
First International Workshop on Persistence and Java, Mick Jordan and Malcolm Atkinson (Eds.)
SMLI TR-96-58, Sun Microsystems Laboratories, Nov. 1996

Approaches to Adding Persistence to Java
Position Paper for the

First International Workshop on Persistence and Java
Drymen, Scotland, September 1996

J. Eliot B. Moss
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610, USA

moss@cs.umass.edu

Antony L. Hosking
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-1398, USA

hosking@cs.purdue.edu

Abstract

We describe and name a range of approaches to adding persistence to the Java programming language.
Java is interesting in this regard not only because of the current excitement over it. Some relevant prop-
erties of Java include: its blend of static and dynamic features, its incorporation of object code into the
environment, its offering of automatic storage management, its standardization of the object code format,
its broad (but not exclusive) use of object orientation, and its use of a standard library. In considering
approaches to adding persistence to Java, we offer a preliminary evaluation of the advantages and disad-
vantages of the approaches, and describe some directions we are pursuing in our own developments. We
hope our descriptions and evaluations will be useful to others in understanding the attributes of systems
and designs to be discussed at the workshop, or considered thereafter.

Keywords: persistence, Java, transparency, byte codes, orthogonality

1 Introduction

The Java programming language [Gosling et al. 1996a; Arnold and Gosling 1996] has incited much dis-
cussion and activity of late, not the least in the community of those interested in persistent systems and
programming languages, because the advent of Java offers a rare opportunity to bring persistence into main-
stream use. But there are many ways one might add persistence to Java, having various technical and
non-technical properties. Here we enumerate some of the possibilities and offer a preliminary description
of their characteristics. We are not trying to be entirely comprehensive, and focus more on techniques that
offer high degrees oftransparencyandorthogonality.

By transparency we mean that a program that manipulates persistent (or potentially persistent) objects
looks little different from a program concerned only with transient objects.1 Complete transparency cannot
typically be achieved, and even if it can, it may not be desirable, since one usually wants to offer a degree
of control to the programmer. A case in point is that in using a transaction mechanism one must generally
specify at least the placement of transaction boundaries (begin/end). We would not call a technique trans-
parent if it required different expression for the usual manipulation of persistent and non-persistent objects,
i.e., for operations such as method invocation, field access, parameter passing, etc.

By orthogonality we mean the usual [Atkinson et al. 1983]: that persistence is a property independent
of type.2 Further, we take orthogonality to mean that any allocatedinstanceof a type is potentially persis-
tent, so that programmers are not required to indicate persistence at object allocation time. Again, perfect

1[Atkinson and Morrison 1995] define the termpersistence independencefor what we call transparency.
2[Atkinson and Morrison 1995] term thisdata type orthogonality.

1



orthogonality may not be achieved and may not be desirable. For example, some data structures refer to
strictly transient entities (e.g., open file channels or network sockets), whose saving to persistent storage is
not even meaningful (they cannot generally be recovered after a crash or system shutdown). Whether thread
stacks and code persist as part of the store is a trickier question. As in most languages, these objects are not
entirely first class in Java, and supporting persistence for them can also be challenging to implement. In any
case, there is certainly room for different positions on transparency and orthogonality all to be reasonable,
depending on one’s objectives for the resulting systems.

The remainder of the paper essentially elaborates in more detail a range of possibly reasonable positions
one could take concerning orthogonality and transparency, for Java in particular (though indeed many of the
possibilities would apply to any language with at least some characteristics in common with Java: object-
orientation, static type checking, standardized virtual machine [Lindholm and Yellin 1996] and libraries
[Gosling et al. 1996b; Gosling et al. 1996c], dynamic code loading, etc.).

2 Orthogonality: Persistence model

Orthogonality is concerned with what entities can and do persist. We assume that for Java we desire at least
that heap objects reachable from some kind of persistent roots will persist.3 Thus, we arrive at the following
choices for the model of persistence:

Persistence model choice 0 (M0): Is persistence by reachability, or by some other means of designating
which objects are to persist?4 Since we are primarily concerned with persistence by reachability, we do not
consider alternatives here. We note that it may be desirable to allow programmers to specify some objects
that should not persist, some types whose instances should never persist, or some edges that should not be
followed in tracing a persistence reachability closure. These are possibly important refinements to the basic
model, but do not reflect a fundamentally different choice.

