
Penumbra: An Eclipse plugin for introductory programming

Frank Mueller
�

Antony L. Hosking

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907
�
mueller,hosking � @cs.purdue.edu

http://www.cs.purdue.edu/s3/projects/eclipse

Abstract

Eclipse is a full-featured and easily extensible integrated develop-
ment environment. As such, it has grown to include a large de-
gree of functionality that may be overwhelming to the novice pro-
grammer. Nevertheless, we believe Eclipse is an environment that
students of programming will come to find useful and empower-
ing once they become familiar with it. The trick is easing them
into using Eclipse without them feeling overwhelmed at the outset.
Penumbra is an Eclipse plug-in developed at Purdue University for
use in our introductory programming classes. It is intended to ease
the transition to use of the full-featured functionality of Eclipse.
Penumbra presents an Eclipse perspective that hides all but the ba-
sic actions of Eclipse’s existing Java perspective, while packaging
elements of other perspectives (e.g., the CVS perspective) into sim-
pler actions that ease the downloading and turn-in of programming
assignments, and adding new code views inspired by other envi-
ronments for introductory programmers. Our experiences using
Eclipse with a small group of introductory programming students
in the Spring of 2003 have guided the development of Penumbra,
which is now being rolled out for general use by the full class of
230 students in the Fall of 2003.

1 Introduction

In the Fall of 2002, we became interested in Eclipse as a possible
development environment for use by students of our introductory
Java programming course for computer science majors. Eclipse,
with its open-source development model, seemed to provide many
of the benefits of proprietary development environments, without
the cost of dependence on what has seemed to be fickle support

�
Supported by an Eclipse Innovation Grant from IBM

for Java in proprietary environments (an earlier incarnation of our
introductory programming course had come to rely on Microsoft’s
Visual/J++ environment which is no longer supported). Moreover,
we saw that the extensibility of Eclipse would make it feasible to
mold the environment more easily to fit the needs of our teaching
and grading processes.

Thus, in the Spring of 2003, and with funding from IBM, we were
able to devote time to trials of the Eclipse IDE in the classroom.
Our experiences, detailed below, permitted us to spend the Summer
of 2003 extending Eclipse with a plug-in tailored for use in our
introductory courses. Our goals included:

1. Simplifying use of Eclipse functionality for novices to enable
them to quickly start using the environment

2. Focusing their attention on Java programming rather than the
IDE

3. Integrating our teaching and grading processes with Eclipse

4. Not dumbing down the interface: once the fundamentals of
the development process are understood students are able to
transition to the full-blown Eclipse interface

2 Experiences with Eclipse

In the Spring 2003 semester we created a special section of Pur-
due’s introductory Java programming course for computer science
majors, in which students were explicitly assisted in using the
Eclipse IDE for their programming assignments. The rest of the
class used a combination of Emacs and the Unix command-line
driven Java SDK, which had been the default environment for sev-
eral years. Our experiences working with the Eclipse-enabled stu-
dents, along with the results of an exit survey of these students con-
ducted at the end of the semester, convinced us that the benefits of
Eclipse justified the investment of time and effort to train students
in its use. Student responses were overwhelmingly positive, with
their comments indicating that, once they were familiar with the
IDE it enabled them more quickly to identify and solve their pro-
gramming problems. Some students even saw Eclipse as relieving
them of boring trivialities of programming by resolving questions
of simple Java syntax and program structure.

The problems that we did see arose more from lack of experience
working with such a complex IDE. Simply starting a project, set-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full cit ation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

ting up class-paths, and running an application appeared more com-
plicated in Eclipse than with Emacs and the Java SDK. However,
once students became familiar with these basics of the development
process, they quickly appreciated the benefits of the Eclipse IDE.
Consequently, we believe that the chief difficulty faced by novice
programmers in using Eclipse is the learning curve necessary to just
get started. Our subsequent efforts have thus focused on develop-
ing an Eclipse plug-in that eases the transition from novice user to
basic development, by capturing simple development processes in
a small Eclipse perspective. From that point, we expect that users
can begin to acquire experience with the more complex features of
the IDE as they need them. The perspective we have developed is
called Purdue Penumbra (“the essence of Eclipse”).

We also were interested in integrating Eclipse with our teaching
and grading processes, which rely on electronic access to skeleton
project source code, and electronic submission of student solutions
for grading. We wanted to take advantage of existing Eclipse func-
tionality where it was useful (e.g., the CVS plug-in permits cen-
tralized management of student project files), but to roll that into
the Penumbra perspective and simplify the interactions of students
for electronic check-out and turn-in of project source code without
leaving the perspective.

