
62 Dr. Dobb’s Journal, October 2004 http://www.ddj.com

Penumbra:
Simplifying Eclipse

L
ike most IDEs, Eclipse has an over-
whelming arsenal of tools. To make
these tools available to programmers,
Eclipse relies on a collection of menus,

tool bars, and views. With the addition of
each menu or toolbar, however, the ap-
pearance (perspective) of Eclipse grows
more complex, making it increasingly dif-
ficult to locate the features you consider
useful.

To address this growing complexity, we
present here an Eclipse plug- in called
“Penumbra” (http://www.cs.purdue.edu/s3/
projects/eclipse/downloads.html). Designed
with the goal to simplify the full-blown en-
vironment, Penumbra has been used by
computer science students at Purdue Uni-
versity for the last two semesters with great
success. (All implementation details de-
scribed are with respect to Eclipse 2.1.x.) 

The fully qualified name of the plug-in
is edu.purdue.penumbra. It consists of 60
classes organized in seven packages. Fig-
ure 1 shows Penumbra’s overall structure.
The two most important files in the plug-
in are plugin.xml and PenumbraPlug-
in.java, contained in the main package.
Plugin.xml defines all properties of the
plug-in. These properties include a listing
of the plug-ins required for Penumbra to
run properly, as well as detailed declara-
tions of all extensions that the Penumbra
plug-in will add to Eclipse. Consider Ex-
ample 1, which specifies that two views
should be added— the Package Explorer
and the hierarchy view. Furthermore, it
defines the classes that need to be in-
stantiated to display the views, as well as
a name and a logo that can be used to re-
fer to them in menus and toolbars. In a
similar manner, all other extensions the
Penumbra plug-in adds to Eclipse are de-
clared in plugin.xml. The class Penum-
braPlugin is used as an interface to make
all extensions accessible to Eclipse. It con-
tains just a few lines of source code but
is crucial for the interaction between
Penumbra and Eclipse. Furthermore, Sav-
itchIn, a collection of methods to simpli-
fy user input presented by Walter Savitch
in Java: An Introduction to Computer Sci-
ence and Programming, Third Edition
(Prentice-Hall, 2004), is packaged with
Penumbra.

A perspective in Eclipse defines the
menus, toolbars, and views users see. As
such, the Penumbra perspective is un-
doubtedly one of the most essential parts
of the plug-in. The Penumbra perspective
is based on the Java perspective, which is
the default programming perspective in
Eclipse. Instead of designing a perspective

from scratch, we adapted the Java per-
spective found in org.eclipse.jdt.internal.ui.
The core of the Penumbra perspective is
the class PenumbraPerspectiveFactory.
When instantiated, a call is made to the
method createInitialLayout. This method
defines where on the screen certain views
will be opened. In the case of Penumbra,
it opens the Penumbra Package Explorer

on the top-left side, and the Penumbra
hierarchy view on the bottom left. Fur-
thermore, the console is placed on the
bottom. The Java editor is created at this
time. It is instantiated once a Java source
file is opened. Notice that the perspective
factory does not let you modify the menus
and toolbars visible to users. Menus and
toolbars are not directly connected to a
perspective, but rather belong to a partic-
ular view. For example, if the Java editor
is opened for the first time, it creates menus
that let users build and run the code. The
Eclipse plug-in structure was designed with
the idea that users would only want to add
functionality but not remove any of it. This

Modifying the 
development
environment for 
ease-of-use

FRANK MUELLER AND 
ANTONY L. HOSKING

Frank is a graduate student and Antony
an associate professor in the Department
of Computer Science at Purdue Universi-
ty. They can be contacted at mueller@
cs.purdue.edu and hosking@cs.purdue
.edu, respectively.

E C L I P S E

“Running projects in
Eclipse is, by
default, more 
complicated than in
a UNIX console”



design flaw has been addressed in Eclipse
3.0. However, we had to find a somewhat
cumbersome solution to work around this
design flaw in Eclipse 2.1.x. Again, when
a view is opened for the first time, it will
create menus and toolbars that are asso-
ciated with this view. These menus and
toolbars are called “ActionSets” in Eclipse.
To add an ActionSet, the view has to reg-
ister it with the current perspective. Un-
fortunately, it is impossible to keep the
views from adding their ActionSets with-
out having to modify them, which would
lead to an unnecessary duplication of
many classes.

