
Fine-grained Adaptive Biased Locking

Filip Pizlo
Purdue University
pizlo@purdue.edu

Daniel Frampton
Australian National University
daniel.frampton@anu.edu.au

Antony L. Hosking
Purdue University

hosking@cs.purdue.edu

Abstract
Mutual-exclusion locking is the prevailing technique for protect-
ing shared resources in concurrent programs. Fine-grained locking
maximizes the opportunities for concurrent execution while pre-
serving correctness, but increases both the number of locks and the
frequency of lock operations. Adding to the frequency of these op-
erations is the practice of using locks defensively — such as in li-
brary code designed for use in both concurrent and single-threaded
scenarios. If the library does not protect itself with locks, an engi-
neering burden is placed on the library’s users; if the library does
use locks, it punishes those who use it only from a single thread.
Biased locking is a dynamic protocol for eliminating this trade-off,
in which the underlying run-time system optimizes lock operations
by biasing a lock to a specific thread when the lock is dynamically
found to be thread-local. Biased locking protocols are distinguished
by how many opportunities for optimization are found, and what
performance trade-offs for non-local locks are experienced. Of par-
ticular concern is the relatively high cost involved in revoking the
bias of a lock, which makes existing biased locking protocols sus-
ceptible to performance pathologies for programs with specific pat-
terns of contention.

This work presents the biased locking protocol used in Jikes
RVM, a high-throughput Java virtual machine. The protocol,
dubbed FABLE, builds on prior work by adding per-object-instance
dynamic adaptation and inexpensive bias revocation. We describe
the protocol, detail how it was implemented, and use it in offer-
ing the most thorough evaluation of Java locking protocols to date.
FABLE is shown to provide speed-ups over traditional Java locking
across a broad spectrum of benchmarks while being robust to cases
previous protocols handled poorly.

1. Introduction
Mutual-exclusion locking is the prevailing technique used for pro-
tecting shared resources in concurrent programs. This is particu-
larly true in managed languages such as Java and .NET, where
locking is built into the language syntax. While this encourages
programmers to use locks more freely than in C-like languages, it
also creates problems for language implementers. Java and .NET
alike mandate that any object can act as a lock at any time, impos-
ing additional per-object storage for lock state. Since programmers
are given easy access to locking, they end up using it, often more
so than is prudent from a performance standpoint. This has led to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPPJ ’11, August 24–26, 2011, Kongens Lyngby, Denmark.
Copyright c© 2011 ACM 978-1-4503-0935-6. . . $10.00

a number of innovations that attempt to address both the space us-
age and performance [1, 2, 11–13, 19] of Java locking. A partic-
ularly powerful technique is that of biased locking, which reduces
the overhead of acquiring a lock if that lock is found to be thread-
local. But biased locking has its own trade-offs. Thread-locality is
inferred dynamically using heuristics. If these turn out to be wrong,
it can be expensive to revoke the bias.

This work presents the biased locking protocol used in Jikes
RVM.1 The protocol, which we call FABLE, is based on learning,
and adapting to, the behavior of each lock individually. We demon-
strate that FABLE uses intuitive and robust heuristics for choosing
which locks to bias, making it an easy protocol to reproduce in
other systems. FABLE’s heuristics make it resilient against perfor-
mance pathologies that derail other biased locking protocols. Fur-
thermore, FABLE builds on prior work by implementing an inex-
pensive revocation in case the heuristics fail; this revocation proto-
col is by itself cheap enough to make biased locking a net perfor-
mance win on all commonly available Java benchmarks. In addition
to presenting a new protocol, we present a detailed technical review
of previous locking protocols for Java by showing their implemen-
tation in Jikes RVM, a high-performance JIT-based Java virtual ma-
chine, and offer perhaps the most thorough performance evaluation
of Java locking protocols to date. The main results of our evalua-
tion are (i) confirming the results of Kawachiya et al. [11], (ii) vali-
dating FABLE’s throughput, (iii) demonstrating FABLE’s resilience
against common design patterns that cause disastrous performance
pathologies (slow-downs in excess of 50×) in previous biased lock-
ing protocols, and (iv) that the relative gains of any biased locking
strategy depend heavily on the choice of hardware.

Section 2 reviews previous implementations of locking in Java,
Section 3 presents our fine-grained adaptive biased locking proto-
col (FABLE), Section 4 gives a qualitative comparison of the FABLE
approach and prior art, Section 5 presents our experimental valida-
tion, and Section 6 concludes.

2. Java Synchronization
The synchronized statement is the default locking mechanism
for Java. The statement executes a block of code while holding a
lock — the lock is acquired prior to block execution, and released
after. The Java language mandates that any object be able to act
as a lock, so any object can be used in a synchronized statement.
This lends itself well to concurrency-aware software design, but
also has its disadvantages. First, the underlying implementation
must allocate enough space to hold a lock for each object. Second,
programmers often end up using more synchronized statements
than necessary, causing lock and unlock operations to dominate
application execution time. Moreover, many Java libraries (such
as those in the collections framework) are made thread-safe by

1 We released an early version of our biased locking protocol as part of Jikes
RVM 3.1. This article is the first to document how Jikes RVM performs
biased locking.

lock owner
recursion count (rc)

object

entry queue
wait queue

spin lock

fat lock
status

object
payload

type

lock
status word

hash GC

0 lock owner rc
thin mode

1 fat lock reference
fat mode

object layout

Figure 1: Thin lock object layout in Jikes RVM. We assume a
two-word object header. The first word is the status word, with
bits for supporting hash codes, garbage collection, and locking. The
second word is the type word, holding a pointer to the object’s type.
The status word’s lock data has a high-order bit that indicates if
the lock is thin (0) or fat (1); if it is thin, the lock word contains
bits identifying the thread that owns it (or zero if none), and for
the recursion count to support Java’s re-entrant (monitor) locks. If
these bits are insufficient to represent the lock’s state, then the lock
is inflated into fat mode by allocating a structure that has enough
storage to contain all of the necessary information.

Value Purpose
LOCK_MASK Bitmask for lock portion of status word.
STATE_MASK Bitmask for lock state (thin or fat).
STATE_SHIFT Amount to shift to get to lock state.
OWNER_MASK Bitmask for lock owner.
OWNER_SHIFT Shift needed to get to lock owner.
RC_MASK Bitmask for recursion count (RC).
RC_SHIFT Shift needed to get to recursion count.
UNLOCK_MASK Inverse of OWNER_MASK|RC_MASK, used to

clear owner and RC fields.
obj->status Status word for obj.
thr->lockBits Current thread’s locking identifier, shifted

according to OWNER_SHIFT.

Table 1: Constants and fields used by thin locks. As shown in
Figure 1, each object has a status word in its header, and some por-
tion of the status word is devoted to thin lock data. The LOCK_MASK
masks off just the lock data, while the other shifts and masks are
used to access the four possible fields of the lock data: the state,
which is either 0 (thin) or 1 (fat), and the owner and recursion count
for thin locks.

default, using locking even when programmers never share the
underlying data structures among multiple threads.

These disadvantages have motivated a number of novel imple-
mentation strategies for Java locks. The first problem — space us-
age for the lock — was almost completely side-stepped by com-
pressing the lock into a handful of bits in the object header [1, 2,
9, 12]. Such thin lock approaches exploit the observation that most
locks only require a handful of bits; it is only when the lock is ex-
periencing heavy contention that additional storage is needed. The
default mode of a thin lock involves the entire lock state — whether
or not it is held, and if so, by whom — being packed inside a single
32-bit word in the object header. If the locking protocol requires
more storage, it reuses those bits for a reference to a fat lock struc-
ture. Figure 1 shows the Jikes RVM object layout, using thin locks
to compress lock data in the common cases.