In addition, we are interested in incorporating tools that can as-
sist novice programmers in understanding and exploring the pro-
gramming concepts that are being taught to them in class. With
Java, there is the difficulty of understanding and using fundamental
object-oriented concepts such as inheritance and sub-typing. It has
been widely recognized that students can benefit from extra sup-
port in visualizing the structure of programs that incorporate such
concepts [2, 1]. Indeed, BlueJ is an example of an IDE developed
explicitly for novice programmers. However, our experiences with
Eclipse lead us to believe that students can grow with the environ-
ment they first start out with, so rather than forcing abrupt transition
from a teaching IDE to a production IDE (say for later classes) we
would prefer simply to ease their initial experience with the pro-
duction IDE. Nevertheless, we plan to integrate useful functional-
ity, such as that developed by other projects focused on pedagogical
issues of programming environments (e.g., BlueJ and GILD [3]) as
it becomes available.

3 Perspective simplification

Simplifying the way in which students see Eclipse was the most
important task. The default Java perspective has some features
that are extremely useful to new students, but it also has features
(e.g., support for refactoring, build management, and testing) that
are more relevant to experienced programmers working on larger
projects than the simple assignments of an introductory program-
ming course. For this reason, we chose to repackage relevant func-
tionality of the Java perspective in our new Penumbra perspective.

There are essentially two elements that constitute an Eclipse per-
spective: action sets and views. An action set adds menu or tool
bars to the perspective while a view presents the user an interface
(e.g., the package explorer, file editor) for working directly on re-
sources (e.g., source code). The Penumbra perspective is intended
to be as simple as necessary for students to work on the basics of

their assignments. Note that nothing prevents students from switch-
ing to an alternate perspective (e.g., the full-function Java perspec-
tive) where the same resources can be worked on using that per-
spective’s functionality. This means students can begin to transi-
tion from the simplified view of the Penumbra perspective to the
full view of the Java perspective.

The Penumbra perspective (see Figure 1) contains only four views:
a simplified package explorer, an object-oriented hierarchy view,
the original Java editor and a console to provide I/O. Furthermore
we omitted three menus (Source, Refactor, Run) and and three
tool bars (run, create new elements, search). The resulting perspec-
tive is much cleaner, but still contains the elements needed by the
students. The removal of some menu functions (e.g., Run, Debug,
Format Code) has been compensated by providing a Penumbra
menu and tool bar with shortcuts to these important functions.

Another simplification is in the steps required to run an application
inside Eclipse. Usually doing so requires setting up a run configu-
ration for each project. We added functionality to set up the config-
uration automatically and execute the program immediately, once a
the student selects the Run shortcut. Hence, running the program
requires only the click on one mouse button.

4 Object-oriented hierarchy view

We agree with Kölling [1] that development environments usually
do not integrate the fact that Java is an object-oriented programming
language. For example, programming in text-based editors such as
Emacs does not highlight this characteristic. Experienced program-
mers know enough to picture the object hierarchies they define and
program with, but for most new students it is a new concept that
they must absorb and understand. The Eclipse Java perspective al-
ready provides a hierarchical view of classes, but this view is com-
plex and modifications to the hierarchy can be made only in the
Java editor. Inspired by BlueJ, we extended the implementation
of the default hierarchy view from the Java perspective to show the
full hierarchy structure of the selected project, and permit drag-and-
drop modification of the hierarchy (with corresponding changes to
source code). Programmers use drag-and-drop gestures within the
Penumbra hierarchy view to reorganize the hierarchy. We believe
this will enhance students’ understanding of object-oriented con-
cepts, by seeing the effect of hierarchy changes on the correspond-
ing source code. The hierarchy view can be seen in the bottom left
corner of Figure 1.

5 Process integration

Programming classes often require students to download skeleton
source code files, to augment those files to achieve a specified so-
lution, and to turn those files in for grading. Automation of this
process often requires students to use tools other than those they
use for coding. Rather than downloading files separately, import-
ing and configuring them as a project in Eclipse, working on the
assignment, and then extracting the resulting solution for turning
in, we wanted to provide a seamless Eclipse-based mechanism by
which students could work on a project, independently of their lo-

Figure 1: The Penumbra perspective

cation (i.e, home, lab, or friend’s house!), and easily make their
solution available for grading.