Our alternative solution was to remove
these ActionSets right after they had been
added. To accomplish this, we designed
a class called PenumbraSwitchPerspec-
tiveAction. When instantiated, this class
switches to the Penumbra perspective. It
then scans the array of ActionSets and re-
moves all unwanted menus and toolbars.
When Penumbra is installed, it sets Penum-
bra to be the default perspective and
makes a call to PenumbraSwitchPerspec-
tiveAction. All subsequent openings of the
views will not add the lost ActionSets to
the Penumbra perspective, so users will
not notice the trick. Besides removing nu-
merous menus and toolbars, a menu called
“Penumbra” was added, along with a tool-
bar with shortcuts to these menu func-
tions. The Penumbra menu contains all
functionality that was added by Penum-
bra or functionality that was otherwise hid-
den in submenus in the Java Perspective.
For example, there is an action to format
the source code.

Next, we simplified the Package Ex-
plorer, which has all functionality required
but is very complex. It contains menus
and filters that novice programmers will
not touch, and so only add to the dis-
traction of the overall perspective. Hence,
we chose to adapt the default Package
Explorer found in org.eclipse.jdt.inter-
nal.ui.packageview. We modified the view
such that all of its menus were disabled
and, furthermore, preset the filters so users
can see only the content in their projects.
For example, by default, the Java Pack-
age Explorer shows all library references,
which adds confusion and makes it hard-
er for users to understand the files they
are responsible for.

Part of the simplification process was
also the need to redesign the way users
set up and run projects. As described ear-
lier, it was a design goal to let users eas-
ily set up projects and run them, without
having to go through many steps. By de-
fault, users need to set up a project, then
they need to create a class, and they need
to remember to include a main method.
Furthermore, the CLASSPATH has to be
set up to include SavitchIn. While these

steps seem trivial to experienced pro-
grammers, they do, in fact, cause prob-
lems for novice programmers. We wrote
a project creation wizard that merely asks
users to input a name, and the wizard
then sets up a project that contains a class
with the same name. The class automat-
ically contains a main method, and the
CLASSPATH for the project is set to in-
clude SavitchIn. The class Penumbra-
NewProjectCreationWizard makes use of
the Java project and class creations wiz-
ards contained in Eclipse. It first creates
a project with the CLASSPATH containing
SavitchIn. It then passes the newly cre-
ated project to the default wizard for class
creation, which is then fed the class name
and the request for a main method. The
class wizard is automatically executed,
and the new project appears in the Pack-
age Explorer.

Running projects in Eclipse is, by de-
fault, more complicated than in a UNIX
console. This is because Eclipse lets you
run programs— not just as Java applica-
tions. For instance, projects may be ex-
ecuted as applets or as plug-ins in an-
other instance of Eclipse. However, this
requires users to specify exactly the en-
vironment in which they would like to
run the program. Many properties can
and must be specified to run programs.
In our opinion, users should only have
to select a project or class containing a
main method and click a single button
to run it. However, simplifying the pro-
cedure this much would cause other
problems. For instance, what if users
want to pass command-line arguments?
What if they would like to run an applet?
Thus, we selected a subset of cases and
made them available in a submenu; see
Figure 2.

Whenever users select an element in
the Penumbra Package Explorer in either
the Penumbra hierarchy view or editor
window, the selection is noted by the
PenumbraSelectionAction class. If users
choose to click any of the run buttons, it
spawns the responsible PenumbraRun-
Action (depending on the menu entry

chosen), which attempts to determine
which class the user would like to run. If
users are working in an editor with a main
method, the choice is easy and Penum-
bra simply executes this class. However,
if the user last selected a project that con-
tains multiple classes with main methods,
users are prompted to select the class they
would like to execute. Users do not have
to make any further specifications. If they
select the application to be executed with
command-line arguments, they are
prompted to enter these arguments in a
pop-up window. The arguments will be
saved in the Eclipse registry so that they
do not have to be reentered at each ex-
ecution. Figure 3 shows the resulting
Penumbra perspective.