The second problem — time overhead of lock and unlock op-
erations — continues to inspire new locking protocols. The lock
operation in C-like languages is typically implemented by an out-
of-line procedure whose fast path involves one or more atomic op-

void inlineLock(Object obj) {
oldStatus = obj->status;
if ((oldStatus & LOCK_MASK) == 0

&& CAS(&obj->status, oldStatus,
oldStatus + curThread->lockBits

+ (1<<RC_SHIFT)))
return;

lockSlow(obj);
}

void inlineUnlock(Object obj) {
oldStatus = obj->status;
if ((oldStatus & LOCK_MASK)

== curThread->lockBits + (1<<RC_SHIFT)
&& CAS(&obj->status, oldStatus,

oldStatus & UNLOCK_MASK))
return;

unlockSlow(obj);
}

Figure 2: Inline lock and unlock paths for thin locks. We show
the Jikes RVM thin locking fast paths. The inlineLock procedure
covers the most common case for locking: the lock is thin and not
held by anyone. This corresponds to all-zero lock bits in the status
word (see Figure 1). The inlineUnlock procedure covers the
most common case for unlocking: the lock is thin, and held by the
current thread exactly once. Both locking and unlocking required
compare-and-swap to cover races against other threads locking the
same object, and other system services that may also be accessing
the object status word. These fast paths are inlined into user code
by the optimizing compiler. Other cases are handled by the out-of-
line slow paths (lockSlow and unlockSlow).

erations such as compare-and-swap (CAS). While this approach is
usable for Java, it leads to reduced performance when synchronized
statements are executed frequently. Thus, modern Java lock imple-
mentations inline the lock fast path because an inlined CAS is much
faster than a procedure call.

2.1 The Inline Thin Lock Protocol in Jikes RVM
We now discuss the original inline thin lock protocol used in Jikes
RVM; this serves as the basis for our description of other locking
protocols. Jikes RVM uses the object layout shown in Figure 1:
objects have a two-word header, which includes a multi-purpose
status word and a type word that refers to the object’s type. In
Java, each object has a lock and a system-supplied hash code, and
unreachable objects are garbage collected. The status word contains
bits for supporting each of these capabilities. We do not go into
the details of the hashing and garbage collection implementation in
Jikes RVM other than to say that the hash code support is address-
based (with special support for hashed objects that move from
their first-hashed address), and the garbage collector is parallel,
generational, copying, accurate, and stop-the-world by default, but
has a number of variants including concurrent collection. The lock
portion of the status word uses 22 bits total, most of which comprise
the lock owner field, which identifies the thread that currently owns
the lock.

Figure 2 shows the inline locking code paths, and Table 1
describes some of the code conventions we use. The inline thin
lock procedures cover the common cases for lock and unlock: for
lock acquisition the common case is that the lock is thin and not
held, while for lock release (unlock) the common case is that the
lock is thin, the current thread owns it, and we are in the outermost
synchronized statement for that lock (i.e., the current thread has not
acquired the lock recursively). All other cases are handled by out-
of-line slow paths. The lock slow path covers the following cases:

Recursive lock acquisition: If the lock is already held by the cur-
rent thread, the recursion count is incremented and checked for
overflow.

Recursion count overflow: If the RC bits in the status word are
too few to account for the number of times that the lock has
been acquired, then the lock is inflated into fat mode.

Thin lock spin-acquire: If the lock is thin and is held by another
thread, the slow path first makes 40 attempts to acquire the
lock by spinning. Spinning includes telling the operating system
to yield the current thread. The most common case for lock
contention is that it is acquired after spinning (i.e., the previous
holder releases it within 40 spins).

Spin limit overflow: If a thin lock cannot be acquired after 40
spins, the lock is inflated into fat mode.

Fat lock acquire: If the lock is fat, lock acquisition proceeds much
like a standard mutex: if it is already held by another thread,
the acquiring thread is enqueued and suspended. Atomicity
for internal fat lock operations — enqueueing and dequeuing
threads that are waiting on the lock — is ensured using a spin-
lock internal to the fat lock.

Similarly, the slow path for unlock covers:

Recursive lock release: The lock is held by the current thread and
the recursion count is greater than 1, so the recursion count is
decremented.

Lock not held by current thread: If the lock is not held by the
current thread, an IllegalMonitorState exception is thrown.

Fat lock release: If the lock is fat, the lock release proceeds by
dequeueing and waking a suspended thread from the lock’s en-
try queue. If there are no threads on the fat lock’s queues and
the recursion count is zero, the lock is deflated. This eager de-
flation strategy maximizes overall performance by minimizing
the likelihood of fat lock operations, which require out-of-line
procedure calls.

The Jikes RVM thin lock algorithm is largely based on the Tasuki
lock of Onodera and Kawachiya [12] in that it deflates locks
eagerly, but omits their CAS-less unlock optimization because
other threads may be accessing the status word concurrently (for
hashing and GC-related operations). To validate the performance
of our thin lock implementation, we have extended Jikes RVM
with a toolkit for experimenting with various Java locking pro-
tocols (which we make publicly available [16]). This includes a
variety of locking protocols, including ones that change the fat
lock deflation strategy, and others based on futexes [10] as well
as java.util.concurrent.lock.ReentrantLock. Measure-
ments that we have performed on this framework show that while
some variations may lead to performance progressions on individ-
ual benchmarks, the geometric mean over all of our benchmarks
does not vary significantly. This has led us to believe that our thin
locking implementation is near optimal. But there is a case where
thin locks can be further optimized. For some Java workloads, the
frequency of uncontended lock acquisition is so high that even in-
lining of the fast path is not enough. The problem stems from the
hardware implementation of CAS. CAS can be quite slow — of-
ten an order of magnitude slower than a normal memory access.
For example, even on Intel’s Nehalem processors, lock operations
implementing CAS still serialize the whole pipeline.

2.2 Biased Locking
The CAS in lock/unlock fast paths can be avoided if the lock is
biased to a thread. This thread becomes the bias owner, and can
use a fast path that relies on non-atomic loads and stores. If an-

lock owner
recursion count (rc)

object

entry queue
wait queue

spin lock

fat lock
status

object
payload

type

lock
status word

hash GC

0 bias owner rc
biased mode

0
thin mode

object layout

1 fat lock reference
fat mode

lock owner rc

0

1

0

Figure 3: Biased lock object layout in Jikes RVM. We assume the
same object layout as in Figure 1, but add one bit to the lock data to
indicate whether or not the lock is biased. In biased mode, the bias
owner bits identify the thread to which the lock is biased. Only
the bias owner is allowed to manipulate the lock data portion of
the status word. This allows the bias owner to use fast, non-atomic
increment and decrement operations on the recursion count (rc) in
order to acquire and release the lock. Attempts to acquire the lock
by any other thread lead to bias revocation. When in thin mode, the
lock behaves like a normal thin lock as in Figure 1.

other thread attempts to acquire the lock, a special bias revocation
protocol is invoked. This protocol must avoid entering into a race
condition with the non-atomic lock acquisition path used by the
bias owner. Typically this is done by suspending the owner, ver-
ifying that the owner is not currently executing the locking path,
and then marking the lock as no longer biased. Variations on biased
locking [11, 19] have been broadly adopted and can be found in
production Java virtual machines [8].

Our Jikes RVM implementation of biased locking is shown in
Figure 3. This is a relatively straight-forward extension of the thin
lock protocol: we add an extra bit to the lock data (or rather, we
steal it from the recursion count) to distinguish between the biased
and thin states. The biased state tells the system that the bias owner
has a monopoly on the lock — it is the only thread that can make
changes to the lock data. This allows it to avoid using a CAS
to acquire and release the lock. The fast path implementation for
biased locking that we use in Jikes RVM is shown in Figure 4.
Unlike thin locking, where the lock owner bits are reset to zero
when the lock is released, the value of bias owner persists even
after the lock is released. A biased lock is known to be not held if
its recursion count is zero.

What happens in the slow paths is far more subtle, and is the
main distinguishing characteristic between different biased lock-
ing protocols. In particular, the choice of which locks to bias is
made dynamically by the biased locking protocol. This makes bi-
ased locking risky from a performance standpoint. Because bias
revocations are much more expensive than other forms of lock con-
tention, biasing many locks that are then acquired by another thread
will lead to severe overheads due to revocation. On the other hand,
if too few locks are biased, then the protocol becomes redundant
— or worse, it leads to a performance loss because its only impact
on the system is code bloat. Consequently the main challenges of
designing a good biased locking protocol are (i) choosing the right
heuristics for selecting which locks to bias and (ii) optimizing the
bias revocation operation as a safeguard in case the heuristics fail.