We decided that the existing CVS plug-in supported by Eclipse pro-
vides all that is needed, but that its interface needed simplifying for
use by novices. Configuring a central CVS server accessible by
students (while ensuring the necessary security of their files) also
yields a central record of their progress which can be accessed by
course instructors and graders. The server is used both to distribute
projects to the students, by reading from a public repository, and
to store their project files as they work on them in a private reposi-
tory owned by the student but readable by instructors and graders.
Moreover, students have the luxury of tracking the different ver-
sions of their projects as they work on them.

Penumbra bundles all of this functionality, so that the complexities
of CVS access are hidden. Students need only enter their user name
and password in the Penumbra preference settings (see Figure 2 and
the CVS settings are automatically initialized for them. A mouse
click on the checkout button will show them all projects available
and another click will download the selected project to their com-
puter. The first check-out will populate their project with files from
the public skeleton repository, while subsequent check-outs update
files from their private repository.

A few mouse clicks also allow students to commit their project
changes back to the CVS repository. Students experience this via
a grading submission dialog (see Figure 3), though the effect is
to commit their changes to the repository. Thus, multiple submis-
sions are permitted. Transitioning students to the full functionality
of CVS (i.e., seeing the version history of their project files) can

Figure 2: Penumbra preferences page

Figure 3: Project submission dialog

be achieved simply by switching to the Eclipse CVS perspective.
Instructors can thereby use the versioning provided by the Eclipse
CVS perspective to assist students with their projects.

6 Tailored tool bars

There are three main reasons for designing our own tool bar. Use-
ful features (e.g., organize imports, format code) are often hidden
in sub-menus. This causes new students not to use them, because
they are overwhelmed by the complexity of menus. Second, we
wanted to the students to be able to quickly access the features
we added (e.g., checkout, submit, switch to Penumbra perspective).
Third, since we decided to hide some menus (e.g., run) and reim-
plemented our own versions of these features we need to provide
corresponding shortcuts to them. Rather than having multiple tool
bars that contain one or two features the students will want to use,
we merged the chosen shortcuts into a single Penumbra tool bar,
highlighted in red at the top of Figure 1.

7 Help tutorial

Most help tutorials are designed for the person that knows what
to look for. A programmer might ask: “What class must I import
to use a certain feature?” On the other hand a new student will
usually ask: “What is the problem? Why can I not use this feature?”
The difference is that beginning students often do not understand
the problem. Consequently, they do not know what question to
ask of the help manuals. In addition, help manuals are complex
and contain many details that distract and discourage students from
looking for the right answer. To address this problem we decided

to write our own help tutorial to guide the students through steps
like setting up Eclipse/Penumbra, explaining the components, and
how to use them. We also explain how to use existing functionality,
such as debugging programs.

8 Conclusions and future plans

Penumbra is still a work in progress. We have implemented most of
our initial ideas, and are only now beginning to experience their im-
pact as Penumbra is “used in anger” by our students. As noted ini-
tially, our goals are relatively modest, in that we don’t want to rad-
ically change the flavor and character of the Eclipse environment –
ultimately, our students will be experienced programmers who will
find full-featured Eclipse useful to them. Rather, we are guided by
our instructional needs, and the perceived needs of our students.
Nevertheless, we are particularly interested in experimenting with
pedagogically-driven extensions of Eclipse for instructional use,
and are keen to exchange ideas, experiences, and implementations
with other groups using Eclipse for teaching programming.

References

[1] KÖLLING, M., QUIG, B., PATTERSON, A., AND ROSEN-
BERG, J. The BlueJ system and its pedagogy. Journal of Com-
puter Science Education 13, 4 (Dec. 2003).

[2] KÖLLING, M., AND ROSENBERG, J. Guidelines for teaching
object orientation with Java. In Proceedings of the 6th confer-
ence on Information Technology in Computer Science Educa-
tion (2001).

[3] STOREY, M.-A., SANSEVERINO, M., GERMAN, D.,
DAMIAN, D., DAMIAN, A., MICHAUD, J., MURRAY, A.,
LINTERN, R., CHISAN, J., LITOIU, M., AND RAYSIDE, D.
Adopting GILD: An integrated learning and development en-
vironment for programming. In Workshop on Adoption Centric
Software Engineering (May 2003).

	P66:
	Numb:
	Numbx:
	C: 65
	L:
	R:

	P67:
	Numb:
	Numbx:
	C: 66
	L:
	R:

	P68:
	Numb:
	Numbx:
	C: 67
	L:
	R:

	P69:
	Numb:
	Numbx:
	C: 68
	L:
	R:

