
Schism: Fragmentation-Tolerant Real-Time Garbage Collection

Filip Pizlo† Lukasz Ziarek† Petr Maj‡ Antony L. Hosking‡ Ethan Blanton† Jan Vitek†,‡

†Fiji Systems Inc., Indianapolis, IN 46202.
‡Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

{fil,luke,elb}@fiji-systems.com {pmaj,hosking,jv}@cs.purdue.edu

Abstract
Managed languages such as Java and C# are being considered
for use in hard real-time systems. A hurdle to their widespread
adoption is the lack of garbage collection algorithms that offer
predictable space-and-time performance in the face of fragmen-
tation. We introduce SCHISM/CMR, a new concurrent and real-
time garbage collector that is fragmentation tolerant and guarantees
time-and-space worst-case bounds while providing good through-
put. SCHISM/CMR combines mark-region collection of fragmented
objects and arrays (arraylets) with separate replication-copying col-
lection of immutable arraylet spines, so as to cope with external
fragmentation when running in small heaps. We present an imple-
mentation of SCHISM/CMR in the Fiji VM, a high-performance
Java virtual machine for mission-critical systems, along with a
thorough experimental evaluation on a wide variety of architec-
tures, including server-class and embedded systems. The results
show that SCHISM/CMR tolerates fragmentation better than previ-
ous schemes, with a much more acceptable throughput penalty.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—dynamic storage
management; D.3.4 [Programming Languages]: Processors—
memory management (garbage collection); D.4.2 [Operating Sys-
tems]: Storage Management—garbage collection; D.4.7 [Oper-
ating Systems]: Organization and Design—real-time systems and
embedded systems; D.4.8 [Operating Systems]: Performance—
measurements

General Terms Algorithms, Experimentation, Languages, Mea-
surement, Performance, Reliability

Keywords fragmentation, real-time, mark-sweep, mark-region,
replication-copying

1. Introduction
Real-time systems span application domains that range from finan-
cial systems to aerospace, each with its own domain-specific re-
quirements and constraints. Nevertheless, they share common char-
acteristics. Real-time systems are resource-constrained and long-
lived; they must be extremely predictable and exhibit good through-
put. Real-time developers emphasize knowing and limiting the
worst-case execution time of code to manage predictability. Pressed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10 June 5–10, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019-3/10/06. . . $10.00

to provide such strict guarantees for exponentially-increasing code
bases, the real-time community is steadily moving towards higher-
level programming languages. Managed languages, and in partic-
ular Java, have already been used in a handful of high-visibility
projects with encouraging results. Developers report improved pro-
ductivity and appreciate the benefits of automatic memory man-
agement. To gain widespread acceptance, however, managed lan-
guages must demonstrate predictability, in both time and space,
that is comparable to handwritten low-level code.

Memory management is one of the key technical challenges.
Real-time programmers are used to managing memory by hand,
because they do not trust off-the-shelf memory allocators to be suf-
ficiently predictable and because they fear that memory fragmenta-
tion will cause long running applications to eventually fail. To com-
pete, managed languages must offer highly predictable garbage col-
lection (GC) algorithms that preserve overall application through-
put. It is crucial that the space bounds of GC be clearly established.
Given a memory budget and knowledge of allocation patterns, de-
velopers must be confident that sufficient memory is available for
the application to operate. For long running applications, GC must
be able to cope with fragmentation without introducing severe over-
heads and restrictions on the application. Moreover, though most
real-time applications still run on embedded uniprocessors, some
are now moving towards careful use of multiprocessors. Thus, GC
must also permit applications to scale to multiprocessors.

We argue that garbage collection can be used in all real-time
applications, including safety-critical hard real-time systems that
have stringent resource constraints. To cope with the requirements
of such systems, we introduce a new real-time garbage collec-
tion (RTGC) algorithm called SCHISM/CMR that tolerates exter-
nal fragmentation while providing good throughput and scalability
on modern multi-cores. Table 1 illustrates the benefits of our al-
gorithm. It is concurrent, meaning that it can operate concurrently
with mutator threads (i.e., the application). This is essential for real-
time applications, as high-priority tasks must be able to preempt
everything in the system, including the garbage collector. While
there are other RTGCs that operate concurrently, they typically do
so at the expense of other guarantees. Consider the following prop-
erties that one takes for granted when using a standard Java virtual
machine (JVM): (i) progress for heap accesses is guaranteed (i.e.,
they acquire no locks, and they never spin), (ii) a heap access never
costs more than a handful of instructions, (iii) end-to-end through-
put is good, and (iv) fragmentation is never an issue. SCHISM/CMR
supports concurrency without sacrificing any of these properties.
Prior approaches either impose an O(log(heap size)) cost on heap
accesses, require the mutator to spin on some heap accesses, fail to
handle fragmentation, or severely degrade overall throughput.

The main contribution of this work is an approach to allocation
that can be thought of as embracing fragmentation by combining
fragmented allocation with concurrent replication. We refer to this
approach as Schism and its implementation in Fiji VM as SCHIS-

Sun JDK Jamaica Java RTS WebSphere SRT Clover Chicken CMR SCHISM/CMR

Concurrent no yes yes yes yes yes yes yes
Heap access progress wait-free wait-free wait-free wait-free lock-free wait-free wait-free wait-free

Heap access cost O(1) O(log(H)) O(log(H)) O(1) O(1) O(1) O(1) O(1)
Throughput relative to JDK 100% unknown 37% 62% unknown unknown 84% 65%
Fragmentation tolerant yes yes yes no yes no no yes

Table 1: Comparing features of collectors. SCHISM/CMR is the only collector that supports all the features; other collectors either can not
deal with fragmentation or increasing the cost of heap accesses. H is the heap size.

M/CMR. To quantify the effect of the Schism approach on through-
put, we compare it with a state-of-the-art throughput-oriented con-
current mark-region (CMR) collector implemented in the same
execution environment. We use two real-time benchmarks in this
comparison (the CDx collision detection algorithm and worst-case
transaction times for SPECjbb2000). We also run in a mode where
all slow-paths are taken to get an upper bound on worst-case exe-
cution time. We run these benchmarks on a multi-core server-class
machine and on a representative embedded platform: the 40MHz
LEON3 SPARC architecture used by the European Space Agency
and NASA. We complement the real-time benchmarks with a syn-
thetic benchmark designed to trigger worst-case fragmentation,
plus the standard SPECjvm98 and SPECjbb2000 benchmarks for
measuring throughput. To keep ourselves honest, we calibrate our
execution environment against two production real-time JVMs, and
best-of-breed throughput JVMs.

2. Schism and Fragmentation in RTGC
When fragmentation and space usage is not a concern, RTGC is
reasonably well-understood. Unfortunately, without a solution for
fragmentation, tight bounds on worst-case space utilization cannot
be guaranteed. But space is just as important as time: real-time
developers must provide bounds on both to ensure robustness.
There are three broad approaches for handling fragmentation:

1. Fragmented allocation: Allocate objects in fragments of fixed
size; larger objects span multiple fragments which may not
be contiguous. A standard non-moving concurrent mark-sweep
collector can then be used without concern for fragmentation.

2. Replication: Split the heap into semi-spaces, and have the con-
current collector copy live objects from one space to the other,
even as mutator threads are operating on the heap. Mutator
writes to the heap are captured by a write barrier that updates
both the original and its replica, if one exists.

3. Defragment on-demand: When necessary, activate a separate
defragmentation phase, requiring synchronization with the mu-
tator. This may be combined with replication or other copy-
ing collection, but usually employs slower and more expensive
techniques that try to make heap mutations atomic and lock-
free.

Fragmented allocation is attractive as it can be combined with a
simple non-moving collector and completely side-steps fragmenta-
tion. Implementations of this approach have had two main draw-
backs [18]. Larger objects incur significantly higher overhead to
access, and arrays are indexed using a trie data structure which, for
a 32-bit address space, may be 10 levels deep, causing every array
access to go through 10 indirections. The worst-case performance
of this approach has not previously been comprehensively studied.

Replication, as proposed by Cheng and Blelloch [6], is com-
pelling, especially for languages in which writes are very rare, or
if writes need not be coherent. To ensure coherence of concurrent

writes, expensive protocols (such as locking) must be used. Like
any copying collector, replication entails a 2× space overhead.

On-demand defragmentation was introduced in the original
Metronome [3]. That algorithm required stopping all mutator
threads (though only briefly) during defragmentation. Stopping
the world can cause a real-time thread to miss a hard deadline. We
argue that high-priority tasks must be able to preempt the collector
whenever necessary. Previously proposed techniques for concur-
rent on-demand defragmentation [11, 13, 14] either impede the
progress of defragmentation (thus preventing space bounds) or im-
pose prohibitive throughput overheads on the mutator, up to a 5×
slowdown [14]. Defragmenting-on-demand approaches typically
assume that fragmentation happens rarely and affects only a small
fraction of the heap. While this is certainly true for typical pro-
grams, the approach degenerates in the worst case to copying the
majority of the heap, resulting in 2× space overhead.

2.1 Schism: Fragmentation With a Touch of Replication
We propose combining fragmented allocation for objects and arrays
with replication for array meta-data. In Schism, object and array
fragments are always of fixed size and never move. A concurrent
mark-sweep collector manages the non-moving fragments. A sepa-
rate replicated semi-space manages array meta-data. This approach
exploits the best of both worlds: (i) constant-time heap access, (ii)
constant space-bounds for internal fragmentation with no external
fragmentation, and (iii) coherence of heap accesses.

The key insight to getting constant-time heap access is to re-
place tries with arraylets. Arraylets represent arrays as a spine (a
contiguous array) containing pointers to a set of array fragments.
While objects can also be represented as arraylets, the Schism ap-
proach follows Siebert [18] and allocates these as linked lists of
fixed-size fragments. This choice is motivated by the fact that most
objects are small and are always of statically known size. Thus even
with a linked representation it is possible to have a precise cost of
any field access, and this cost does not vary.