Project Checkout via CVS
Another goal of Penumbra was to provide
a mechanism that allows for easy distri-
bution of projects, containing skeleton files

http://www.ddj.com Dr. Dobb’s Journal, October 2004 63

Example 1: A plugin.xml sample.

<extension
point="org.eclipse.ui.views">

<view
name="Penumbra Package Explorer"
icon="icons/penumbraLogo.jpg"
class="edu.purdue.penumbra.ui.PenumbraPackageExplorer"
id="edu.purdue.penumbra.ui.PenumbraPackageExplorer">

</view>
<view

name="Project Hierarchy"
icon="icons/penumbraHierarchy.gif"
class="edu.purdue.penumbra.ui.hierarchy.PenumbraHierarchyView"
id="edu.purdue.penumbra.ui.TypeHierarchy">

</view>
</extension>

Figure 1: Package structure of
Penumbra.

Penumbra
XML files defining
structure of plug-in,
SavitchIn classes
Main class to interface
with Eclipse

Classes defining
appearance of 
Penumbra perspective

All action classes
added in Penumbra

Classes defining the
object-oriented
hierarchy view

Classes to handle
Penumbra preference
settings

All wizard classes
required for Penumbra

All classes for checkout
and submit of projects

Help documentation

Icons for toolbars
and menus

edu.perdu.penumbra

edu.perdu.penumbra.
ui

edu.perdu.penumbra.
actions

edu.perdu.penumbra.
hierarchy

edu.perdu.penumbra.
preferences

edu.perdu.penumbra.
wizards

edu.perdu.penumbra.
submit

icons html



defining methods that must be imple-
mented in the current project, as well as
starter code and comments. Concurrent
Versions System (http://www.cvshome
.org/) seemed to be the ideal solution.
CVS can be used to distribute, receive,
and manage software for a large group of
developers. Moreover, Eclipse is already
equipped with a CVS plug-in. A problem
is that the plug-in provides more func-

tionality than we need, and it is too com-
plex to be used by novice users. A seam-
less solution should leave users completely
unaware of the underlying mechanism
used to check out and submit projects.
Furthermore, if it is necessary to change
the mechanism, it should not affect the
way it appears to the students.

Unlike open-source projects where
CVS repositories are used to foster col-
laboration between team members, we
had to design a repository that would
permit each user to retrieve and submit
only their own projects. Furthermore, the

repository has to be accessible to the ad-
ministrative group (instructors and teach-
ing assistants) to be able to grade the
projects. It should also be possible to
turn off submission after project dead-
lines have passed. Figure 4 illustrates the
layout we designed. The entire reposi-
tory is owned by the administrative
group, but accessible to all others. Inside
the repository, we create a module for
each project, which in turn contains mod-
ules for each student and an additional
module called “skeleton.” The project
modules are, by default, accessible to
anyone but permissions can be modified
to disallow access after the deadline has
passed. The modules for each student
are owned by the students themselves to
avoid anyone else gaining access to their
source code. The skeleton folder holds
the skeleton code that is made available
to the students at the beginning of the
project. We provide UNIX shell scripts
that populate the CVS repository auto-
matically and let instructors easily post
new projects. The script to populate the
repository has to be run by root, as only
instructors have the ability to create fold-
ers that belong to the students.

The use of CVS as a means to check
out and submit projects was to be in-
cluded in a seamless manner. Users should

64 Dr. Dobb’s Journal, , October 2004 http://www.ddj.com

Figure 4: Layout of CVS repository.

Project 1

CVS Repository

Owned by CS180

Owned by Student X

Group accessible
by CS180

Read and access
permission for
everyone

skeleton

student 1 student n

Project n

skeleton

student 1 student n

Figure 2: Penumbra Run menu.