2.2.1 Heuristics for Biasing
The original work on biased locking in Java is due to Kawachiya
et al. [11] (KKO). They used a greedy approach to biasing: the
first time that a new lock is acquired, it is biased to the thread

void inlineLock(Object obj) {
oldStatus = obj->status;
if ((oldStatus & LOCK_MASK)

== curThread->lockBits) {
obj->status = oldStatus + (1<<RC_SHIFT);
return;

}
if ((oldStatus & LOCK_MASK)

== (1<<STATE_SHIFT)
&& CAS(&obj->status, oldStatus,

oldStatus + curThread->lockBits
+ (1<<RC_SHIFT)))

return;
lockSlow(obj);

}

void inlineUnlock(Object obj) {
oldStatus = obj->status;
if ((oldStatus & LOCK_MASK)

== curThread->lockBits + (1<<RC_SHIFT)) {
obj->status = oldStatus - (1<<RC_SHIFT);
return;

}
if ((oldStatus & LOCK_MASK)

== curThread->lockBits
+ ((1<<STATE_SHIFT)|(1<<RC_SHIFT))

&& CAS(&obj->status, oldStatus,
oldStatus & UNLOCK_MASK))

return;
unlockSlow(obj);

}

Figure 4: Inline lock and unlock paths for biased locks. We
show our implementation of Jikes RVM biased locking fast paths.
As before (see Figure 2), the inlineLock and inlineUnlock
procedures cover the common cases that are profitable to inline. To
support biased locking, these procedures are modified to include
one extra case (the non-atomic biased lock/unlock).

that acquired it. If the bias is ever revoked, the lock can never
be rebiased. The bias-on-first-acquire, never-rebias heuristic works
surprisingly well; both the original Kawachiya et al. [11] work and
all subsequent literature on biased locking that we are aware of
agree that the KKO algorithm is a net performance win for well-
known benchmarks. However, a greedy approach requires that two
properties hold to get good performance:

Shared locks are created rarely: We say that a lock is shared if
it will be acquired by more than one thread during its lifetime.
KKO will perform exactly one bias revocation per shared lock.
KKO will exhibit good performance if the number of shared
locks is small, or if they are all long-lived — since the cost of
revocation is only paid once over the lifetime of each shared
lock.

Bias revocation is not too inefficient: As will be discussed in the
next section, KKO uses a data-access parallel bias revocation
protocol — that is, a bias revocation only perturbs the execution
of the bias owner and the bias revoker; all other threads are free
to execute concurrently.

The frequency of shared lock creation is a property of the
application. This implies that KKO will perform poorly on some
pathological programs — up to 50× slower than thin locks as
measured in our experiments.

The alternative is to bias only those locks that are unlikely to
become shared. One instance of such an adaptive approach is the
protocol proposed by Russell and Detlefs [19] (RD). Their protocol
tracks the locking behavior of objects at class (i.e., type) granular-

ity, and either biases or revokes locks based on dynamically gath-
ered per-class (rather than per-object) statistics. RD will also rebias
locks for which the bias was previously revoked if data gathered
for the lock’s class implies that it would be profitable. If the heuris-
tics are tuned appropriately, this approach will lead to fewer bias
revocations than the simpler KKO approach. But RD locks have
problems of their own:

Empirically tuned heuristics: RD locks rely on complex trigger
threshold heuristics for revocation and rebiasing. Russell and
Detlefs [19] show that if these thresholds are empirically tuned
for a particular benchmark suite, then RD will perform well,
on that suite. The actual thresholds that Russell and Detlefs de-
rived are not published, to our knowledge. Furthermore, per-
formance on benchmarks for which the heuristics were not op-
timized is not shown. This is a major disadvantage versus the
simpler KKO protocol: while the KKO protocol uses an intu-
itive and well-described heuristic, the RD protocol appears to
require tuning revoke/rebias trigger thresholds to get good per-
formance. There is a danger that the tuning will favor particular
benchmarks over general applications.

Adaptation is coarse-grained: The RD adaptation heuristics con-
flate the behavior of all objects of a particular class. This can
lead to problems if one part of the program uses instances of
class Foo in a thread-local manner, while another part of the
program shares it among many threads. Russell and Detlefs [19]
argue that their approach might be extended to per-allocation-
site adaptation, but concede that this would require significant
changes to how a Java virtual machine structures objects.

More complex fast paths: To perform a biased lock acquisition
in RD locks, the fast path must check if the object’s class is
biasable. This implies three additional loads, and two additional
branches, that are not present in Figure 4 [19].

To summarize, KKO locks are simple, but have a clear pathology if
the program frequently allocates shared locks — for each of these
locks, the KKO protocol will have to perform a revocation. RD
locks address these issues, but they do so at a coarse-grained level
which may result in some thread-local locks not benefiting from
biased locking.

2.2.2 Protocols for Bias Revocation
When a lock is biased, the bias owner is permitted to manipulate
the lock data in the object header without atomic operations (see
Figure 4). If another thread wishes to acquire the lock, the bias
must first be revoked. A correct protocol for bias revocation must
side-step the race condition that exists when a thread other than the
bias owner attempts to manipulate the lock data.

The KKO protocol [11] uses thread suspension with machine-
code-level roll-back to side-step the race. The revocation protocol
begins by telling the operating system to suspend the bias owner.
Once suspended, KKO inspects the thread’s registers to determine
if the thread is currently executing a biased lock operation. If not,
the state of the lock can safely be flipped from biased to thin. On
the other hand, if the bias owner is executing a biased lock oper-
ation, then KKO performs a manual roll-back of the biased lock
operation by manipulating the thread’s register set. Once this is
complete, the lock’s state can safely be flipped to thin. After the
lock’s state is changed to indicate that it is no longer biased, the
bias owner is resumed. The KKO bias revocation protocol is scal-
able because it is data-access parallel: the only threads affected in
the case of revocation are the bias owner and the thread performing
the revocation. However, KKO revocation requires detailed track-
ing of the machine code generated for biased locking. If the biased
locking code is inlined (which it should be for maximum perfor-

mance), then KKO locks must have details on every copy of the
lock fast path in every method into which it was inlined.

The RD protocol [19] uses a simpler bias revocation protocol
based on safepoints. Safepoints are inserted by the compiler (or
interpreter) into the code stream at static locations where certain
properties are known to hold. Typically this is used for garbage
collection: at each safepoint the compiler generates accurate stack
maps to allow for stack scans. Java virtual machines typically have
built-in support for bringing all threads to a safepoint. This is used
to aid various VM services including garbage collection and on-
stack replacement. Russell and Detlefs [19] exploit the fact that the
lock/unlock fast paths do not have safepoints inside them. Thus,
triggering a system-wide safepoint automatically ensures that any
biased lock can be revoked without risking a race condition. But
what this approach gains in elegance, it loses in performance. While
the KKO bias revocation is data-access parallel, the RD one is not:
every revocation halts the progress of all threads. This is likely the
main reason why the RD protocol is less greedy than KKO when
biasing locks. The KKO protocol has a revocation algorithm that
is fast enough to support high frequency revocations, while the
RD protocol cannot support the same level of revocation frequency
without causing performance pathologies.

One additional biased locking protocol is due to Onodera et al.
[13] (OKK), who combine a spin-based lock with the KKO proto-
col to allow threads other than the bias owner to acquire the lock
without revocation. However, this protocol increases the complex-
ity of the biased lock acquisition fast path by requiring memory
fences, and requires threads other than the bias owner sometimes to
use a purely spin-based protocol for contention. We only consider
biased locking protocols that maximize throughput by eliminating
the need for either fences or atomic operations in the common case.