In Schism, a large array is split into multiple arraylet fragments
carrying the array payload. Arraylets have a worst-case perfor-
mance that is roughly twice that of contiguous arrays. Whereas
addressing an element in a contiguous array simply requires
array + index × elementSize, with a fragmented array the address
computation becomes:

offset = index ∗ elementSize
fragmentIndex = offset / fragmentSize
fragmentOffset = offset % fragmentSize
address = spine[fragmentIndex] + fragmentOffset

Array payload fragments have fixed size and never move. Using a
fixed (and small) size for array and object fragments ensures that
external fragmentation is never an issue and internal fragmentation
is bounded. However, the spines themselves vary with the size
of the array so they may still cause fragmentation. In Schism the
spines are managed by a separate replicating semi-space collector.
Recall that a complication with concurrent replication is ensuring
the coherence of writes to replicas. Luckily, this is not an issue for

spines as their contents (pointers to non-moving array fragments)
are never updated. This allows us to use wait-free barriers for
reading and writing the spine. Allocation of spines can be made
lock-free. Moreover, the space overhead of copying is reduced
since the copy reserve is only needed for the spines.

Schism yields a simple algorithm composed from well-under-
stood building blocks: spine-indexed arraylets, fragmented alloca-
tion, concurrent mark-sweep collection of fixed-size fragments, and
concurrent replicating semi-space collection of spines. The key in-
sight is simply that the array spines can be copied concurrently
without sacrificing mutator performance or coherence. Because of
its simplicity, Schism can be implemented in a variety of ways —
all that is needed is a concurrent semi-space framework for the im-
mutable spines, and a concurrent mark-sweep framework for ob-
ject and array fragments, both of which are well-understood. In
this study we implement Schism for the existing concurrent mark-
region collector in Fiji VM [15, 16]. In this scheme, fragmented
allocation is only used when fragmentation is observed allowing
for hard bounds with good throughput.

3. The Fiji VM Experimental Platform
Fiji VM is a new JVM that aims to provide developers with an
automated tool for converting high-level, memory safe Java appli-
cations into small, efficient, and predictable executables for a wide
range of embedded devices. This section introduces the character-
istics of Fiji VM that are relevant to the implementation of SCHIS-
M/CMR.

Fiji VM is an ahead-of-time compiler that transforms Java byte-
code into fast ANSI C code. It runs on any platform that has
a C compiler, threads, and locks. It does not require a memory
management unit since null-checks and safepoints do not rely on
protection-based mechanisms. Supported platforms include Linux,
Darwin, NetBSD, RTEMS, x86, PowerPC, ERC32, LEON2, and
LEON3. Both 32-bit and 64-bit architectures are supported; SCHIS-
M/CMR does run in 64-bit mode though only 32-bit mode is exam-
ined in this paper. A noteworthy feature of Fiji VM is its ability
to run on very restricted real-time embedded micro-kernels such as
the Real Time Executive for Multiprocessor Systems (RTEMS).1

Fiji VM supports priority-aware locking and real-time priorities
for threads, and takes care not to use any unpredictable operating
system facilities, like OS-provided dynamic memory allocation,
except inside library calls (e.g., creating a direct NIO byte buffer
requires calling some variant of malloc). Additionally, Fiji VM
employs a variety of techniques [15, 16] for ensuring that the
generated C code obeys Java semantics, and so that accurate stack
maps can be generated for GC stack scanning.

Fiji VM was designed specifically to support RTGC. At present,
Fiji VM has no stop-the-world GC; it does not even have a stop-the-
world capability. Instead we offer the following facilities to make
the implementation of RTGCs simple:

Safepoints: A safepoint is a lightweight check to see if a thread
should perform any task on behalf of the collector. Calls to na-
tive methods are “effective” safepoints, in that we mark the
thread as running without JVM-access. This allows the col-
lector to make changes to the thread’s Java state without syn-
chronizing with the thread. The compiler ensures that there is a
worst-case bound on the time between safepoints.

Ragged safepoints: A ragged safepoint is an asynchronous re-
quest to all threads to perform an action exactly once. Un-
like a stop-the-world barrier that stops all mutator threads, a
ragged safepoint does not block any threads. Threads simply
acknowledge having performed the desired action at the safe-

1 http://www.rtems.org

point. Priority-boosting is used to ensure that threads perform
the requested action in a timely fashion. Ragged safepoints are
essential for implementing on-the-fly concurrent collectors.

The safepoint functionality is built around the observation that
a high-priority task that always preempts the collector and only
yields to it explicitly can have its roots scanned in a non-blocking
fashion [17]. The result is that when running on a real-time operat-
ing system, the collector infrastructure never pauses the mutator for
root scanning. Indeed, the only pauses that we have are: slow-path
executions of barriers and allocations, and synchronous collections
in the event that the collector is outpaced by the mutator. Whether
the former is actually a pause is debatable, as it is only a call to a
procedure that takes slightly longer than the inlined fast-path. How-
ever, we count this as a pause because it may disrupt the timeliness
of a real-time task.

4. The Schism Concurrent Mark-Region RTGC
We now describe SCHISM/CMR, our implementation of the Schism
approach on top of a concurrent mark-region (CMR) garbage
collector. A CMR collector extends the mark-region collector of
Blackburn and McKinley [4] to be concurrent (mutator and col-
lector threads interleave heap accesses) and on-the-fly (no stop-the-
world phase). We start with an overview of the base CMR collector.

4.1 Concurrent Mark-Region (CMR) GC
Mark-region garbage collectors like Immix [4] partition the heap
into fixed-size regions that form the units of space management
for a traditional mark-sweep garbage collector. The key insight
of mark-region collectors is to allocate and reclaim memory in
contiguous regions, at a coarse page granularity when possible, and
otherwise at the level of fine-grained lines. Objects are allocated
within and spanning lines. Marking notes the live lines holding live
objects, and sweeping proceeds to discover entirely free pages, as
well as the free lines within pages. Unlike Immix, CMR does not
perform opportunistic defragmentation. CMR implements Immix’s
mark-region approach as follows.

Hybrid slack-based, concurrent, and time-based scheduling.
The CMR collector can run concurrently on a separate processor
core so as to minimize interference with mutator threads. In slack-
based mode the collector runs at a priority that is lower than the
mutator’s critical real-time threads so it never preempts them. On
uniprocessor systems, CMR’s scheduling is identical to the slack-
based Minuteman [10]; as such all of the schedulability tests and
analytical results from Minuteman directly apply. CMR has a Java
API for changing the priority of the collector thread allowing it to
be run in a time-based mode like the Metronome. However, for the
purposes of this study we run CMR in a purely slack-based mode.

Hybrid bump-pointer, best-fit, and first-fit allocation. The CMR
collector allocates objects in bump-pointer fashion, similarly to
Immix [4]. The sweep phase notes lines of contiguous free bytes
within partially-occupied pages, as well as pages that are com-
pletely free. An allocation request finds the first page with a free
line big enough to satisfy the request (first-fit), and then chooses
the smallest line within that page from which to allocate (best-
fit). Bump-pointer allocation proceeds within the last line and page
from which allocation occurred, until a new line is needed. Bump-
pointer allocation is used most of the time, given sufficient memory.
In practice, most free memory is in the form of free pages, not free
lines, but free line allocation is preferred — free pages are used
only when free lines are exhausted.

The base CMR collector is concurrent, mostly lock-free, on-the-
fly, exhibits throughput that is comparable to production genera-
tional collectors, and has very short pauses. In fact, the only pauses

are due to stack scanning, which affects only low-priority threads.
CMR’s main limitation is its lack of a strategy for coping with frag-
mentation, since it does not perform opportunistic defragmentation.

4.2 Adding Schism to CMR
SCHISM/CMR applies the fragmented-allocation Schism approach
to CMR. Both the collector, and the part of the compiler that deals
with representation of objects (the object model) were modified to
cope with fragmented allocation. The heap is split into two spaces:
a CMR space and a pair of spine semi-spaces. The semi-spaces
are 30% of the size of the CMR space. The allocator can allocate
objects either contiguously (unfragmented) or fragmented into 32-
byte fragments. If opportunistic contiguous array allocation fails, a
32-byte array sentinel fragment is allocated in the CMR space. The
sentinel holds the array’s object header and contains a pointer to the
spine, which is allocated in the currently active spine semi-space.
The spine is populated with pointers to 32-byte arraylet fragments
in the CMR space. Every collection cycle completely evacuates
the old semi-space, and populates the other with survivors. This
process is entirely lock-free because the semi-space holds only
array spines, which are immutable.

Array accesses have a guarded fast path that assumes that the
array is contiguous, and a slow path for fragmented arrays that
indirects via the spine to access the appropriate arraylet, incurring
one indirection to get to the spine and one more indirection to
get to the payload. All non-array object accesses require n hops,
where n is the offset of the field divided by 32 bytes. As observed
in [18], very few objects are larger than 64 bytes. It would be easy
to convert the collector to use arraylets for large non-array objects,
but we have not done this yet.

The following sections give a more detailed look inside SCHIS-
M/CMR. Section 4.3 discusses our object model. Section 4.4 de-
scribes our replicating semi-space framework along with the barrier
used. Opportunistic optimizations and the associated configuration
parameters are shown in Section 4.5. SCHISM/CMR provides hard
bounds on space usage; an overview of those bounds is given in
Section 4.6 with further details in Appendix A. Section 5 gives a
qualitative comparison to other RTGCs.