As previously mentioned, threads and their state (including stacks), and code loaded into the system
might or might not be stored. This leads to the following choices:

Persistence model choice 1 (M1): Is (object) code persistent?Including code has a degree of intuitive
appeal in that it is more complete and elegant. However, it leads to duplication (code will often still live
out in file systems: we cannot yet assume that everyone is working in a wholly integrated environment), it
may cause a store to grow more than desired, and as the Glasgow group has found, it leads to “interesting”
issues concerning its relationship to code loading in existing virtual machines [Atkinson et al. 1996].Not
including code is simpler in some ways, but leads to the problem of perhaps needing to find code and load
it dynamically when objects are fetched from the store and acted upon, and the running program does not
have the necessary classes loaded yet. It is not all that difficult to envision keeping track of code file names
and loading code from a file system, but for safety one will need some kind of check that the code properly
corresponds to the saved objects. Exactly what is the most appropriate check is a topic open to investigation
and debate, especially in light of possibly evolving systems.

Persistence model choice 2 (M2): Is program execution state persistent?Having program and thread
state persist is also intuitively appealing, but, unlike code, for which there is a standard definition of its
format, and which is almost first class, stacks are not first class objects in Java. Among other things, this
implies that a persistence implementor will need to dig more deeply into any existing virtual machine to
support persistence of execution state. Some aspects of execution state, such as open file channels, etc., may

3This principle actually combines both transparency and orthogonality, but in any case, we take it as a basic goal.
4[Atkinson and Morrison 1995] speak of the principle ofpersistence identificationfor this choice.

2



not be sensible to save.5 Even trickier is that if a saved state is one from which continuation will always
lead to program failure, one would obtain a nasty kind of infinite loop, from which it would be difficult to
recover.6

Persistence model choice 3 (M3): What is the transaction model?This choice addresses what becomes
persistent at what time, who gets to see it when, etc. It is an area that we will not elaborate much, since
it is somewhat independent of the issues on which we prefer to concentrate here. The Glasgow team has
chosen to design a system supporting extension with new concurrency control and recovery models; we do
not yet grasp the exact range of possibilities, but it is aimed at offering rich and flexible functionality, on
the premise that for broad practical use of persistence such capabilities will be necessary for acceptance
of persistence into mainstream programming. One might also argue that programmers need very simple
models, especially in order to deal with potentially subtle “new” concepts such as persistence. This debate
will undoubtedly rage for some time. For the time being we are content to note that the transaction model
affects performance, how deeply one must dig into a virtual machine, overall difficulty of implementation,
and ease of programming.

3 Transparency: Persistence implementation

It is interesting to note that our definition of transparency above is framed essentially in terms of the source
language, leaving open a variety of avenues to achieving transparency. However, Java is somewhat unusual
in that we are dealing not only with a language, but with a standardized virtual machine interface (byte codes
and their meaning). This gives rise to a more subtle range of possible choices as to how to implement the
persistence model defined by one’s persistence model choices (e.g., as described in the previous section). In
our categorization we choose to describe choices according to their transparency propertiesand according
to what software artifacts are needed or affected. One set of choices has to do with whether the language
and/or the compiler are affected:

Persistence transparency choice 1 (T1): Is the source language changed?

Persistence implementation choice 1 (I1): Is the Java compiler changed?If the source language changes,
then we need to change the compiler, or provide a preprocessor from the changed language into standard
Java. One can avoid changing the language by making extensions in other parts of the system and/or by
making requisite features available without language extensions (e.g., via new library interfaces, etc.). Even
if one avoids changing the language it may be reasonable to use a Java-to-Java preprocessor to add persis-
tence; it is not as transparent or pleasant for source level debugging, but may reduce effort elsewhere and/or
increase portability.

We observe that the Object Data Management Group has proposed to the Java language designers that a
pragma feature be added, which would allow arbitrary text to be attached to method and field declarations,
and possibly to classes. This text would be passed through the compiler unchanged, and associated with the
constructs in the Java byte code file. Such a pragma feature opens a wide range of possibilities for adding
persistence related annotationswithoutmodifying the Java compiler (see also [Moss and Hosking 1994]).

5They may show up as heap objects though, hence we support refinement of pure persistence by reachability to support some
programmer control.

6In fairness, the problem is more general, in that one can always save a state that is essentially corrupted by a buggy program,
and that results in failures at a later time.

3



Persistence transparency choice 2 (T2): Is the object language changed?Regardless of the appearance
and processing of the Java source code, if we can manage to output standard Java byte codes, we obtain
immediate portability benefits. Of course, this begs the question of whether the standard byte codes have
the same semantics in the overall persistent implementation of Java as they do in the usual non-persistent
Java system, but that is a separate choice.