To summarize, KKO locks are simple but may experience
pathological behavior if programs allocate shared locks at a high
rate. The RD protocol addresses this problem but introduces prob-
lems of its own: namely, it uses complex heuristics for biasing
which may not be suitable for all programs, and it employs a bias
revocation protocol that is much more disruptive than the one used
by KKO. We would like a protocol that combines the best of both
worlds, by having KKO’s simple heuristics, the elegance of RD’s
revocations, and the ability to better adapt to program behavior so
as to prevent performance pathologies.

3. FABLE: Fine-grained Adaptive Biased Locks
We now present a new biased locking protocol called FABLE that
includes improvements to both the biasing heuristics and the bias
revocation protocol used in KKO locks:

Fine-grained Adaptation: FABLE adapts itself to each lock in-
stance. No per-class or per-allocation-site statistics are gath-
ered. Instead, FABLE learns the locking behavior of each lock,
and chooses to enable either biased or thin mode locking de-
pending on what it learns. This adaptation is done automati-
cally, requires no user involvement, and requires at most one
additional bit in the object header.

Fast Revocation: FABLE uses safepoints to revoke bias, but unlike
RD locks, FABLE only safepoints one thread.

FABLE is designed to reduce the likelihood of detrimental perfor-
mance pathologies while ensuring good throughput for common
programs.

3.1 Fine-grained Adaptation with Random Counting
Locking protocols based on KKO use the simple bias-on-first-
acquire heuristic for choosing which locks to bias. This leads to
all locks being biased unless the bias is revoked. If the program

CLEAR

LEARN

THIN BIASED

FAT

first acquire

lock acquired by same
thread multiple times

lock acquired by more
than one thread

bias revocation

lock inflation

lock
deflation

Figure 5: State transitions of a FABLE lock. Locks in FABLE
start out in clear mode, and transition to learn mode upon first
acquisition. While in learn mode, if the lock is acquired multiple
times by the same thread, the lock gets biased to that thread. If more
than one thread acquires the lock in learn mode, it immediately
becomes a thin lock. After the lock is biased, if an acquisition
attempt is made by some thread other than the bias owner, the bias
gets revoked. Thin locks may be inflated if the status word does not
provide sufficient storage to handle the lock state, which happens
if threads get enqueued on the lock, or if the recursion count
overflows. Of these state transitions, all but the bias revocation can
be done at any time, by any thread, using a single CAS.

allocates a lot of shared locks, then bias revocation dominates
execution time. FABLE addresses this issue by using a bias-after-
multiple-acquires heuristic: a lock must be acquired multiple times
by the the same thread before it gets biased. We implement this
heuristic with an additional lock state, called the learn mode. Locks
in the learn mode have two fields: the bias guess and the recursion
count. The bias guess identifies the thread that first acquired the
lock. The intuition behind FABLE is that if the bias guess reacquires
a lock N times non-recursively for some system-wide value of N,
then bias the lock, otherwise switch to thin mode. We refer to N as
the learn limit. The first lock acquisition does not count, since this
acquisition only triggers the clear→learn transition. Thus, a total
of N +1 non-recursive lock acquisitions must be performed by the
same thread after the lock is allocated for FABLE to enable biased
locking.

A naı̈ve implementation of FABLE would require log(N) bits
in the object header for counting lock acquisitions. We avoid this
overhead by random counting [4]: every time that the bias guess
performs a lock acquisition in learn mode, we bias the lock with
probability 1/N. One way to implement this is with a pseudo-
random number generator, but we choose a simpler approach: each
thread contains a learnCount field that we increment on each
learn mode lock acquire. When it reaches the learn limit, we bias
the lock. This results in 1/N biasing probability on average, but it
is not a truly random operation: for extremely simple programs, it
may suffer from “resonance” with the application program if the
limit matches application phase transitions in the use of the lock.

The only tunable heuristic in FABLE is the learn limit. When
first implementing FABLE, we arbitrarily chose learnCount==5.
The only intuition is that larger values are likely to degrade perfor-
mance since learn mode lock acquisition is slower than either thin
or biased mode acquisition, while smaller values are less likely to
detect when a lock is shared. Our experimental validation shows
that this is a reasonable, if not optimal, choice. Except for a micro-

0
lock owner

recursion count (rc)

object

entry queue
wait queue

spin lock

fat lock
status

object
payload

type

lock
status word

hash GC

0 bias owner rc
biased mode

1
thin mode

object layout

1 fat lock reference
fat mode

lock owner rc

0

1

0

clear mode

0 bias guess rc
learn mode

1

Figure 6: FABLE object layout. We assume the same object layout
as in Figure 3, but exploit an unused value of the two-bit state
field to introduce a new learn mode. The new learn mode is used
for learning whether the lock will become shared. The first lock
acquisition flips the lock from the initial clear mode to learn mode,
with the bias guess set to the thread that first acquired it. If during
some number of lock acquisitions, the bias guess is the only thread
that acquires the lock, then the lock transitions to the bias mode;
otherwise it transitions to the thin mode.

benchmark designed to measure FABLE’s worst case by simply al-
locating objects in a loop and locking them k times for small val-
ues of k, the differences that arise from varying the learn limit are
barely statistically significant. This leads us to believe that FABLE
is robust, and changing its learn limit heuristic is unlikely to lead to
surprising behavior.

Like KKO, FABLE employs the never-rebias rule. Once a lock
becomes thin, it can never become biased. One could imagine in-
troducing rebiasing heuristics (for example by reverting thin locks
to learn mode after a time). The complete set of states in FABLE, as
well as all possible state transitions, are shown in Figure 5. Figure 6
shows the object layout we use. Note that the number of bits used
is the same as for our biased locks (Figure 3); this is because the 11
value for the lock state field was previously unused.

3.2 Optimized fast paths
Our goal with FABLE is to avoid reducing the throughput of those
programs that already run fast with other locking protocols. How-
ever, some overhead is unavoidable since lock acquisition in learn
mode requires random counting. We mitigate these overheads by
ensuring that the biased and thin mode lock/unlock fast paths are
no more complicated than the biased lock paths shown in Figure 4,
and by ensuring that the learn mode unlock operation is identical to
the thin mode unlock operation, allowing both to use the same fast
path. The tricks used to make this happen are:

Biased mode corresponds to the state field having a 00 value:
This ensures that detecting if a lock is biased does not require
any additional arithmetic.

Combined learn/thin unlock fast path: We inline learn mode un-
lock to maximize performance, but we wanted to avoid bloating
the inlined unlock code. This is accomplished via two tricks.
First, the second-highest-order bit is 1 for both the learn mode
and the thin mode, allowing the unlock fast path to detect if the
lock is in either state without additional arithmetic. Second, thin

void inlineLock(Object obj) {
oldStatus = obj->status;
if ((oldStatus & LOCK_MASK)

== curThread->lockBits) {
obj->status = oldStatus + (1<<RC_SHIFT);
return;

}
if ((oldStatus & LOCK_MASK)

== curThread->lockBits + (3<<STATE_SHIFT)
&& CAS(&obj->status, oldStatus,

oldStatus + (1<<RC_SHIFT)))
return;

lockSlow(obj);
}

void inlineUnlock(Object obj) {
oldStatus = obj->status;
if ((oldStatus & LOCK_MASK)

== curThread->lockBits + (1<<RC_SHIFT)) {
obj->status = oldStatus - (1<<RC_SHIFT);
return;

}
if ((oldStatus

& ((1<<STATE_SHIFT)|OWNER_MASK|RC_MASK))
== curThread->lockBits

+ ((1<<STATE_SHIFT)|(1<<RC_SHIFT))
&& CAS(&obj->status, oldStatus,

oldStatus - (1<<RC_SHIFT)))
return;

unlockSlow(obj);
}

Figure 7: Inline lock and unlock paths for FABLE. FABLE’s fast
paths cover three cases: learn mode locks, biased locks, and thin
locks. The lock acquisition fast paths are limited to the thin and
biased modes, and are optimized to be as efficient as the fast path
in Figure 4. The unlock fast path covers all three modes without
introducing code bloat by using a polymorphic thin/learn unlock
case: if a lock is held in either thin or learn mode, our unlock fast
path will handle it using the same code.

lock release simply decrements the recursion count. This makes
the same unlock code work for both learn and thin mode.