4.3 Fragmented Allocation
The structure of objects in SCHISM/CMR is shown in Figure 1.
The first object fragment has three header words: a fragmenta-
tion header that either points to the next fragment of the object
(Figure 1(a)) or to the arraylet spine (Figure 1(c) and 1(d)), and a
GC word used for marking and a type header that holds both type
and locking information. Arrays have an additional pseudo-length
header holding either the actual array length (for contiguous ar-
rays) or zero. Array accesses first perform an array bounds check
on the pseudo-length; it will always fail for fragmented arrays caus-
ing the slow path to be taken. For normal objects, subsequent frag-
ments only have a fragmentation header; the rest of the space is
devoted to the payload. For arrays, the first fragment (the sentinel)
may point to a spine or may have the entire array inlined (if it is
small enough to fit in the remaining 16 bytes or if opportunistic
contiguous array allocation succeeded). The inline payload case is
shown in Figure 1(b). The spine itself may live inside the sentinel
if it can fit in 16 bytes. In that case the spine uses one word for
the length and the remaining 12 bytes for pointers to payload frag-
ments (Figure 1(c)). If the array payload requires more than three
fragments (i.e., is more than 96 bytes) then the spine will be al-
located in the spine space (Figure 1(d)). In this case the sentinel
has just four words in it and the remaining 16 bytes are wasted
to achieve 32-byte alignment. An out-of-line spine allocated in the
spine space requires a two word header: a forwarding pointer to
support replication and the length.

g
c t payload payload

(a) A 2-fragment object. The first fragment has three header words: a
fragmentation header, a GC header, and a type header.

g
c t n payload

(b) An array with≤ 16-byte payload. The sentinel fragment has four header
words: fragmentation header, GC header, type header, and pseudo-length.
The payload is inlined.

g
c t spine0 n payload

(c) An array with a (17,96)-byte payload. The sentinel fragment has five
header words: fragmentation header, GC header, type header, pseudo-
length 0 to indicate fragmentation, and the length. The remainder of the
sentinel contains an inlined spine.

spine

g
c t 0 payload

nf

(d) An array with a payload > 96 bytes. The sentinel has four header
words: fragmentation header, GC header, type header, and pseudo-length.
The remainder of the sentinel is unused. The spine has a two-word header:
the length and a forwarding pointer at negative offsets. The payloads have
no headers.

Figure 1: Fragmented allocation in SCHISM/CMR.

4.4 Updating Pointers to Arraylet Spines
The SCHISM/CMR semi-space spine collector is similar to earlier
replicating collectors [6, 12] with one major restriction: we do not
have a strong from-space invariant. These replicating collectors
preserve the invariant that pointers into from-space all originate
from from-space. The mutator operates entirely in from-space un-
til the “flip” occurs at the end of collection when the to-space and
from-space roles are reversed. They never modify the from-space;
they simply discard it atomically in a global stop-the-world flip
phase. This has two attractive properties. First, a collection cycle
requires only one trace of the heap. Second, the mutator never sees
a to-space object before that object has been fully copied. This ap-
proach is difficult to incorporate into SCHISM/CMR, since the non-
moving CMR space may have spine pointers. Even if SCHISM/CMR
employed a global stop-the-world flip, we would still require some
mechanism for ensuring that the CMR space’s spine pointers were
updated only after copying was finished. We considered a num-
ber of solutions to this problem. Performing a second trace of the
CMR space after copying would solve the problem, but we feared
this would increase collection times too much. We also considered
doubling the size of the semi-spaces and alternating between copy-
ing and fixup (where pointers in CMR space are flipped to refer to
the to-space). Unfortunately, this solution has the potential to in-
crease space overhead and floating garbage. In the end, we chose
to add an extra indirection on arraylet accesses by introducing an
arraylet sentinel fragment in the CMR space as shown in Figure 1.
This fragment holds all of the array’s meta-data as well as a pointer

to the spine. The mutator never holds pointers to spines directly.
The only objects in the CMR space that hold pointers to spines are
the arraylet sentinels themselves. This leads to a simple, on-the-
fly, and concurrent copying algorithm that has no global stop-the-
world phase. Only one heap trace is required per collection cycle.
Copying and fixup are performed in a separate phase, which only
considers live sentinels. The steps of the algorithm are as follows.

1. Mutator threads switch to allocating in to-space before tracing
starts.

2. The CMR trace loop allocates to-space spines but defers copy-
ing. When a sentinel is encountered, a spine is allocated and
zeroed in to-space. Copying is deferred by placing the sentinel
on a live sentinel list. A forwarding pointer is installed in the
from-space spine.

3. After tracing finishes, mutator threads perform a ragged safe-
point to acknowledge the installation of forwarding pointers in
from-space spines. On-going array allocations will start writing
arraylet pointers to both from- and to-space spines.

4. Spines are copied. The collector processes the live sentinel
list built during the tracing phase. The copy algorithm ensures
that it does not corrupt spines that are being initialized. To do
this, it relies on properties of the write barrier used for array
initialization:

oldSpine[index] = fragmentPointer
STORE FENCE()
oldSpine.forward[index] = fragmentPointer

This initializes the from-space spine first. The spine copy loop
exploits this assumption:

oldSpine = sentinel.spine
newSpine = oldSpine.forward
for (i = 0 ; i < spineLength ; ++i)

if (oldSpine[i] != null)
newSpine[i] = oldSpine[i]

sentinel.spine = newSpine

The from-space spine can be null or have a value. In the latter
case, it will never change again. If an entry is null, it has not yet
been initialized by the mutator; we also know that the mutator
has yet to store anything to the to-space copy, thanks to the use
of the store fence. The mutator is guaranteed to initialize the
entry at some point in the future, and the replicating barrier en-
sures that both the from-space and to-space will be initialized. If
the entry has a value, the mutator may not have stored the same
value to the to-space, but when it does the value it stores will be
identical. Thus, copying the value into to-space is both neces-
sary (if the initialization of this entry happened in the past) and
harmless (since at worst we will write the same value that the
mutator writes). After copying finishes, the sentinel is updated
to point to the to-space.

5. The mutator threads perform another ragged safepoint to ac-
knowledge that sentinels have been updated to to-space, so they
no longer access the from-space.

6. The from-space is zeroed.

4.5 Predictability Levels
Contiguous objects lead to better performance than fragmented
ones. Of course, we have designed SCHISM/CMR to have good
performance even if all objects are fragmented — but even in a real-
time system an opportunistic throughput boost can be a good thing.
Thus, SCHISM/CMR has multiple “predictability levels” which vary
the heuristics for opportunistic contiguous allocation.

Predictability level C: optimize for throughput. The collector
tries to allocate objects contiguously, reverting to fragmented allo-
cation if the former fails. Field access barriers do not exploit conti-
guity; they always perform n hops to get to the nth object fragment.
Thus, contiguity of plain objects is used solely for accelerating al-
location and locality. Array access barriers are branch-predicted in
favor of contiguous access, but fragmented access is still inlined to
ensure good worst-case performance.

Predictability level A: optimize for predictability. Arrays are al-
ways allocated in 32-byte fragments. An array will only be con-
tiguous if its payload is 16 bytes or smaller. Objects are allocated
opportunistically contiguous as in level C. Array access barriers are
branch-predicted in favor of fragmented access.

Predictability level CW: simulate worst-case. This is the worst-
case execution time mode. It behaves as in level C, except that all
fast paths are poisoned. They execute but always fail causing the
mutator to exercise the out of line slow-paths. CW poisons array
accesses, GC write barriers, and allocations. This mode helps users
estimate how slowly the program would run if all of the collector’s
heuristics fail. Note however that CW does not trigger worst-case
space usage as some contiguous arrays may require more memory
than fragmented ones.

4.6 Space Bounds: Predictability Level A
We now consider bounds for the memory used by SCHISM/CMR.
The collector ensures that no object will use more memory than
specified by these formulas regardless of heap structure or level of
fragmentation. We focus on Level A; the precise formulas as well
as a discussion of level C appears in the appendix. For simplicity,
we assume a 32-bit architecture with a 4096-byte page size. Similar
formulas can be derived for 64-bit architectures and different page
sizes.

Bounding GC space usage is important. Many real-time systems
are certified empirically but the qualitative justification of those
techniques relies on analytical results. Because space usage is com-
pletely deterministic in predictability level A, we suspect that in
many settings the actual analysis of the space usage of a program
will be done empirically so long as level A is used for both analysis
and deployment. Regardless of predictability level the formulas can
be used for an analytical proof that the collector is correctly con-
figured, since the analyses used for proving the schedulability of a
time-based or slack-based collector will need to know the precise
number of bytes used by each object [10].

We provide separate formulas for plain objects and arrays. We
account for the worst case assuming an adversarial program. All
of the collector meta-data and space to hold spines is accounted
for. Thus, it is possible to bound the memory footprint of the entire
JVM by adding the size of the .text and .data segments and an OS-
specific constant for each thread to the results from this section.

The equations in the appendix give us the following formula for
computing the size in bytes of a plain object with n fields:

1.3104×32d(2+n)/7e (1)

This is the exact amount of memory used by the JVM for that
object, under the simplifying assumption that fields are homoge-
neously 4-bytes long (the appendix gives the general case that
accounts for alignment). The 1.3104 coefficient accounts for the
spine-space reserve and page table meta-data. For an array with a
p-byte payload, the formula is

if p≤ 16 then 1.3104×32 else 1.3104× (32+32dp/32e) (2)

This accounts for the different allocation modes of arrays and is
exact at level A.

0 200 400 600 800 1000
0

1

2

3

4

Array Payload Size in Bytes

O
ve

rh
ea

d
re

la
tiv

e
to

 T
M

C

Baseline: overhead of TMC

Overhead of TSS (semi-space)

(a) Arrays: SCHISM/CMR converges at an overhead of 1.4× TMC
and peaks at 2.6× for small arrays.

0 20 40 60 80 100
0

1

2

3

4

Number of 4-byte fields

O
ve

rh
ea

d
re

la
tiv

e
to

 T
M

C

Baseline: overhead of TMC

Overhead of TSS (semi-space)

(b) Objects: SCHISM/CMR converges at an overhead of 1.5× TMC
and peaks at 3.5× for small objects.

Figure 2: Analytical Overheads. Memory overhead of SCHIS-
M/CMR for data of varying size compared to theoretical mark-and-
compact and semi-space collectors (relative to TMC).

Analytical Comparison. To illustrate the effect of space over-
heads, we analytically compare SCHISM/CMR’s guaranteed worst-
case to that of two theoretical baseline collectors: TMC, a three-
phase stop-the-world mark-compact framework that requires no ex-
ternal meta-data, packs all object fields ignoring alignment, uses
two header words for objects and three for arrays, and maintains 4-
byte alignment for objects;2 and TSS, a stop-the-world semi-space
framework that uses an identical object model to TMC but requires
twice as much space due to its copy reserve. The TMC and TSS
object layouts are similar to what is found in Jikes RVM and Sun
HotSpot. Thus, when meta-data overheads are factored in we ex-
pect those systems to use slightly more memory than TMC but con-
siderably less than TSS. The exact overheads of objects and arrays
are shown in Figure 2; the plot is relative to the TMC size and is
specific to level A. For arrays, the payload size is set to range be-
tween 1 and 1000 bytes. For objects, the number of fields ranges
between 1 and 100. The graphs show that SCHISM/CMR’s over-
heads converge to roughly 1.4× TMC for large arrays, and 1.5×
for large objects. The overheads peak at roughly 2.6× for small
arrays and 3.5× for objects that have only one field.