Figure 3: Penumbra perspective.

http://www.google.com/ddj
http://www.xoreax.com


not have to navigate through the CVS
repository to find the project they need
to check out or submit. Therefore, we de-
veloped new wizards that are based on
the default Import and Export wizards,
but instead of reading or writing to the
file system, they connect to a CVS server.
For Penumbra to be able to set up the
connection to the CVS repository and use
it without the student explicitly knowing
about it, we had to gather information
from the students, such as user name and
the location of the CVS repository. To do
so, we created a preference page. The
preference page in Figure 5 collects in-
formation from users that lets Penumbra
automatically set up a connection and use
it. By default, all information is set to be
used in CS180 (Purdue’s introductory pro-
gramming class), except for the username.
Once a user enters the username and
clicks OK, Penumbra sets up a new CVS
location. Furthermore, the name of the lo-
cation and the other preferences are stored
in the Eclipse registry so that it can be
used subsequently without consulting
users.

To check out a project, users must se-
lect the appropriate option from the
Penumbra menu or tool bar. This opens
the PenumbraCheckoutWizard, which
connects to the CVS location known to
Penumbra and lists all project names (see
Figure 6). Users now need to select a pro-
ject and click OK to start the checkout
process. First, Penumbra checks if the pro-
ject is available, which it does by looking
for files in the skeleton folder of the spec-
ified project. If there are none, the pro-
ject is not yet available for check out.
Next, the wizard determines if the user
has previously checked out the project.
This is necessary because users can sub-
mit their code and check it out at anoth-
er location. Hence, users receive the lat-
est version of their project code unless
they have not yet submitted anything. If
this is the first check out the user has per-
formed on the project, the wizard down-
loads the code contained in the skeleton
directory of the respective project. How-
ever, simply obtaining the skeleton code
is not sufficient because at the next com-
mit operation, CVS would attempt to over-
write the code in the skeleton directory.
After checking out the skeleton code, the
checkout wizard disconnects the project
from the skeleton module and reimports
it as the first version of the students code
in his or her project module. All this hap-
pens as one uninterruptible step in a mat-
ter of a few seconds. Due to the fact that
several errors can occur during checkout
(network failure, CVS server failure, and
so on), the wizard verifies each step to
provide students with a detailed error
message in case a problem occurs. Once

the project is checked out, it appears in
the Penumbra Package Explorer and the
Penumbra hierarchy view, where users
can select the files to open and start work-
ing immediately.

Project Submission 
Via CVS and turnin
We developed two mechanisms to submit
projects via Penumbra. The default mech-
anism of choice is submission via CVS.
However, there is also the option to sub-
mit projects by passing it to a command
such as turnin. The submission method
can be selected in the Penumbra prefer-
ences page. Submission via CVS offers
greater convenience for a number of rea-
sons. An application such as turnin is usu-
ally bound to a particular operating sys-

tem. Consequently, turnin only works on
UNIX machines whereas using CVS lets
users submit the projects from virtually
anywhere independent of the operating
system they are running. Second, using
CVS lets them retrieve previous versions
of their project source code. We have in-
tegrated a feature that lets users easily view
and retrieve previous versions of their
source files. Selecting the appropriate
menu option yields a list of versions avail-
able in the CVS repository, depending on
the file selected. Another double-click
downloads and opens that version. This
feature lets users easily recover source
code they previously deleted.

When selecting Submit Project from the
Penumbra menu, the PenumbraExport-
Wizard class is instantiated. It asks users

http://www.ddj.com Dr. Dobb’s Journal, October 2004 65

http://www.pegasusimaging.com


to select one of their projects. If the pro-
ject has been checked out or submitted
previously, Penumbra automatically
knows where to submit the project. How-
ever, if the project has not been checked
out or submitted before, users must se-
lect from a list of names the user would
like to submit the project under. The ex-
port wizard then connects to the CVS
repository in order to commit the user’s
project. To save storage space in the
repository, only source files will be sub-
mitted. All compiled files are filtered out
by the wizard. Shortly after the first ver-
sion of Eclipse was in use, we discovered
that users wanted additional confirmation
that their projects submitted correctly. By
default, we have Penumbra display a mes-
sage whether or not the submission has
been successful. However, users would
also like to confirm the dates and times
that their files were submitted. Hence, we
implemented a feature that would con-
nect to the CVS server and display the in-
formation for all files submitted for the
selected projects.

