks.

5 Related work

Priority inversion is a well-studied problems in concur-
rent programming. Avoiding priority inversion is espe-
cially important in mission critical or real-time applica-
tions [15, 20, 21]. Priority inheritance and priority ceiling
are two well-known protocols that attempt to avoid priority
inversion. The priority ceiling emulation technique raises
the priority of any locking thread to the highest priority of
any thread that ever uses that lock (ie, its priority ceiling).
This requires the programmer to supply the priority ceil-
ing for each lock. In contrast, priority inheritance will raise
the priority of a thread only when holding a lock causes
it to block a higher priority thread. When this happens,
the low priority thread inherits the priority of the higher
priority thread it is blocking. Yet another alternative is to
have privileged threads, for example those executing on be-
half of the operating system. They can often disable inter-
rupts or preemption that effectively prevents lower-priority
threads from acquiring critical resources. Regardless of the
approach, once a thread enters a synchronized section its
locks cannot be summarily relinquished without potentially
violating synchronization invariants. In contrast, our use of
compiler-assisted rollbacks provides adynamicapproach to

resolving priority inversion issues. Since the overheads to
perform rollbacks are charged only to low-priority threads,
our scheme biases throughput in favor of threads that actu-
ally require it.

Our use of rollbacks to redo computation inside synchro-
nized sections as a result of an undesirable scheduling is
reminiscent of optimistic concurrency protocols first intro-
duced in the 1980’s [13] to improve database performance.
Given a collection of transactions, the goal in an optimistic
concurrency implementation is to ensure that only a serial-
izable schedule results [1, 9, 23]. Devising fast and efficient
techniques to confirm that a schedule is correct remains an
important topic of study.

Transactional techniques such as the kind proposed here
have also been applied to a broader setting. For example,
researchers have investigated lock-free data structures [18,
12] and transactional memory implementations [11, 22, 10]
which generalize transactional protocols for database sys-
tems, to any concurrent system. Our solution differs from
these efforts in that it is not limited to support for spe-
cific lock-free data structures, requires no hardware support
and relies only on limited transactional support (requiring
no resolution of conflicts between data accesses, deadlock-
related situations,etc). It is also transparent to the program-
mer since it modifies only the implementation of the lan-
guage and not its semantics.

Rinard [19] describes experimental results using low-
level optimistic concurrency primitives in the context of
an optimizing parallelizing compiler that generates paral-
lel C++ programs from unannotated serial C++ source. His
approach does not ensure atomic commitment of multiple
variables. In the case of our solution, in contrast to a low-
level facility, the code protected by monitors may span an
arbitrary dynamic context.

There has been much recent interest in data race detec-
tion for Java. Some approaches [6, 3, 4] present new type
systems using, for example, ownership types [5] to verify
the absence of data races and deadlock. There has also
been recent work on generalizing type systems to reason
about higher-level atomicity properties of concurrent pro-
grams that subsume data race detection [7]. Other tech-
niques [24] employ static analysis, such as escape analysis,
along with runtime instrumentation that meters accesses to
synchronized data.

The approach presented here shares similar goals with
these efforts but differs in some important respects. In par-
ticular, our implementation does not rely on global static
analysis (although it may benefit from it), programmer an-
notations, or alternative type systems. Instead, our use of
rollback permits discarding effects of undesirable sched-
ules.

6 Conclusions

We have presented a revocation-based priority inversion
avoidance scheme and demonstrated its utility in improv-
ing throughput of high priority threads in a priority schedul-



ing environment. The solution proposed is relatively simple
to implement, portable, and can be adopted to solve other
types of problems (eg, deadlocks). Our techniques use com-
piler support that insert barriers on read and write operations
to log acceses and updates to shared data, and runtime mod-
ifications to implement revocation when a preemption event
occurs.

Although our preliminary experiments are encouraging,
we believe there are numerous opportunities to improve the
performance of our design by incorporating compiler opti-
mizations to eliminate overheads currently incurred to deal
with logging and commits. For example, read barriers on
code not protected by locks could be removed if such re-
gions were identified. We also intend to evaluate the perfor-
mance of our technique for real-world applications to pre-
cisely measure the impact of our enforced non-revocability
of monitors.
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