2 For comparison, the space requirements of TMC for an object with n 4-
byte fields is 8+4n, and for an array with a p-byte payload TMC requires
12+4dp/4e bytes.

5. State of the Art in RTGC
Commercially available virtual machines with real-time garbage
collectors include the IBM WebSphere Realtime [1, 2], Sun Java
RTS [5], Aicas Jamaica [18], Aonix’s PERC, and the Azul JVM.
There are also a number of academic RTGC projects including the
original Jikes RVM-based uniprocessor version of Metronome [3],
a suite of RTGCs for .NET [13, 14], Minuteman [10], Sapphire [8],
and a parallel real-time collector for ML [6]. RTGCs differ in two
main regards: first, how collection work is scheduled, and second,
what object model is used to deal with fragmentation.

5.1 Scheduling Strategies
RTGCs use two different scheduling strategies: either the user
chooses the collector’s schedule with time-based or slack-based
scheduling, or it automatically adapts to the allocation rate with
work-based scheduling. SCHISM/CMR, WebSphere SRT, and Java
RTS use the former while Jamaica uses the latter.

Time-based and slack-based scheduling. Time-based schedul-
ing, pioneered in [3], runs the collector periodically for short
tightly-bounded increments. This yields uniform mutator utiliza-
tion and is easy to understand and configure. However, it is not ideal
for low-latency hard real-time tasks — for such tasks it is better to
avoid all collector interference. This is achieved by slack-based
scheduling where the collector runs at a fixed priority that is lower
than that of real-time tasks, which can always preempt the collec-
tor. Slack-based scheduling by itself will not work in every appli-
cation: if real-time tasks run for too long the collector will starve.
Neither scheme is ideal, so most JVMs support both approaches.
Websphere includes an innovative scheduling scheme [2], which
invokes the time-based collector only when the slack-based one is
starved. Java RTS and SCHISM/CMR are slack-based by default but
provide APIs for controlling the collector thread directly, which
allows for time-based scheduling to be enabled if needed.

These schemes may fail if the mutator outpaces the collector by
allocating too much too quickly. In this case the RTGC may have
to suspend allocating threads. Ensuring that this does not happen
is up to the developer, and requires computing the worst-case (i.e.,
highest) allocation rate, worst-case (i.e., lowest) collection rate, and
object lifetimes. Given this information it is possible to determine
the optimal heap size and mutator utilization target (for time-based
collectors) or heap size and thread priority (for slack-based collec-
tors) [10].

Work-based scheduling. A work-based collector will perform an
increment of collection work on every allocation [18]. This scheme
can be made to provide linear-time allocation, though with a larger
constant factor than other schemes. Thus, work-based scheduling
punishes threads that allocate a lot but rewards those that allo-
cate little, and can be thought of as precisely matching the col-
lection rate to the allocation rate. The main advantage of work-
based scheduling is that it is easier to configure the collector: only
a heap size needs to be picked. The collector can then perform ex-
actly enough work on each allocation to ensure that a full collec-
tion cycle completes before memory is exhausted. However, this
scheme requires that collector work can be uniformly partitioned
into very short bursts, and that these bursts can be efficiently dis-
tributed among all threads in the system.

Concurrent collection. A concurrent collector that never offloads
collector work to application threads can be used in a real-time en-
vironment without any modifications, provided that spare CPUs are
available. This is the primary mechanism used in the Azul JVM [7].
The other RTGCs all support concurrent scheduling and will use
that as their primary scheduling facility if unused CPU cores are
available. As with time-based scheduling, a concurrent schedule

Real-time Java Virtual Machines:
WebSphere SRT -Xgcpolicy:metronome (build 2.5, J2RE 1.6.0 IBM J9 2.5 Linux x86-32 jvmxi3260srt-20081016 24573 (JIT and AOT enabled))

Java RTS Java 2 Runtime Environment, Standard Edition (build 1.5.0 16 Java-RTS-2.1 fcs-b11 RTSJ-1.0.2) Java Real-Time System HotSpot
Client (build 1.5.0 16-b11, mixed mode)

Fiji VM 0.0.3-r1206f3ecc7c2

Desktop Java Virtual Machines:
IBM J9 IBM J9 (build 2.4, J2RE 1.6.0 IBM J9 2.4 Linux x86-32 jvmxi3260-20080816 22093 (JIT and AOT enabled)

Sun JDK Java SE Runtime Environment (build 1.6.0 12-b04) Java HotSpot Server (build 11.2-b01, mixed mode)

All JVMs were run with the options “-Xmx50M, -Xms50M” unless otherwise indicated.
Platforms:
Sharpay Intel Zeon CPU X5460, 3.16Ghz, 8-core, 8GB of RAM. Ubuntu 7.10 Linux kernel 2.6.22-14-server.

LEON3 Gaisler GR-XC3S-1500 / Xilinx Spartan3-1500 FPGA flashed with a LEON3 configuration running at 40Mhz, 8MB flash PROM and 64MB
of PC133 SDRAM split into two 32MB banks. RTEMS 4.9.2 as the operating system.

Table 2: Experimental Setup.

requires knowing the collection rate, allocation rate, and object life-
times, as well as a schedulability test, to choose a configuration that
does not result in the collector being outpaced.

5.2 Object Model and Fragmentation
Except for Azul, all other real-time garbage collectors may frag-
ment objects. WebSphere SRT fragments large arrays using ar-
raylets. Java RTS and Jamaica may fragment any object; non-array
objects may become linked lists and arrays become tries. The origi-
nal Metronome [3] used on-demand defragmentation in addition to
arraylets to handle fragmentation.

Even without concurrent copying, WebSphere SRT will tend to
perform well for most programs thanks to its use of segregated free-
list allocation and arraylets for large arrays — however, it is not
completely fragmentation-tolerant and thus cannot bound space us-
age as aggressively as SCHISM/CMR. Like SCHISM/CMR, Jamaica
and Java RTS are fragmentation-tolerant but have a worst-case ar-
ray access cost of O(log(H)). Azul copies objects concurrently
and achieves complete fragmentation tolerance; it can do so ef-
ficiently thanks to specialized hardware. Concurrent object copy-
ing requires a copy reserve. SCHISM/CMR needs only a very small
copy reserve but has large (though predictable) per-object over-
heads, while Azul may in the worst case need a 100% copy re-
serve but has extremely compact objects (to our knowledge, it is
the only JVM that uses one-word headers). Overall, we expect that
Azul is more space-efficient than SCHISM/CMR for small objects
and slightly less space-efficient for large ones. It is the only RTGC
that has demonstrated scalability to hundreds of cores.

There has been extensive work in the literature on real-time
garbage collection. The Cheng and Blelloch [6] collector was one
of the first to offer hard real-time bounds on multi-processors.
SCHISM/CMR’s use of replication is largely inspired from that
work’s emphasis on immutability. One way to view SCHISM/CMR
is that it achieves immutability in Java by “boxing” the payload
and storing it in a non-moving space. Sapphire [8] is another at-
tempt to bring replication to Java, though at the cost of some object
access coherence. Unlike SCHISM/CMR, both Cheng-Blelloch and
Sapphire may have to resort to locking for some object accesses if
both coherence and mutability are required. Minuteman [10] is an
open-source uniprocessor implementation of the Metronome segre-
gated free-list mark-sweep collector complete with on-demand de-
fragmentation. It can be made to use either pure time-based or pure
slack-based scheduling allowing the two styles to be compared di-
rectly. Stopless, Chicken, and Clover are real-time garbage collec-
tors for .NET [13, 14]. These collectors enable concurrent copying
of objects on multiprocessors, though with higher worst-case costs
than SCHISM/CMR.

6. Evaluation
This section aims to demonstrate that SCHISM/CMR can handle
fragmentation (Section 6.1), has competitive throughput (Sec-
tion 6.2), delivers on predictability (Section 6.3), and is able to
scale (Section 6.4). To demonstrate these properties in a convinc-
ing manner, we have selected a number of benchmark programs,
architectures and operating systems, and Java implementations.
This broad range of experiment yields the most thorough compari-
son of real-time Java virtual machines to date.

Our experimental setup is summarized in Table 2. We evalu-
ate three real-time virtual machine configurations: IBM WebSphere
SRT, Sun Java RTS, and Fiji VM. WebSphere SRT is IBM’s soft
real-time product based on the latest variant of the Metronome.
The hard real-time version of WebSphere (WRT) adds support
for scoped memory and is usually substantially slower than SRT.
Java RTS is a production real-time JVM with a memory manage-
ment strategy that bears some similarities to Fiji VM. It uses the
HotSpot client compiler. For Fiji VM, we evaluate four config-
urations: CMR, the base concurrent mark-region algorithm; and
three predictability levels of SCHISM/CMR (C=highest throughput,
A=most predictable, CW=worst-case). For the purpose of estab-
lishing a baseline on throughput, we also evaluate two JVMs that
are optimized for throughput rather than for predictability. These
are IBM’s J9 and Sun’s JDK 1.6 (HotSpot Server).

We selected two platforms for our measurements. The first
(Sharpay) is a powerful server machine that we use to explore the
throughput of SCHISM/CMR on a modern multi-core architecture.
The second platform is a LEON3 with the RTEMS hard-real-time
operating system. This single-core platform is more representative
of current embedded systems. In fact, it was selected because it
is used by NASA and the European Space Agency in aerospace
applications.

6.1 Fragmentation
We evaluate the ability of various GCs to deal with fragmentation
using a synthetic benchmark (Fragger). Fragger maximizes frag-
mentation by allocating small arrays until memory is exhausted,
then freeing every other array. Fragger then tries to allocate as many
large arrays as possible. The benchmark is run three times for four
sizes of arrays (small arrays range between 200 bytes and 88KB,
large from 600 to 168KB). GCs that are able to deal with frag-
mentation, either through relocation or fragmented allocation, can
allocate all of the large arrays.

Table 3 reports the number of arrays successfully allocated and
the approximate free memory utilization. Approximate free mem-
ory utilization is a measure of fragmentation tolerance; higher num-
bers are better. This column does not account for object layout or
any meta-data overheads; thus getting exactly 100% is unlikely. As

Configuration # Small Arrays
Initially

Allocated

Payload Size
for Small/Large

arrays

Large Arrays
Allocated

Approximate
Free Memory

Utilization

CMRCMRCMRCMR

Schicm/cmr
level C
Schicm/cmr
level C
Schicm/cmr
level C
Schicm/cmr
level C

Schicm/cmr
level A
Schicm/cmr
level A
Schicm/cmr
level A
Schicm/cmr
level A

Schicm/cmr
level CW
Schicm/cmr
level CW
Schicm/cmr
level CW
Schicm/cmr
level CW

Sun RTSSun RTSSun RTSSun RTS

IBM
Metronome
IBM
Metronome
IBM
Metronome
IBM
Metronome

HotSpot 1.6HotSpot 1.6HotSpot 1.6HotSpot 1.6

339847 200/600 0 0.0%

58290 1024/3072 0 0.0%

6516 10240/30720 0 0.0%

889 88064/168960 0 0.0%

186862 200/600 32733 105.1%

41305 1024/3072 7026 102.1%

3608 10240/30720 715 118.9%

492 88064/168960 130 105.7%

163498 200/600 32699 120.0%

41275 1024/3072 7021 102.1%

4280 10240/30720 714 100.1%

499 88064/168960 130 104.2%

163498 200/600 32699 120.0%

41275 1024/3072 7021 102.1%

4280 10240/30720 714 100.1%

499 88064/168960 130 104.2%

290978 200/600 34170 70.5%

64394 1024/3072 9053 84.4%

6667 10240/30720 970 87.3%

777 88064/168960 201 103.5%

255006 200/600 95 0.2%

58998 1024/3072 108 1.1%

6450 10240/30720 710 66.0%

750 88064/168960 195 104.0%

307073 200/600 53837 105.2%

65859 1024/3072 11090 101.0%

6724 10240/30720 1121 100.0%

782 88064/168960 203 103.8%

Table 3: Fragger results. Percentage of memory different JVMs are
able to reuse when the heap becomes fragmented due to either re-
location or fragmented allocation. SCHISM/CMR performs as well
as JDK. Java RTS performs almost as well, but WebSphere SRT
performs poorly except for large arrays.

Small
Array Size

200

1024

10240

88064

Large
Array
Size

of bytes
used by

one Small
Array

of bytes
used by all

Small Arrays
allocated

of bytes
used after half

are freed

of bytes
used for a

single large
array

large
arrays it

should be
possible to

allocate

of large
arrays

actually
allocated

600 335.46 54847431.48 27423715.74 838.66 32699 32699

3072 1383.78 57115618.56 28558501.17 4067.48 7021 7021

30720 13460.43 57610635.26 28805317.63 40297.42 714 714

168960 115441.00 57605058.20 28860249.60 221447.12 130 130

Table 4: Analytical vs. Observed. Comparing analytical results
for fragger using memory usage formulas and the empirical results
for SCHISM/CMR level A. They correspond exactly: SCHISM/CMR
level A can never allocate more or less arrays than predicted.

CMR is non-compacting, it will not be able to handle fragmenta-
tion at all. At the opposite end of the spectrum JDK behaves well
as it has a GC that is free to stop the world and relocate objects at
will. The different predictability levels of SCHISM/CMR perfectly
handle fragmentation. Level C has slightly fewer space overheads
due to its ability to allocate contiguously in some cases. Java RTS
is close to SCHISM/CMR while WebSphere SRT performs poorly
except for large arrays, for which it is able to use arraylets.

Table 4 compares the analytical memory usage model of SCHIS-
M/CMR level A from Section 4.6 to the observed values. The num-
bers match up exactly, confirming the tightness of the space bounds.
This comparison further illustrates the effect shown in Figure 2:
large arrays have lower per-element overheads than smaller ones;
this is the reason why switching from a 200 byte payload to a 600
byte one results in 120% utilization.

Figure 3 shows the average access time of random array ele-
ments. The graph has solid lines for accesses before fragmentation
occurs and dashed lines for accesses after allocating in fragmented
memory. This is an indication of execution time costs incurred by

1
0

2
0

3
0

4
0

5
0

Object Size [bytes]

E
le

m
e
n
t
A

c
c
e
s
s
 T

im
e
 [
n
s
]

600 3K 30K 168K

Sun Java RTS 2.1

IBM Metronome

Schism/cmr level C

Schism/cmr level CW

Schism/cmr level A

JDK 1.6

Figure 3: Performance of fragmented array accesses. Solid lines
depict access cost prior to large array allocation and dotted lines
after. Since JDK does not fragment, performance is identical. Java
RTS, SCHISM/CMR, and WebSphere SRT all fragment arrays.
WebSphere SRT performs the best out of the real-time collectors,
while Java RTS (which uses tries) has the most extreme worst-case.

fragmentation. We can observe that JDK, which never fragments
objects but can defragment the heap through stop-the-world object
copying, has consistently faster access times that the other JVMs.
Java RTS has good performance before fragmentation, but exhibits
the worst performance once memory is fragmented due to its use
of tries instead of arraylets. Java RTS improves average case ac-
cess times through caching [5], but Fragger randomizes accesses to
force worst-case behavior. WebSphere SRT performs just as well
with fragmentation as without. SCHISM/CMR at all predictability
levels provides reasonable performance but is somewhat more effi-
cient when arrays are not fragmented.

6.2 Throughput
To evaluate the impact of SCHISM/CMR on throughput we com-
pare performance of the different configurations on the SPECjvm98
benchmark.3 We run SPECjvm98 experiments as follows. We in-
voke each JVM three times, running the given benchmark for seven
iterations, and averaging the last three iterations. Those averages
are again averaged. This gives a four-iteration warm-up as neces-
sary for the JIT-based JVMs to reach steady state. We note that for
individual benchmarks the execution time differences between the
non-real-time JVMs (JDK and J9) and any of the other JVMs are
statistically significant and almost always quite large. For brevity,
our throughput overview focuses on a geometric mean comparison
that takes into account all SPEC benchmarks at once. We are not
aware of a statistically sound formulation of confidence intervals
for the geometric mean over averages of non-independent bench-
marks; thus we avoid using confidence intervals. The differences
between configurations are very pronounced (typically exceeding
10%) and easy to reproduce.

Figure 4 shows a summary of SPECjvm98 performance. The
two desktop JVMs are the fastest (JDK and J9). SCHISM/CMR level
C runs at 65% of JDK’s throughput. SCHISM/CMR level C appears
to be faster than the other two commercial real-time JVMs. The
figure also shows that there is approximately a 20% difference in
performance between level C and level CW, which forces all fast

3 While there are benchmarks that are more revealing than SPECjvm98,
it would be difficult to run them on an embedded JVM. Fiji VM’s library
is tailored for JavaME applications and lacks some of the class libraries
needed by larger benchmark suites. In fact, running SPECjvm98 itself
requires quite a few dedicated extensions.

HotSpot 1.6 Server

IBM J9

Sun Java RTS 2.1

IBM Metronome SRT

Fiji VM CMR

Fiji VM Schism/cmr level C

Fiji VM Schism/cmr level A

Fiji VM Schism/cmr level CW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Throughput relative to HotSpot 1.6 Server
(More is Better)

Figure 4: SPECjvm98 Throughput. Fiji VM with CMR runs at
roughly 84% throughput relative to JDK, and SCHISM/CMR at
65%. Both appear to be faster than other real-time Java products.

CMR min heap
size (kb)

CMR max live
size (kb)

CMR wastage
(relative to heap

size)

_201_compress

_202_jess

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

AVERAGE

Relative to CMR

_201_compress

_202_jess

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

AVERAGE

Relative to CMR

_201_compress

_202_jess

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

AVERAGE

Relative to CMR

6800.000 6288.922 0.075

3300.000 1197.691 0.637

9700.000 9545.891 0.016

16400.000 8002.316 0.512

300.000 257.871 0.140

8200.000 6993.922 0.147

1800.000 690.480 0.616

6642.857 4711.013 0.306

1.000 1.000 1.000

Schism/cmr level
C min heap size

(kb)

Schism/cmr level
C max live size

(kb)

Schism/cmr level
C wastage

8800.000 8767.363 0.004

1900.000 1895.806 0.002

16900.000 16692.447 0.012

14800.000 14396.647 0.027

400.000 391.666 0.021

12200.000 11179.350 0.084

1200.000 1156.716 0.036

8028.571 7782.856 0.027

1.209 1.652 0.087

Schism/cmr level
A min heap size

(kb)

Schism/cmr level
A max live size

(kb)

Schism/cmr level
A wastage

8800.000 8606.325 0.022

2100.000 2001.675 0.047

17800.000 16358.469 0.081

14900.000 14553.703 0.023

400.000 375.781 0.061

12400.000 12092.356 0.025

1300.000 1238.494 0.047

8242.857 7889.543 0.044

1.241 1.675 0.143

Table 5: External Fragmentation. On average, SCHISM/CMR re-
quires roughly 65% more memory than in CMR. However, the av-
erage minimum heap size in SCHISM/CMR is only 20% (for level
C) or 24% (for level A) larger than in CMR. This is because in
CMR roughly 30% of the heap is wasted due to fragmentation and
other overheads. SCHISM/CMR has almost no heap wastage.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

1000

2000

3000

4000

Multiple of Minimum Heap Size in Any Collector

G
eo

m
et

ri
c

M
ea

n
Ex

ec
ut

io
n

Ti
m

e
in

 M
ill

is
ec

on
ds

Schism/cmr level CW
Schism/cmr level A

Schism/cmr level C

CMR

(a) Geometric mean performance of SPECjvm98. SCHISM/CMR is slightly
slower than CMR, but runs in smaller heaps thanks to its ability to tolerate
fragmentation.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

2000

4000

6000

8000

10000

Multiple of Minimum Heap Size in Any Collector

_2
0
2
_j

es
s

Ex
ec

u
ti
o
n
 T

im
e

in
 M

il
li
se

co
n
d
s

Schism/cmr level CW

Schism/cmr level A

Schism/cmr level C

CMR

(b) 202 jess benchmark. CMR outperforms SCHISM/CMR, slightly, but
requires larger heaps to run.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

1000

2000

3000

4000

5000

6000

Multiple of Minimum Heap Size in Any Collector

_2
09

_d
b

Ex
ec

ut
io

n
Ti

m
e

in
 M

ill
is

ec
on

ds

Schism/cmr level CWSchism/cmr level A

Schism/cmr level C

CMR

(c) 209 db benchmark. CMR runs in a smaller heap because the program
does not cause fragmentation and SCHISM/CMR has larger objects.