Submission via turnin works very sim-
ilarly from the users perspective. It does
not offer the benefits of CVS, but it is
easier to administer than a CVS reposi-
tory. The same wizard is invoked and
asks the student to select the project to
be submitted. The export wizard then
filters out the sources file and submits
them using the specified turnin com-
mand. If selected on the Penumbra pref-
erence page, the files are zipped up and
passed to turnin. At the end of the pro-
cess, a window displays the turnin out-

put to let users judge if turnin was or
was not successful. Since the output of
such turnin commands differ, it is im-
possible to provide one solution that al-
lows Penumbra to judge if submission
was or was not successful.

Penumbra 
Hierarchy View
The Penumbra hierarchy view was de-
signed to help users better understand the
object-oriented concepts of the Java pro-
gramming language. The goal was to pro-
vide users with a view that would visual-
ize the hierarchy of classes and interfaces
in a project, but that would also allow for
interaction. We chose a tree structure to
display the class hierarchy. Throughout
Eclipse, views use tree structures to dis-
play the contents of projects, packages,
and classes. To more seamlessly integrate
the Penumbra hierarchy view, we adapt-
ed one of these tree structures. By default,
Eclipse contains a type hierarchy viewer,
which is used to display member meth-
ods of classes. This view, which can be
found in org.eclipse.jdt.internal.ui.type-
hierarchy, provided an excellent basis for
what we needed to design.

We modified the view so as to display
the hierarchy of one project at a time. If
a different project or an element of a pro-
ject is selected in the Penumbra Pack-
age Explorer, it causes the hierarchy view
to refresh its contents. The package ex-
plorer will pass the project root of the
selected element to the hierarchy view.
The hierarchy view, in turn, recursively
traverses the children of the root and
builds a tree of class nodes. This tree is
then annotated with icons and name la-
bels to be displayed. The fully qualified
name of all objects will be displayed to
show if a class or interface is part of the
default package, another package with-
in the project, or a completely different

package. All classes and interfaces, even
if they are from different packages, are
shown in the same hierarchy, to help the
users visualize class dependencies across
packages. Figure 7 shows an example
hierarchy view. Notice that due to the
fact that classes can implement multiple
interfaces, some classes will be shown
in multiple branches. The nodes in the
hierarchy are decorated with the default
Eclipse icons.

Letting users experiment with the objects
in the hierarchy view is key to improving
their understanding of object-oriented pro-
gramming. Eclipse provides the facilities
to allow drag-and-drop features. We de-
veloped the PenumbraHierarchyDrag-
AndDropAdapter, which is the heart of
this interactive feature. When a node of
the hierarchy tree is selected, dragged,
and dropped somewhere in the hierarchy
view, the adapter is invoked. The adapter
then determines the type of the source
and the target. If a source class is dropped
onto a class or an interface, it extends or
implements that object. If the target is the
empty space of the Penumbra hierarchy
view, all extensions or implementations
are removed from the source class. Simi-
larly, a source interface may extend a tar-
get interface. The underlying source files
are updated accordingly, all necessary im-
port statements will be added, and the hi-
erarchy view is refreshed to display the
change in the hierarchy. Furthermore,
users can click on the objects in the hier-
archy to open and edit the appropriate
source files.

Conclusion
Our work shows that Eclipse can be mod-
ified to be an excellent development en-
vironment for introductory programming
courses. The simplified Penumbra per-
spective, as well as the added features
such as check out and submission, have
increased acceptance by students. Fur-
thermore, the development of features
such as the Penumbra hierarchy view in-
creases the pedagogical support of Eclipse.
Eclipse/Penumbra can be made an even
more suitable environment through the
implementation of the ideas presented
here, although we need to be careful to
retain the simplicity of Penumbra while
adding new features.

Acknowledgments
Thanks to Sarah Caruthers for her ideas
on Penumbra. She also helped in testing
Penumbra. Our work on Penumbra was
sponsored by an Eclipse Innovation Grant
from IBM.

DDJ

66 Dr. Dobb’s Journal, October 2004 http://www.ddj.com

Figure 5: Penumbra preference
settings.

Figure 6: Penumbra project checkout. Figure 7: Penumbra hierarchy view.


	toc_next: 