The unlock fast path optimizations introduce a side-effect: unlock-
ing a thin lock leads to the lock owner having a value corresponding
to the previous lock owner. In FABLE a lock is known to be thin but
not held if the recursion count is zero. To avoid bloating the thin
lock acquisition fast path, the fast path now only covers the case
where the last thread to hold the lock is the same as the thread ac-
quiring it. This seems like it should cause slow-downs; however, we
separately confirmed that changing a baseline thin locking imple-
mentation to exhibit this “sticky lock owner” property has no effect
on performance. We suspect that if the thread acquiring the lock is
different than the last thread to hold the lock then performance is
dominated by cache effects rather than by the slight overhead of a
procedure call.

The complete fast path code for FABLE is shown in Figure 7.
Our results show that for common programs, FABLE is rarely
slower than biased locks while sometimes being a lot faster. The
biggest observed speed-up exceeds 50×. On programs for which
we had previously optimized our KKO-style biased locking imple-
mentation, FABLE exhibits nearly identical performance.

3.3 Bias Revocation by Thread Safepointing
Like KKO locks, FABLE uses a data-access parallel bias revocation
protocol: the only threads affected are the bias owner and the revok-
ing thread. Like RD locks, FABLE uses safepoints for revocation,

which leads to a simple implementation. This combination is possi-
ble because as part of our work towards the Jikes RVM 3.1 release,
we added the ability to safepoint threads individually. This capa-
bility is engineered to allow multiple disjoint pairs of threads to
safepoint each other in parallel, while also ensuring deadlock free-
dom when two or more threads attempt to simultaneously safepoint
each other. We call this safepointing protocol the pair handshake.
We support two forms of pair handshake:

Synchronous Pair Handshake: A synchronous pair handshake is
exposed as two operations, beginPairHandshake and its con-
verse, endPairHandshake. The first operation stops the tar-
get thread at a safepoint and returns. This requires waiting for
the target thread to reach a safepoint and informing it to sus-
pend itself until the endPairHandshake call. When using syn-
chronous pair handshakes, FABLE performs the bias revocation
using a CAS after calling beginPairHandshake but before
calling endPairHandshake.

Asynchronous Pair Handshake: An asynchronous pair hand-
shake, or asyncPairHandshake, supplies the target thread
with a callback that is invoked at the next safepoint. The tar-
get thread never stops in this scheme. If the target thread is in
native code, the callback is immediately executed; otherwise
asyncPairHandshake waits until the target thread reaches
a safepoint and executes the callback. FABLE exploits this by
passing a closure that performs the revocation.

The asynchronous approach has the benefit of never suspending the
target thread, which sometimes results in speed-ups, especially on
systems that have many cores.

4. Qualitative Comparison of Locking Protocols
We have presented four locking protocols so far: thin locks, KKO
biased locks [11], RD biased locks [19], and FABLE. We have our
own implementation of KKO locks that uses both the synchronous
and asynchronous styles of FABLE’s pair handshakes; we consider
this approach to be almost equivalent to KKO and we will use it
as a performance baseline for validation. We refer to these as Bias-
Sync and Bias-Async for convenience. This section compares the
protocols on a qualitative basis. The variants are as follows:

Thin Locks: We expect thin locks to have optimal performance
when the majority of locks are shared, if the platform supports
a very fast CAS operation, or when locking is used sparsely
by the program. Our previous experiments on varying the thin
lock/fat lock implementation show that many possible alterna-
tive implementations of thin locks exist, and that their perfor-
mance is not very different.

KKO: We expect KKO to perform well on common benchmark
programs, but exhibit pathologies on some corner cases. Pre-
vious literature on KKO locks [11] shows this to be the case.
It is only in the case of pathological programs that KKO will
perform poorly. Two kinds of pathologies exist, and we believe
that though rare, these pathologies could easily happen in pro-
duction code. One example is producer-consumer. Consider a
program that allocates an object, locks it a few times, and en-
queues it. This may happen if the object comes from a third-
party library that is using locking defensively. The object is then
consumed by a separate thread, and again locked, due to defen-
sive locking. Every time that an object moves from one thread
to another in such a program, KKO locks will suffer revoca-
tion. RD and FABLE will be able to avoid these revocations in
most cases. The other pathology is one we call “cloud of ob-
jects”: consider that a multi-threaded program is operating over
a large shared data structure full of many objects. Accesses to

the objects are protected with locks. KKO locks will bias each
object on the first access, leading to subsequent revocations. If
the number of objects is large enough, this may cause severe
slow-downs. RD and FABLE will be able to avoid these revoca-
tions in most cases.

RD: RD locks are the most conservative in choosing which ob-
jects to bias, accomplished by heuristics that track per-class
locking behavior. On the other hand, RD locks can easily be
too conservative: if any object of any class becomes shared and
experiences heavy contention, other objects of that class may
become ineligible for biased locking even if those objects are
thread-local. FABLE addresses this problem by using per-object
heuristics. KKO addresses this problem by being greedy: every
object is biased until the bias is revoked.

Bias-Sync: This is almost exactly like the KKO protocol, but uses
a simpler revocation strategy based on per-thread safepoints.
Kawachiya et al. [11] state that their particular implementation
of the KKO revocation protocol is sometimes slow on their plat-
form of choice (Windows) due to the high costs of manipulat-
ing a suspended thread’s register file. One of our contributions
is that we avoid this overhead using thread safepoints.

Bias-Async: Asynchronous pair handshakes avoid having to stop
the bias owner, which should make them perform faster in some
cases.

FABLE: The main advantage of FABLE is that it has RD’s resilience
against pathological programs without resorting to complex
heuristics. FABLE has only one heuristic, the learn limit. We
show that changing the value of this parameter does not change
performance much. We expect FABLE to be slower than simple
biased locking on programs that frequently lock short-lived
objects. On typical programs we expect FABLE to perform like
regular biased locking.

FABLE and RD locks both employ more sophisticated heuristics
than KKO so as to reduce the number of bias revocations. However,
neither style is strictly superior to the other. FABLE will system-
atically fall into the producer-consumer pathology if the producer
always non-recursively relocks an object more than N times before
enqueueing it, where N is the learn limit. RD is better equipped to
handle this case because it marks entire classes as bulk unbiasable.
On the other hand, FABLE will beat RD if the same class is used
for a producer-consumer pattern in one part of the program while
being used in a thread-local fashion in another part of the program.
RD will have trouble separating these uses because it tracks lock
behavior on a per-class (rather than per-object) basis.

FABLE has two other advantages over RD locks: FABLE uses a
fast data-access parallel bias revocation (which is by itself enough
to make biased locking a net win on most programs) and FABLE’s
lock/unlock fast paths require fewer instructions than RD’s.

4.1 Fat locking and lock inflation strategies
Production Java virtual machines are engineered to minimize the
number of header words in order to reduce garbage collection pres-
sure and memory footprint. It is common to reduce the header to
two words (as is the case in Oracle HotSpot [7] and Jikes RVM)
or even one word (as is the case in Azul VM [6]). The full fat lock
structure will typically require at least three additional words (for
storing the lock status and the queues associated with lock acqui-
sition and wait/notify). If object header overhead was not an issue,
there would be no reason for thin locks: one could simply inline
the fat lock allocation fast paths, and even make them use biased
locking. But the space overheads of fat locks mean that all produc-
tion Java virtual machines that we are aware of make some effort to
avoid allocating fat locks. Jikes RVM allocates fat locks only when

there is contention, and deallocates them as soon as contention sub-
sides. Some VMs use a more relaxed strategy and allocate a fat lock
when an object is first locked, rather than only when an object is
contended. The stack-locking protocol used in Oracle HotSpot [7]2

is a particularly interesting instance of this strategy. When an ob-
ject is locked, a word in the object header is replaced with a pointer
to a stack-allocated structure; the previous value of that word is
displaced into this structure. This works well since Java locks are
lexically scoped, and results in only 1 bit of object header over-
head for locking. Fiji VM [17] allocates a fat lock in the heap on
the first lock acquisition and deallocates it only when the object
becomes unreachable. The lock pointer replaces the class pointer,
and the lock data references the class. Double-indirection is used to
access an object’s class, and a Brooks-style [5] forwarding pointer
in the class is used to make this double indirection unconditional
and relatively inexpensive. This results in zero header overhead for
locking, for objects that have never been locked. With this strategy
Fiji VM achieves performance that is close to that of HotSpot and
Jikes RVM, likely because the number of objects in the heap that
ever get locked is small (typically 10%, as measured by Bacon et al.
[2]).3