Figure 5: Time-memory Curves. The x-axis is a benchmark-
dependent multiple of the minimum heap size which is measured as
the minimum for all available collector configurations. The y-axis
is the execution time.

paths to fail. It should be noted that there are reasons to take these
numbers with a grain of salt. For instance, all the JVMs were given
the same heap size (50MB), but it is unclear how that number
is used. Some JVMs account for their meta-data separately from
the heap. Fiji VM accounts for all of the meta-data as part of the
heap size. Moreover, the JVMs have very different compilation
strategies and optimizations. Our argument here is simply that the
performance of SCHISM/CMR is competitive.

Figure 5 focuses on Fiji VM and gives time-memory curves.
The curves show the execution time of benchmark programs for
various heap sizes. The x-axis in these graphs represents multiples
of the minimum heap size needed to run the benchmark in any of
the Fiji VM collectors. If a curve does not reach 1, it means that
at least one run of the benchmark failed at that heap size multiple.
Figure 5(a) gives the geometric mean for the entire SPECjvm98
suite. The results clearly show that SCHISM/CMR can run in less
memory than CMR (which starts at a 3.3 multiple), illustrating that
fragmentation matters even in SPECjvm98.

To better explore the effects of the different collectors, we show
details for two benchmarks with particularly extreme behavior:
202 jess (Figure 5(a)) and 209 db (Figure 5(b)). The conclusion

that can be reached from these outliers is that some benchmarks run
better in CMR, while others run better in SCHISM/CMR. For exam-
ple 202 jess and 213 javac run in smaller heap sizes in SCHIS-
M/CMR because they can fragment a small heap quite rapidly in
a non-moving collector. While SCHISM/CMR can often run in a
smaller heap, this is not always the case. 209 db seems to gener-
ate no fragmentation, but uses a lot of small objects (we witnessed,
for example, a large number of Enumerations that are less than 16
bytes). For small objects, SCHISM/CMR has enough of a size over-
head that it can, and in this case does, outweigh the benefits of
fragmentation tolerance.

Table 5 reports data for external fragmentation of the different
Fiji VM collectors for SPECjvm98. The minimum heap size was
obtained by running each benchmark with increasing heap sizes
(in 100KB steps) until the program was able to run. Then, running
at the minimum heap size, we record the total memory used by
live objects at each collection. The maximum is the maximum live
size. This does not count external fragmentation but does include all
meta-data as well as internal fragmentation. The external fragmen-
tation is reported as the wasted space (“wastage”): the difference
between maximum live size and minimum heap size, scaled by the
heap size. For some benchmarks, CMR exhibits > 50% wastage.
For example, 202 jess has the largest wastage (63.7%), which ex-
plains why SCHISM/CMR allows for smaller heap sizes than CMR.
SCHISM/CMR on average requires a 20% (for level C) or 24% (for
level A) larger heap size to run. Note that according to Table 5, a
benchmark only runs in a smaller heap size in SCHISM/CMR if it
exhibits high wastage (>50%). The reason why wastage in SCHIS-
M/CMR is not 0% is that both our minimum heap size and our max-
imum live size measurements are imprecise: minimum heap size
may be off by nearly 100KB, and the maximum live size is not
measured on every allocation but only when the collector runs in
response to heap exhaustion. This figure also shows the typical ob-
ject size overheads of SCHISM/CMR: 65% for level C and 67% for
level A. This is substantially better than the predicted worst case
memory usage (i.e., the prohibitive 3.5× overhead of allocating
very small objects) overheads as computed in Section 4.6. These
results lead us to two conclusions. First, if typical memory usage is
of the utmost concern, CMR will tend to outperform SCHISM/CMR.
On average it will run in a 20% smaller heap. But SCHISM/CMR al-
lows for smaller heaps in some pathological programs and always
provides a hard bound on space usage.

40

60

80

100

120

CDc CDj
Fiji CMR

CDj
Schism/cmr

Level C

CDj
Schism/cmr

Level A

CDj
Schism/cmr
Level CW

Ite
ra

tio
n

Ex
ec

ut
io

n
Ti

m
e

in
 M

ill
is

ec
on

ds

70.478

96.565 97.244 98.51

112.489

Figure 6: Execution time of CDx compared to C. Boxes represent
the middle 50% population of data samples; the middle line is the
median. The top and bottom “whiskers” represent the maximum
and minimum, respectively. SCHISM/CMR level A performs just
40% worse than C. We are unaware of any results in the literature
that show an RTGC performing this well on a non-trivial workload.

200 220 240 260 280 300

40

60

80

100

120

Ite
ra

tio
n

Ex
ec

ut
io

n
Ti

m
e

in
 M

ill
is

ec
on

ds

Iteration Number

CDc
CDj CMR and

Schism/cmr level C CDj Schism/cmr level A

CDj Schism/cmr level CW

Figure 7: Execution time of CDx compared to C. A detailed
view of a subset of execution of CDx. CMR, SCHISM/CMR level
A, and SCHISM/CMR level C perform almost identically. It is only
SCHISM/CMR level CW that shows a performance degradation.

200 400 600 800 1000

1.1

1.2

1.3

1.4

1.5

1.6

R
at

io
 o

f
C

D
j
Sc

h
is

m
/c

m
r

ex
ec

u
ti
o
n
 t
im

e
to

C

D
c

ex
ec

u
ti
o
n
 t
im

e

Iteration Number

Figure 8: CDx Ratio. The ratio of runtime performance of SCHIS-
M/CMR level C to C. Each data point represents the same iteration
executed in C and Java.

600 800 1000 1200 1400

100

150

200

250

W
or

st
-c

as
e

Ite
ra

tio
n

Ex
ec

ut
io

n
Ti

m
e

in
 M

ill
is

ec
on

ds

Heap Size in Kilobytes

CMR

Schism/cmr
level C

Schism/cmr
level A

Schism/cmr
level CW

Figure 9: Worst-case execution time as a function of heap size.
SCHISM/CMR degrades sooner, implying that this benchmark does
not experience fragmentation. Levels A and C have similar per-
formance on larger heaps, but A performs worse for small heaps
because it uses more memory.

6.3 Predictability
To evaluate predictability we switch to the LEON3 platform and
select a representative real-time benchmark, the well-known open-
source Collision Detector (CDx) [9]. We use C as our baseline, as
it is the language of choice for real-time developers.

CDx is an idealized air traffic collision detection algorithm that
iteratively attempts to detect potential collisions based on simulated
radar frames. It utilizes many arrays and performs significant math-
ematical computations, making it ideally suited to low-level C pro-
gramming idioms — but it has been deliberately implemented us-
ing Java idioms even when they may be slow. For example, CDx
uses classes in java.util extensively, and makes no effort to resize,
preallocate, or pool any objects. We configure CDx with a single
real-time periodic task running with a period of 120 milliseconds.
We have also implemented a version of the collision detector in
C. The implementation is idiomatic C that tries to follow the al-
gorithmic behavior of the Java code with some differences. For in-
stance, the hash table used by the C code requires almost no allo-
cation and has constant time traversal. The code size of the Java
version of CDx used in this experiment is 3859 LoC and the C ver-
sion is 3371. (The C version is somewhat simpler since it does not
have hooks for the multiple configurations supported by the Java
version). All versions of CDx were run for 1,000 iterations. Note
that on LEON3, execution is fully deterministic: though we ran the
benchmarks multiple times for sanity, we observe that for iteration i
in a particular configuration, the execution time is always identical.
Figure 6 compares the performance of Java and C. Java’s perfor-
mance is only 40% worse than that of C for SCHISM/CMR level
A. For level C, the performance is 38% worse, and for CMR, the
performance is 37% worse. Figure 7 shows a “zoomed in” view
of just 100 iterations (out of 1,000). Observe the similarity in the
shape of the plots for C and Java. Clearly the variations are algo-
rithmic and not due to the JVM or the GC. The overhead of CW
is clear but remains acceptable. Figure 8 shows the ratio between
C and SCHISM/CMR level C for each iteration. This again shows
that there are no outliers. The performance difference is accounted
for by the various checks performed by Java (for a more detailed
look at the overheads of Java see [16]). Figure 9 gives the worst-
case observed behavior of the different collectors when the heap
size ranges between 500 KB and 1500 KB. For SCHISM/CMR, the
minimum heap size in which the program can run without missing
deadlines is 1000 KB whereas for CMR it is 600 KB.

100 1000 104 105 106 107 108
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

PU
 ti

m
e

no
t s

pe
nt

 in
 g

ar
ba

ge

co
lle

ct
or

 s
lo

w
 p

at
hs

Window Size in Microseconds

CMR

Schism CMR
level A

Schism CMR
level C

Schism CMR
level CW

Figure 10: Minimum mutator utilization for CDx on LEON3.
SCHISM/CMR level A has 400 microsecond pauses, CMR and level
C have roughly millisecond-level pauses, and level CW pauses for
9 milliseconds in the worst case.