Based on cross-VM comparisons, it appears that there is no
correlation between how aggressively a Java virtual machine avoids
allocating fat locks and how much throughput the VM achieves.
The choice of fat lock allocation strategy is often dictated not
by throughput but by constraints from other parts of the system.
For example, Jikes RVM only has 22 bits in the object header
for lock data. Header word displacement, used in HotSpot [7]
and Exact VM [1], or Brooks forwarding as in Fiji VM, is not
used in Jikes RVM, as either technique would slow down access
to the hash code, garbage collection state, and the class pointer.
It also leads to a simpler overall design, which is essential for
making Jikes RVM an easy-to-use platform for experimenting with
new VM and garbage collection techniques. This means that at
most 222 (about 4 million) objects with fat locks are allowed to
exist at any time in the heap. Jikes RVM side-steps this limit by
allocating fat locks only on contention or recursion count overflow,
and deallocating them as soon as they are no longer contended or
when their recursion count is reduced. The number of locks being
contended is bounded by the number of threads, and the recursion
count is bounded by the stack height; as a result we have never
seen a program that hits the 4 million fat lock limit. The fact
that Jikes RVM’s thin locks are necessitated by other requirements
in the system means that unfortunately, this work cannot show a
direct comparison between FABLE and pure fat locking. However,
past results such as those of Bacon et al. [2] and Onodera and
Kawachiya [12] show quite conclusively that fat locking alone is
not an efficient lock implementation strategy.

4.2 Related work
Minimizing the cost of bias revocation is an active area of research.
An alternative to revoking bias is to use a secondary locking proto-
col to serialize contention by threads other than the bias owner. [13]
Such schemes suffer from increased complexity in the biased lock
acquisition path. FABLE attempts to make biased lock acquisition
fast paths as fast as possible. Russell and Detlefs [19] use a different
strategy, based on tracking the object classes for which bias revo-
cation would be frequent, and avoiding biasing for those classes.
This approach is neither fundamentally better, nor fundamentally
worse, than FABLE, in the sense that each technique may experi-

2 The best description of this protocol that we are aware of is in Agesen
et al. [1].
3 The most up-to-date metrics of Fiji VM performance, with direct compar-
isons to HotSpot and other VMs, are found in Pizlo et al. [18].

Machine Description
i7-1x4x2 Intel Core i7 975 3.33GHz, 4 cores, hyperthread-

ing (total 8 logical CPUs), 12GB RAM, Fedora
11, Linux 2.6.29.4-167.fc11.x86 64

Core2-2x4 Intel Xeon E5410 2.33GHz, 2 processors,
4 cores/processor (total 8 logical CPUs),
8GB RAM, Fedora 10, Linux 2.6.27.21-
170.2.56.fc10.x86 64

Core2-4x4 Intel Xeon E7310 1.6GHz, 4 processors, 4
cores/processor (total 16 logical CPUs), 16GB
RAM, Ubuntu 8.10, Linux 2.6.27-11-generic

i7-4x8x2 Intel Xeon X7560 2.27GHz, 4 processors, 8
cores/processor, hyperthreading (total 64 logi-
cal CPUs), 32GB RAM, Ubuntu 10.10, Linux
2.6.35-22-generic

Table 2: Machines used in our performance evaluation. To mit-
igate systematic effects due to experimental setup, we use four
different hardware configurations, with different operating system
versions and different Intel architectures. Two machines are based
on the Core 2 architecture, and two are based on Core i7, which has
very fast CAS.

ence pathologies that the other handles gracefully. We believe that it
would be sensible to explore a combination of FABLE and RD [19].
However, FABLE has the advantage of being simple and easy to im-
plement, and has a simpler fast path for biased locks. We are also
aware of a similar protocol to FABLE in unpublished work by peo-
ple at Azul. We are not aware of any performance results that show
that the their protocol is as fast as biased locking, or even simple
thin locking. FABLE provides more than just a promise of good
performance; as the next section shows, FABLE soundly outper-
forms thin locking on platforms with expensive atomic hardware
primitives, is almost as fast as KKO-style [11] biased locking on
those benchmarks that KKO was tuned for, and achieves enormous
speed-ups on corner cases that FABLE, RD [19], and OKK [13] are
attempting to address.

5. Experimental Validation
We claim that FABLE (i) results in speed-ups even with a simple
biasing heuristic, (ii) handles those pathologies that simple biased
locking cannot handle, (iii) is not much slower than simple biased
locking on those programs for which biased locking was optimized,
and (iv) has bounded overheads even for those programs that are
adversarially designed to induce FABLE’s worst-case. To validate
these claims we have assembled an extensive set of performance
comparisons, using four machines that vary in both OS and hard-
ware (see Table 2). Our findings also show that there is little benefit
to using biased locking on Intel Core i7 based architectures.

5.1 Handling Pathologies
Our goal in designing FABLE was to handle pathological cases bet-
ter than KKO locks. To evaluate this claim we wrote two bench-
marks that are designed to create disastrous performance for bi-
ased locking: Cloud and ProdCons. Cloud begins by allocating an
array of a million objects and starting ten threads that randomly
lock these objects. Successful lock acquisitions constitute progress.
We run the benchmark for 25 three-second runs per configura-
tion. We report the total number of successful lock acquisitions by
all threads. ProdCons is a simple two-thread producer-consumer
benchmark where the producer allocates an object, locks it once,
and enqueues it. The consumer dequeues it, locks it once, and
throws it away. We run the benchmark for five million object pro-
ductions and measure the time taken.

149.97

2.33

2.11

128.63

176.43

9.48

19.49

157.35

76.21

1.62

2.00

67.46

56.18

1.63

1.68

51.53

0.00 50.00 100.00 150.00 200.00

Thin

Bias-Async

Bias-Sync

Fable

Throughput in Millions of Ops

i7-1x4x2
Core2-4x4
Core2-2x4
i7-4x8x2

Figure 8: Handling pathologies: Cloud benchmark. This shows
the throughput (higher is better) of the Cloud benchmark, which
has 10 threads randomly locking 1,000,000 objects. FABLE is be-
tween 8× and 55× faster than simple biased locking; it appears
that the more processors a machine has, the bigger the speed-ups
due to FABLE. FABLE is only slightly slower than thin locks on
this benchmark.

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00

1 2 3 4 5

T
hr

ou
gh

pu
t i

n
M

ill
io

ns
 o

f O
ps

Fable Limit

i7-1x4x2 Core2-2x4
i7-4x8x2 Core2-4x4

Figure 9: Cloud benchmark for different FABLE limits. This
shows how FABLE’s ability to handle pathologies changes with
different values of the learn limit.

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

10 20 30 40 50 60 70 80 90 100

Sp
ee

du
p

of
 B

ia
s-

A
sy

nc
 o

ve
r

B
ia

s-
Sy

nc

Number of Threads

Figure 10: Speed-up of Bias-Async on i7-4x8x2 for the Cloud
benchmark for different thread counts. The asynchronous pair
handshake is never faster than the synchronous pair handshake,
except on the 32-way (64-way with hyperthreading) machine. To
investigate this further we varied the number of threads between 10
and 100, and found that the speed-up persists, peaking at 30, which
corresponds to almost 1-to-1 thread-to-core ratio.