Figure 10 gives the minimum mutator utilization (MMU) of the
different collectors for CDx. MMU is often used as a metric for
real-time garbage collectors [6]. It measures the minimum amount
of time that the mutator was able to run in a time window of a
given size. MMU is interesting because it embodies a metric that
combines the length of GC pauses with their frequency. Unfortun-
tely, the notion of collector pause is a little tricky to define. We
considered two definitions: (i) time during which the mutator is
preempted by the collector, or (ii) time spent by the mutator in
allocation, store barrier, array access, and stack scan slow paths.
Under the first definition our collectors exhibit an MMU of 100%
with no pauses (provided that the heap size is > 1100KB and the
collector is the lowest priority thread, which is the default). But this
is not particularly informative since all collectors have slow paths
which may slow down execution. Thus, we chose (ii) and measure
it conservatively as pauses include some mutator work: array ac-
cess and allocation slow paths include some of the same logic as the
fast paths that we charge to the mutator. The longest pauses are in
SCHISM/CMR level CW, which are due to the allocation of large ar-
rays: level CW simulates the effect of level C attempting to allocate
a large array contiguously, failing, and then attempting to allocate
payload fragments the quick way (bump pointer) but failing again,
and having to go into a deeper slow path for each fragment. Level
A exhibits the smallest pauses (roughly 0.4 ms) because almost all
allocation is done 32 bytes at a time. The 0.4 ms pause corresponds
to the time it takes to zero-initialize a fresh 4096 byte page, and is
to our knowledge the smallest GC pause ever reported on a 40 MHz
LEON3.

We have also measured the performance of CDx against other
real-time Java virtual machines on Sharpay. Because Sharpay is at
least an order of magnitude faster, we have increased the workload
of CDx to 60 planes as opposed to just 6. We see that the worst-case
observed execution time for one iteration of the benchmark on Java
RTS is 25.4 ms, WebSphere SRT is 16.7 ms, while Fiji VM is 9.9
ms. Specifically, CMR and SCHISM/CMR level C has a worst-case
of 5.2 ms, and levels A and CW are 6.4 ms and 9.9 ms respectively.

6.4 Scaling Predictability
So far we have shown that SCHISM/CMR performs respectably on
mostly uniprocessor benchmarks. The predictability of collectors is
good, and SCHISM/CMR does a good job of managing fragmenta-
tion. But real-time systems are slowly and steadily moving towards
the adoption of multiprocessors. We evaluate scalability using the

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Warehouses

R
ep

or
te

d
Th

ro
ug

hp
ut

IBM J9

HotSpot 1.6 Server

IBM J9 Metronome SRT

Fiji VM CMR

Sun Java RTS

Fiji VM Schism/cmr
level C Level A

Level CW

Figure 11: SPECjbb2000 scalability. Fiji VM and other JVMs on
an 8-way multi-core.

0.001

0.010

0.100

1.000

1 2 3 4 5 6 7 8

Number of Warehouses

A
ve

ra
ge

 w
or

st
-c

as
e

tr
an

sa
ct

io
n

tim
es

 o
ve

r
th

re
e

ru
ns

IBM J9

HotSpot 1.6 Server

IBM J9 Metronome SRT

Fiji VM CMR

Sun Java RTS

Schism/cmr level C

Schism/cmr Level A
Level CW

Figure 12: Predictability. Using the reported worst-case transac-
tion execution times in SPECjbb2000.

SPECjbb2000 benchmark running on an 8-way machine (Sharpay).
We think of SPECjbb2000 as a soft real-time workload, in that it
is reasonable to assume that in a real transaction processing system
worst-case processing times are important.

Figure 11 shows that our performance does scale but not as well
as some of the other systems. The reason, we believe, is simple:
our collectors are not parallel. While the algorithms we have pre-
sented do not preclude parallelization, we have not done this yet. At
8 warehouses on an 8-way machine, the benchmark ends up com-
peting for CPU time against the collector itself. WebSphere SRT
scales much better than Fiji VM. Both CMR and SCHISM/CMR
exhibit better performance than Java RTS when we overload the
processor. When the processor is not overloaded, Java RTS scales
about as well as CMR.

Figure 12 gives the worst-case transaction times for all JVMs.
Because we opted not to use real-time scheduling, these measure-
ments tend to be somewhat noisy — a millisecond hiccup due to
OS scheduling is common, but not common enough to be visi-
ble on every run. Thus we ran the experiment three times and re-
port the average. For measurements up to 7 warehouses, all of Fiji
VM’s collectors produce better results than any other JVM. With
either CMR or SCHISM/CMR at any predictability level we are able
to guarantee millisecond-level worst-case transaction times. At 8

warehouses, Fiji VM performs about the same as WebSphere SRT,
requiring between 52 and 171 milliseconds in the worst case (SRT
requires 165 milliseconds). For 9 or more warehouses, all JVMs
steadily degrade to worst-case transaction times in excess of 200
milliseconds.

These results show that SCHISM/CMR scales about as well as
Java RTS while achieving significantly better predictability than
any other JVM so long as the collector has a spare core on which
to run.

7. Conclusion
We have introduced a novel approach to fragmentation-tolerant
garbage collection, dubbed Schism, and implemented it on a hard
real-time Java virtual machine. Schism employs fragmented allo-
cation of objects and arrays, managed with a mark-region garbage
collector, along with separate replication-copying of array spines,
to achieve real-time bounds with good throughput. Our perfor-
mance evaluation is, to our knowledge, the most thorough to date
for real time garbage collectors. Our experiments show that SCHIS-
M/CMR allows for significantly better fragmentation tolerance than
any of the other RTGCs while still producing throughput to within
40% of C code. In addition SCHISM/CMR shows good performance
and scalability even when compared to non real-time production
JVMs on well-known benchmarks.

A. Detailed Derivation of Space Bounds
This appendix gives the detailed derivation of space bounds. For
simplicity, we assume a 32-bit architecture with a 4096-byte page
size. Similar formulas can be derived for 64-bit architectures and
different page sizes.

A.1 Methodology
We begin by deriving the base size, denoted B, for an object. To
this we add the collector’s meta-data overheads. These are the
page header overhead due to both the headers the collector adds
to individual pages and the space used by the page table, and the
spine space overhead. In our implementation, the size of the spine
space is set to 30% of the size of the CMR space. That is, given
heap size H, 10

13 H bytes are always used for the CMR space that
stores 32-byte payload fragments and 3

13 H bytes are always held
in reserve for arraylet spines even if no spines are ever allocated;
Appendix A.5 proves that this is sufficient even for adversarial
programs. We denote these overheads as P and S, respectively. This
allows us to compute the total memory size used by an object using:

M = B+P(B)+S(B) (3)

A.2 Plain Objects
Non-array objects consist of an ordered collection of fields. The
compiler guarantees deterministic layout of fields allowing the total
object size to be derived as follows. A three word header (12 bytes)
is prepended to every object.4 Fields are laid out in program order
starting with Object and walking down the extends chain. They are
aligned in memory according to their size (for example an 8-byte
field will always lie on an 8-byte boundary). The size of an n-field
object can thus be obtained by the following recurrence relation,
in which b0 denotes the header size and bi denotes the size after

4 The object header comprises: a fragmentation word, used for linking the
various 32-byte fragments together (accounting for this header is slightly
tricky as it repeats every 32 bytes); a GC word used for marking by CMR;
and a type word used to store both a Java lock and a pointer to the object’s
type.

adding the ith field, whose size is denoted by fi for 1≤ i≤ n:

b0 = 12 (4)
bi = align(bi−1, fi)+ fi (5)

The align function accounts for byte-boundary padding and the
fragmentation header inserted every 32 bytes to link to the next
fragment. It can be computed as the recurrence relation ak(bi−1, fi)
that is executed until fixpoint:

a0 = bi−1 (6)

ak =

 ak−1 +4 if ak−1 mod 32 = 0
ak−1 +1 if ak−1 mod fi 6= 0
ak−1 otherwise

(7)

A fixpoint is guaranteed provided that fi ≤ 16; in Java we are
guaranteed that fi ≤ 8. Given n fields, we define the base size B
as follows:

B = 32
⌈

bn

32

⌉
(8)

A.3 Arrays
Arrays comprise a sentinel, a spine, and the payload fragments. For
very small arrays, the sentinel may contain the entire array payload,
or its spine. At level C, some arrays will be allocated contiguously,
which results in a smaller size. We ignore optimization in deriving
the worst case. Additionally, we do not include the spine size in
the computation as it is part of S. The sentinel is a single 32-byte
fragment which contains 16 bytes of header and pseudo-length
meta-data.5 The remaining 16 bytes may be used for the payload
if the array is small. Otherwise, there will be 0 or more 32-byte
fragments for storing the payload. Thus the base size B of an array
is as follows. We use l to denote the array length and e to denote
the element size in bytes:

B =

{
32 if l× e≤ 16
32+32

⌈
l×e
32

⌉
if l× e > 16 (9)

For arrays B is precise at level A, but an upper bound at level C.

A.4 Page overhead
The CMR space is a collection of pages that are contiguous in
memory and separate from the spine space. The default allocation
mode for level A is that one page may contain multiple objects,
but that no contiguous object ever straddles multiple pages. In level
C, contiguous objects are allowed, in some cases, to cross page
boundaries. Each page is then devoted entirely to that one object
and even if there is free space in the page it cannot be used so long
as that object is alive.

Page status is maintained in a page table and in page headers.
The page table has a 4-bit state per page. Page headers are 32-bytes,
leaving 4096−32 = 4064 bytes for data in each page. We compute
page overheads such that they may be fractional: for example if an
object is 10 bytes long then we say that it uses 10

4064 th of the page
header and 10

4064 th of the 4-bit page table field. We compute this by
first introducing a helper function p(B) which gives the number of
pages (which may fractional) used by the object:

p(B) =
B

4096−32
(10)

5 The sentinel header consists of a fragmentation word, a GC word and type
word as before. The fragmentation word is used for linking to the spine.
The pseudo-length is used to determine the length of the array as well as to
indicate if the array is contiguous or fragmented. If the array is fragmented,
this field will be 0 and the “true” array length will be stored in the spine.