0.6538

21.944

43.7716

3.3036

2.6874

59.5938

129.257

12.018

4.0296

36.3072

90.2604

7.5314

2.9228

71.4996

121.7898

15.2892

0 20 40 60 80 100 120 140

Thin

Bias-Async

Bias-Sync

Fable

Execution time in Seconds

i7-1x4x2
Core2-2x4
Core2-4x4
i7-4x8x2

Figure 11: Handling pathologies: ProdCons benchmark. This
shows the execution time (lower is better) of the ProdCons bench-
mark, which has two threads communicating over a queue, with
each thread acquiring (and releasing) a lock on the objects being
passed. This causes a storm of bias revocations in Bias-Sync and
Bias-Async, with Bias-Async performing much better. FABLE per-
forms about 6× better than Bias-Async, but is still about 3× slower
for this pathological scenario than thin locks.

Figure 8 summarizes the results of the Cloud benchmark. FA-
BLE produces speed-ups up to 55× on one platform, and manages
to perform within approximately 10% of thin locks. This shows
that FABLE is resilient against one of the kinds of pathologies for
biased locks. We further investigate this in Figure 9, which shows
how the performance varies as the learn limit heuristic is changed.
Higher values increase resilience, but not by much. This benchmark
shows that Bias-Sync and Bias-Async perform quite differently de-
pending on the platform. The only platform for which Bias-Async
helps on the Cloud benchmark is our large 32-way machine with
hyperthreading. Figure 10 investigates this further by showing the
Bias-Async speed-up on this machine for different thread counts.

Figure 11 shows a summary of the results of the ProdCons
benchmark. FABLE handles this pathology much better than either
Bias-Async or Bias-Sync. Here, Bias-Async is better than Bias-
Sync. FABLE is roughly 3× slower than thin locking in some
cases — this is likely because lock acquisitions that would have
taken the fast path in thin locks are now taking the slow path.
This shows that FABLE isn’t a silver bullet — but it also shows
that our simple heuristics are powerful enough to dramatically
improve performance over the simple KKO-style greedy biasing
approach [11] without having to resort to the more sophisticated
heuristics of Russell and Detlefs [19].

5.2 Throughput
FABLE is designed to make programs run faster than with thin lock-
ing. Unlike the RD protocol [19], this is true even if a simple bias-
ing heuristic is used. When using the more robust per-object adap-
tation strategy, we expect a slight slow-down on common bench-
marks. This section aims to show that the slow-down is so small
that it is outweighed by the increased robustness of per-object adap-
tation. To validate this claim we assembled 16 standard benchmarks
from Dacapo 2006 [3] and SPECjvm98. KKO-based biased lock-
ing will perform well on these benchmarks since they have very few
shared locks. The goal is to show that even for programs where FA-
BLE is not needed, it still performs well enough that it is reasonable
to make it the default locking protocol for a production JVM. We
use 25 samples for each benchmark/platform/configuration. Each
benchmark is run for five “plans”; each plan contains six warm-up
iterations followed by five sampling iterations. The plans are exe-
cuted at random to minimize potential systematic experimental bias
due to execution order. We tested five configurations: Thin, Bias-

0.88 0.9 0.92 0.94 0.96 0.98 1

i7-1x4x2

Core2-2x4

Core2-4x4

i7-4x8x2

Geomean Execution Time relative to Thin Locks

Bias-Async
Bias-Sync
Fable-Simple
Fable

Figure 12: Summary of throughput benchmarks. This shows
the execution time (lower is better) of various locking protocols
across 16 benchmarks (DaCapo and SPECjvm98), relative to thin
locking. Biased locking is much faster than thin locking on Core 2
based systems, and barely faster on Core i7 based systems. FABLE
appears to be slower than simple biased locking, but the difference
exceeds the 95% confidence intervals on only two platforms and is
typically just 1%.

0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
1.02

1 2 3 4 5 6 7 8 9 10

G
eo

m
ea

n
E

xe
cu

tio
n

Ti
m

e
re

la
tiv

e
to

 T
hi

n

Fable Limit

i7-1x4x2 Core2-4x4

Figure 13: Throughput as a function of FABLE limit. We reran
all of the benchmarks for different values of the learn limit to see
how throughput varies. FABLE’s learn limit heuristic is very robust
overall: changing its value does not lead to variations in overall
system throughput.

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

lus
ear

ch

hsq
ldb

xa

lan

pm

d

jyt
ho

n
an

tlr

ecl
ips

e fop

lui
nd

ex

blo

at

co
mpre

ss jes
s db

jav

ac

mpe
ga

ud
io mtrt jac

k

ge
om

ean

Bias-Async Bias-Sync Fable-Simple Fable Fable, Limit=10

Figure 14: Details of throughput benchmarks on Core2-4x4.
This shows the execution time scaled against thin locks (lower is
better) for all benchmarks. Out of all benchmarks, only bloat, javac,
and jack experience statistically significant slow-downs (versus
simple biased locks) from using FABLE at any learn limit.

0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06

1 2 3 4 5 6 7 8 9 10

D
aC

ap
o

bl
oa

t E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 T
hi

n
L

oc
ks

Fable Limit

i7-1x4x2 Core2-4x4

Figure 15: Throughput on DaCapo bloat as a function of FABLE
limit. Only the DaCapo bloat benchmarks slows down significantly
due to FABLE. The margin of error in this chart is roughly 1%; thus
much of the variation is likely just noise. But it is possible that it is
due to resonance (see Section 5.3).

Sync, Bias-Async, FABLE, and FABLE without the optimizations
in Section 3.2 (FABLE-Simple).

Figure 12 shows the geometric mean performance relative to
thin locking for four configurations and four platforms. The 95%
confidence intervals were computed by first obtaining 25 individual
geometric means for each of the 25 samples (i.e., for all 1≤ i≤ 25
we compute the geometric mean for sample i over all benchmarks,
and then we find the mean and standard deviation of the 25 means).
Using this technique we see that FABLE is only marginally slower
than simple biased locking. It is also clear from these results that
for Core i7 based systems, biased locking is typically unnecessary
due to its very fast CAS implementation. It is not clear to us if
the performance of Core i7 represents a trend that will persist as
future multi-core architectures are introduced. We have separately
investigated CAS performance on POWER and AMD-based x86
systems and found it to be expensive enough to warrant biased
locking.

Figure 13 shows FABLE’s throughput as a function of the learn
limit. This confirms that the learn limit is a robust heuristic —
changing it slightly does not perturb execution by much. Figure 14
shows per-benchmark details for Core2-4x4. We chose to highlight
per-benchmark performance on the Core2-4x4 because it exhibited
the widest performance variance across benchmarks and configura-
tions. There is one benchmark for which FABLE in general, and the
learn limit in particular, has a very noticeable effect: DaCapo bloat.
DaCapo bloat is a single-threaded program that appears to allocate
many objects that it locks only a few times, making FABLE a sub-
optimal choice of locking protocol. Figure 15 shows the effect of
using FABLE on bloat.

We have also run SPECjbb2000 and found that its throughput
increases slightly due to biased locking, but the increase is very
small; most importantly however, we found that FABLE’s data-
access parallel bias revocation is sufficient to guard against patholo-
gies in SPECjbb2000. This is unlike the RD protocol, for which
SPECjbb2000 performs poorly unless biasing heuristics are care-
fully tuned [19].

5.3 Bounding Slow-downs
FABLE has a pathology of its own: if a program rapidly allocates
short-lived objects and locks them only a few times, the objects
will never make it out of learn mode. Learn mode lock acquisition
is slower than either thin or biased acquisition. To measure this
effect, we created an AllocLock benchmark that loops two hundred
million times, each time allocating an object, and locking it k
times with an empty synchronized statement. Jikes RVM does not

0 2 4 6 8 10 12 14
0

50000

100000

150000

Thin Biased

Fable, limit=1..10

Number of lock acquisitions after object allocation

Ex
ec

ut
io

n
tim

e
in

 m
ill

ise
co

nd
s

Figure 16: Slow-downs due to FABLE: AllocLock on Core2-
4x4. This shows how fast a program can allocate and acquire
a lock k times (the X-axis) for various locking protocols. This
includes simple biased locks (Bias-Sync and Bias-Async perform
identically), thin locks, and FABLE for 10 learn limits.

optimize away empty synchronized statements. We vary k in the
range 1≤ k ≤ 15 and vary the learn limit in the range 1≤ N ≤ 10.
We compare results against thin locks and simple biased locks.

Figure 16 shows the results of the AllocLock benchmark.
This demonstrates that for short-lived objects that get locked very
rapidly (i.e., by a loop that does absolutely nothing other than
repeatedly release and reacquire the lock), FABLE is up to 50%
slower than thin locks. This figure also shows an interesting reso-
nance effect due to the fact that FABLE’s random counting is not
completely random. Recall that with a learn limit of N, it takes on
average N + 1 acquisitions to cause an object to become biased,
since the first acquisition just puts the object in learn mode. This
means that if AllocLock runs with k = N then on one iteration the
per-thread learnCount will reach N−1 and the object will not be
biased. On the next iteration the object will be biased on the second
acquisition, at which point the learnCount will reset to 0, and the
process repeats. Thus every other iteration of AllocLock will run
very quickly (because the object becomes biased after the 2nd lock
acquisition), while the other iterations will run at “expected” speed
(i.e., the object doesn’t get biased).

6. Conclusion
We have presented a new biased locking protocol, called FABLE,
which allows for fine-grained per-object adaptation to program be-
havior. FABLE is faster than simple biased locking on pathological
programs, and its tracking of per-object locking behavior incurs
only minimal overheads. Our evaluation of locking protocols is to
our knowledge the most thorough to date — in addition to running a
broad spectrum of industry-standard benchmarks on four different
platforms, we have also designed three corner-case benchmarks to
show the behavior of different protocols in detail. Our results show
that biased locking continues to be a promising approach for hard-
ware that has a slow CAS implementation, and that FABLE is a rea-
sonably simple way of reducing the likelihood that biased locking
results in poor performance on some programs.

References
[1] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. S. Ramakrishna,

and D. White. An efficient meta-lock for implementing ubiquitous
synchronization. In OOPSLA 1999 [14], pages 207–222. doi: 10.
1145/320384.320402.

[2] D. F. Bacon, R. B. Konuru, C. Murthy, and M. J. Serrano. Thin locks:
Featherweight synchronization for Java. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages

258–268, Montréal, Canada, June 1998. doi: 10.1145/989393.
989452.

[3] S. M. Blackburn, R. Garner, et al. The DaCapo benchmarks: Java
benchmarking development and analysis. In OOPSLA 2006 [15],
pages 169–190. doi: 10.1145/1167473.1167488.

[4] M. D. Bond and K. S. McKinley. Bell: bit-encoding online memory
leak detection. In International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 61–72,
San Jose, CA, Oct. 2006. doi: 10.1145/1168857.1168866.

[5] R. A. Brooks. Trading data space for reduced time and code space in
real-time garbage collection on stock hardware. In ACM Conference
on LISP and Functional Programming, pages 256–262, Austin, Texas,
Aug. 1984. doi: 10.1145/800055.

[6] C. Click, G. Tene, and M. Wolf. The Pauseless GC algorithm. In
ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, pages 46–56, Chicago, IL, June 2005. doi: 10.
1145/1064979.1064988.

[7] O. Corporation. Java SE HotSpot at a glance. URL
http://www.oracle.com/technetwork/java/javase/
tech/index-jsp-136373.html.

[8] D. Dice. Biased locking in HotSpot. URL http://blogs.sun.
com/dave/entry/biased_locking_in_hotspot.

[9] D. Dice. Implementing fast Java monitors with relaxed-locks.
In Java Virtual Machine Research and Technology Sympo-
sium (JVM), pages 79–90, Monterey, CA, Apr. 2001. URL
http://www.usenix.org/publications/library/
proceedings/jvm01/dice.html.

[10] H. Franke and R. Russell. Fuss, futexes and furwocks: Fast user-
level locking in Linux. In Ottawa Linux Symposium, pages 479–495,
Ottawa, Canada, June 2002. URL http://www.kernel.org/
doc/ols/2002/ols2002-pages-479-495.pdf.

[11] K. Kawachiya, A. Koseki, and T. Onodera. Lock reservation: Java
locks can mostly do without atomic operations. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 130–141, Seattle, Washington, Nov. 2002.
doi: 10.1145/582419.582433.

[12] T. Onodera and K. Kawachiya. A study of locking objects with
bimodal fields. In OOPSLA 1999 [14], pages 223–237. doi: 10.
1145/320384.320405.

[13] T. Onodera, K. Kawachiya, and A. Koseki. Lock reservation for
Java reconsidered. In M. Odersky, editor, European Conference on
Object Oriented Programming (ECOOP), volume 3086 of Lecture
Notes in Computer Science, pages 559–583, Oslo, Norway, June 2004.
Springer. doi: 10.1007/b98195.

[14] OOPSLA 1999. ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Denver, CO,
Oct. 1999. doi: 10.1145/320384.

[15] OOPSLA 2006. ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Portland, OR,
Oct. 2006. doi: 10.1145/1167473.

[16] F. Pizlo, D. Frampton, and the Jikes RVM Team. Configurable lock
framework. URL http://jikesrvm.svn.sourceforge.
net/viewvc/jikesrvm/rvmroot/branches/RVM-791/
working-15440/.

[17] F. Pizlo, L. Ziarek, and J. Vitek. Real time Java on resource-
constrained platforms with Fiji VM. In M. T. Higuera-Toledano
and M. Schoeberl, editors, International Workshop on Java Technolo-
gies for Real-Time and Embedded Systems (JTRES), pages 110–119,
Madrid, Spain, Sept. 2009. doi: 10.1145/1620405.1620421.

[18] F. Pizlo, E. Blanton, A. Hosking, P. Maj, J. Vitek, and L. Ziarek.
Schism: Fragmentation-tolerant real-time garbage collection. In ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 146–159, Toronto, Canada, June 2010. doi: 10.
1145/1806596.1806615.

[19] K. Russell and D. Detlefs. Eliminating synchronization-related atomic
operations with biased locking and bulk rebiasing. In OOPSLA 2006
[15], pages 263–272. doi: 10.1145/1167473.1167496.

http://dx.doi.org/10.1145/320384.320402
http://dx.doi.org/10.1145/320384.320402
http://dx.doi.org/10.1145/989393.989452
http://dx.doi.org/10.1145/989393.989452
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1168857.1168866
http://dx.doi.org/10.1145/800055
http://dx.doi.org/10.1145/1064979.1064988
http://dx.doi.org/10.1145/1064979.1064988
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://blogs.sun.com/dave/entry/biased_locking_in_hotspot
http://blogs.sun.com/dave/entry/biased_locking_in_hotspot
http://www.usenix.org/publications/library/proceedings/jvm01/dice.html
http://www.usenix.org/publications/library/proceedings/jvm01/dice.html
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://dx.doi.org/10.1145/582419.582433
http://dx.doi.org/10.1145/320384.320405
http://dx.doi.org/10.1145/320384.320405
http://dx.doi.org/10.1007/b98195
http://dx.doi.org/10.1145/320384
http://dx.doi.org/10.1145/1167473
http://jikesrvm.svn.sourceforge.net/viewvc/jikesrvm/rvmroot/branches/RVM-791/working-15440/
http://jikesrvm.svn.sourceforge.net/viewvc/jikesrvm/rvmroot/branches/RVM-791/working-15440/
http://jikesrvm.svn.sourceforge.net/viewvc/jikesrvm/rvmroot/branches/RVM-791/working-15440/
http://dx.doi.org/10.1145/1620405.1620421
http://dx.doi.org/10.1145/1806596.1806615
http://dx.doi.org/10.1145/1806596.1806615
http://dx.doi.org/10.1145/1167473.1167496

	Introduction
	Java Synchronization
	The Inline Thin Lock Protocol in Jikes RVM
	Biased Locking
	Heuristics for Biasing
	Protocols for Bias Revocation

	Fable: Fine-grained Adaptive Biased Locks
	Fine-grained Adaptation with Random Counting
	Optimized fast paths
	Bias Revocation by Thread Safepointing

	Qualitative Comparison of Locking Protocols
	Fat locking and lock inflation strategies
	Related work

	Experimental Validation
	Handling Pathologies
	Throughput
	Bounding Slow-downs

	Conclusion