Thus, if we just consider the page header then the number of bytes
used is 4096× p(B), so a 4064 byte object will use exactly one
page. If we just consider the page table, the number of bytes used is
1
2 p(B), so for every 4064 bytes we use 4 bits. Putting this together,
the page overhead for level A is as follows:

P(B) = 4096 p(B)+
1
2

p(B)−B (11)

=
65

8128
B (12)

' 0.007997 B (13)

This is a precise account of the overhead at level A. For level C,
arrays that are larger than the 4064 maximum size for single-page
contiguous allocation can be allocated over multiple pages. In that
case the first page requires 16 bytes for the CMR’s large object
header and any free space on the last page is wasted until the object
dies. Thus the total page overhead considering a contiguous large
object allocation is:

Plarge(B) =

[
4096

⌈
B+16
4096

⌉(
1+

0.5
4096

)]
−B (14)

This is only needed for B > 4064 on level C. In fact, depending on
the object size, sometimes P(B) can be larger than Plarge(B), so to
account for the worst case we take the maximum of the two.

A.5 Provisioning Spine Space
Spines are allocated in the separate spine space which is set to
30% the size of the CMR space. We show that this is sufficient
even for adversarial programs. A spine requires a 8-byte header (a
forwarding pointer and the length), and a 4-byte pointer for every
fragment of the payload. We define the spine size s as follows,
assuming that l is the array length and e is the element size:

s = 8+4
⌈

l× e
32

⌉
(15)

We conservatively assume a heap filled with arrays, and that the
sizes of those arrays are chosen adversarially resulting in the largest
possible spine space overheads. For payloads≤ 16 bytes no spine is
needed as the data fits in the sentinel. For payloads between 16 and
96 bytes, the spine can be inlined in the sentinel. Thus, spine space
allocation can only happen for arrays with payloads larger than 96
bytes. The worst-case occurs for the smallest array that results in
spine allocation. Taking l× e = 97, we obtain B = 160 and s = 24.
Thus we need s/B = 24

160 = 0.15 bytes of spine space for every byte
of CMR memory, excluding page overheads. As l×e increases then
s/B converges to 0.125 — thus 0.15 is indeed the worst-case. We
double this amount to account for the spine space’s copy reserve
to get an overhead of 0.3. Thus setting aside 0.3 bytes in the spine
space for every byte in the CMR space is sufficient to ensure that
the spine space is never exhausted.

This analysis is slightly pessimistic. Instead of using s/B, we
should use s/(B + P(B)), which is slightly smaller; it gives us
0.29762 instead of 0.3. Using round numbers has its benefits: when
the user specifies a heap size we need to slice the heap into a spine
region and a CMR region; the rounder the number the more likely
we are to be able to do so precisely.

Because the heap is always divided in this fixed way we always
assume that the spine overhead of every object is:

S(B) = 0.3 [B+P(B)] (16)

A.6 Total Object Size
The total object size is the sum of B and the two sources of
overheads: page allocation overhead and spine space overhead.

Thus we write the total object size as follows:

M = B+P(B)+S(B) (17)

For predictability level A both P(B) and S(B) have a simple closed
form, so this simplifies to:

M = 1.3104B (18)

This formulation allows the programmer to compute exactly what
heap size to pick given an analysis of the number and type of
objects known to be live at the high watermark. Simply summing
the sizes M and rounding up to the nearest page size yields the
heap size necessary to never run out of memory. Even if the heap
structure changes and the programmer suddenly decides to allocate
arrays instead of objects or vice versa, it is guaranteed that an out-
of-memory condition will not be reached provided that the total
sizes of objects are less than or equal to the heap size.

Acknowledgments
We thank Tomas Kalibera, Gaith Haddad and Ales Plsek for their
help with CDx, and the anonymous reviewers for their detailed
comments. This work is supported in part by NSF grants CCF-
0702240, and CCF-0811691, and IIP-0912730.

References
[1] Joshua Auerbach, David F. Bacon, Bob Blainey, Perry Cheng, Michael

Dawson, Mike Fulton, David Grove, Darren Hart, and Mark Stoodley.
Design and implementation of a comprehensive real-time Java virtual
machine. In Conference on Embedded Software (EMSOFT), 2007,
pages 249–258. doi: 10.1145/1289927.1289967.

[2] Joshua Auerbach, David F. Bacon, Perry Cheng, David Grove, Ben
Biron, Charlie Gracie, Bill McCloskey, Aleksandar Micic, and Ryan
Sciampacone. Tax-and-spend: democratic scheduling for real-time
garbage collection. In Conference on Embedded Software (EM-
SOFT), October 2008, pages 245–254. doi: 10.1145/1450058.
1450092.

[3] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In Symposium
on Principles of Programming Languages (POPL), January 2003,
pages 285–298. doi: 10.1145/604131.604155.

[4] Steve Blackburn and Kathryn McKinley. Immix: A mark-region
garbage collector with space efficiency, fast collection, and mutator
performance. In Programming Language Design and Implementation
(PLDI), 2008, pages 22–32. doi: 10.1145/1375581.1375586.

[5] Eric Bruno and Greg Bollella. Real-Time Java Programming: With
Java RTS. Addison-Wesley, 2009.

[6] Perry Cheng and Guy E. Blelloch. A parallel, real-time garbage col-
lector. In Conference on Programming Language Design and Imple-
mentation (PLDI), 2001, pages 125–136. doi: 10.1145/378795.
378823.

[7] Cliff Click, Gil Tene, and Michael Wolf. The Pauseless GC algo-
rithm. In International Conference on Virtual Execution Environments
(VEE), 2005, pages 46–56. doi: 10.1145/1064979.1064988.

[8] Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying garbage
collection without stopping the world. Concurrency and Computation:
Practice and Experience, 15(3–5):223–261, 2003. doi: 10.1002/
cpe.712.

[9] Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales Plsek, and Jan Vitek
Ben Titzer and. Cdx: A family of real-time Java benchmarks. In In-
ternational Workshop on Java Technologies for Real-time and Em-
bedded Systems (JTRES), September 2009, pages 110–119. doi:
10.1145/1620405.1620421.

[10] Tomas Kalibera, Filip Pizlo, Antony L. Hosking, and Jan Vitek.
Scheduling hard real-time garbage collection. In Real-Time Systems
Symposium (RTSS), December 2009, pages 81–92. doi: 10.1109/
RTSS.2009.40.

[11] B. McCloskey, David Bacon, Perry Cheng, and David Grove. Stac-
cato: A parallel and concurrent real-time compacting garbage collec-
tor for multiprocessors. Technical Report RC24505, IBM Research,
2008.

[12] Scott Nettles and James O’Toole. Real-time replication-based garbage
collection. In Conference on Programming Language Design and
Implementation (PLDI), 1993, pages 217–226. doi: 10.1145/
155090.155111.

[13] Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjarne Steensgaard.
Stopless: A real-time garbage collector for modern platforms. In In-
ternational Symposium on Memory Managment (ISMM), 2007, pages
159–172. doi: 10.1145/1296907.1296927.

[14] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of concur-
rent real-time garbage collectors. In Conference on Programming Lan-
guage Design and Implementation (PLDI), 2008, pages 33–44. doi:
10.1145/1375581.1375587.

[15] Filip Pizlo, Lukasz Ziarek, and Jan Vitek. Real time Java on
resource-constrained platforms with Fiji VM. In International
Workshop on Java Technologies for Real-time and Embedded Sys-
tems (JTRES), September 2009, pages 110–119. doi: 10.1145/
1620405.1620421.

[16] Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj, and Jan Vitek.
High-level programming of embedded hard real-time devices. In
EuroSys Conference, April 2010.

[17] Wolfgang Puffitsch and Martin Schoeberl. Non-blocking root scan-
ning for real-time garbage collection. In International Workshop on
Java Technologies for Real-Time and Embedded Systems (JTRES),
2008, pages 68–76. doi: 10.1145/1434790.1434801.

[18] Fridtjof Siebert. Realtime garbage collection in the JamaicaVM 3.0.
In Java Technologies for Real-time and Embedded Systems (JTRES),
September 2007, pages 277–278. doi: 10.1145/1288940.
1288954.

http://dx.doi.org/10.1145/1289927.1289967
http://dx.doi.org/10.1145/1450058.1450092
http://dx.doi.org/10.1145/1450058.1450092
http://dx.doi.org/10.1145/604131.604155
http://dx.doi.org/10.1145/1375581.1375586
http://dx.doi.org/10.1145/378795.378823
http://dx.doi.org/10.1145/378795.378823
http://dx.doi.org/10.1145/1064979.1064988
http://dx.doi.org/10.1002/cpe.712
http://dx.doi.org/10.1002/cpe.712
http://dx.doi.org/10.1145/1620405.1620421
http://dx.doi.org/10.1109/RTSS.2009.40
http://dx.doi.org/10.1109/RTSS.2009.40
http://dx.doi.org/10.1145/155090.155111
http://dx.doi.org/10.1145/155090.155111
http://dx.doi.org/10.1145/1296907.1296927
http://dx.doi.org/10.1145/1375581.1375587
http://dx.doi.org/10.1145/1620405.1620421
http://dx.doi.org/10.1145/1620405.1620421
http://dx.doi.org/10.1145/1434790.1434801
http://dx.doi.org/10.1145/1288940.1288954
http://dx.doi.org/10.1145/1288940.1288954

	1 Introduction
	2 Schism and Fragmentation in RTGC
	2.1 Schism: Fragmentation With a Touch of Replication

	3 The Fiji VM Experimental Platform
	4 The Schism Concurrent Mark-Region RTGC
	4.1 Concurrent Mark-Region (CMR) GC
	4.2 Adding Schism to CMR
	4.3 Fragmented Allocation
	4.4 Updating Pointers to Arraylet Spines
	4.5 Predictability Levels
	4.6 Space Bounds: Predictability Level A

	5 State of the Art in RTGC
	5.1 Scheduling Strategies
	5.2 Object Model and Fragmentation

	6 Evaluation
	6.1 Fragmentation
	6.2 Throughput
	6.3 Predictability
	6.4 Scaling Predictability

	7 Conclusion
	A Detailed Derivation of Space Bounds
	A.1 Methodology
	A.2 Plain Objects
	A.3 Arrays
	A.4 Page overhead
	A.5 Provisioning Spine Space
	A.6 Total Object Size