We observe that just as one might use a source code pre-processor, one might use a byte codepost-
processor. This would take in standard Java byte codes and rewrite into standard Java byte codes, but
perhaps adding instructions to check for object residency, to note modifications to objects, etc. These would
be associated with some or all field accesses and/or updates. It is believed that the Java byte code format
has enough information to support this transformation. This technique is a bit like using object code editing
on standard workstations, to add instrumentation or other functionality. Cattell et al. have devised a post-
processing approach for which they are applying for a patent [Cattell 1996].7

Persistence implementation choice 2 (I2): Is the Java interpreter and run-time system modified?Obvi-
ously any approach must somehow augment the underlying implementation, but itmaybe possible to do
so without changing the interpreter available from Sun (or any other system), by loading additional Java
libraries and arranging for them to be called in the right places. It is likely that such an approach will have
limitations, e.g., it will be hard to support code and thread persistence that way, so this choice interacts
with choices previously described. In fact, it might be more appropriate to state this choice not as a yes/no
question, but in this way:In what way is the Java interpreter and run-time system modified to support per-
sistence?We also note that we are using the term “interpreter” broadly, to include systems with dynamic
compilation to native code, direct hardware execution of Java byte codes, etc.

A possibly important aspect of this implementation choice is whether one will immediately derive ad-
vantage from, and portability to, improved Java interpreters. If one uses approaches that rely on modifying
the interpreter, then the anticipated arrival of dynamic optimizing compilers for Java, of Java machines,
and the like, will be a barrier to acceptance and future use of persistent Java system. On the other hand,
modifying the virtual machine may give the best achievable performance for persistent Java.

4 Our approach

Since we intend to work from a base of our own existing software, namely a Persistent Smalltalk system,8

we aim to make minimal modification to that system, rather than minimal modifications to existing Java
processors. This leads to the following provisional choices:

Choice Our decision

M0 How are persistent objects identified?By reachability
M1 Does code persist? No
M2 Does execution state persist? No
M3 What is the transaction model? Not yet worked out

T1 Is the source language changed? No (but will use pragmas if available)
I1 Is the Java compiler changed? No

T2 Is the object language changed? No (but will consider postprocessing)
I2 Is the Java virtual machine changed?Yes, new interpreter

7We are indebted to Cattell for the characterization of Java persistence techniques into the categories of (source) preprocessors,
(object, i.e., byte code) postprocessors, and enhanced virtual machines. This position paper is essentially an elaboration and
expansion of Cattell’s categories.

8[Hosking and Moss 1993a; Hosking and Moss 1993b; Hosking et al. 1993; Hosking 1995; Hosking and Moss 1995]

4



We should note in addition that our style of research includes building a range of variants and evaluating
their relative performance, so we will likely look at a range of optimizations performed at the byte code
level and internal to the interpreter (cf. [Hosking 1996]), as well as a range of interpreter implementation
choices (byte code, threaded code, native code, various object faulting techniques, various update detection
techniques). We anticipate using the UMass Language Independent Garbage Collector Toolkit [Hudson
et al. 1991] and the Mneme persistent object store [Moss and Sinofsky 1988; Moss 1989; Moss 1990], as
we did with Persistent Smalltalk.

5 Conclusion

We have offered a preliminary list of choices by which persistent Java systems may be characterized, which
we hope will be useful to those working in this area as they compare various approaches. Because Java
involves more than a standard source language, but also a standard object code format, virtual machine
specification, and library, the situation is more complex than that of other languages, and the issues of
orthogonality and transparency of persistence present interesting considerations.

References

ARNOLD, K. AND GOSLING, J. 1996.The Java Programming Language. Addison-Wesley.

ATKINSON, M. P., BAILEY, P. J., CHISHOLM, K. J., COCKSHOTT, P. W.,AND MORRISON, R. 1983. An approach to
persistent programming.The Computer Journal 26,4 (Nov.), 360–365.

ATKINSON, M. P., JORDAN, M. J., DAYN ÈS, L., AND SPENCE, S. 1996. Design issues for Persistent Java: A type-safe
object-oriented, orthogonally persistent system. See [Connor and Nettles 1996].

ATKINSON, M. P. AND MORRISON, R. 1995. Orthogonally persistent object systems.Int. J. Very Large Data Bases 4,3,
319–401.

CATTELL , R. G. G. 1996. Personal communication.

CONNOR, R. AND NETTLES, S. (Eds.) 1996.Proceedings of the International Workshop on Persistent Object Systems, Cape
May, New Jersey. Morgan Kaufmann.

GOSLING, J., JOY, B., AND STEELE, G. 1996a.The Java Language Specification. Addison-Wesley.

GOSLING, J., YELLIN , F.,AND TEAM, T. J. 1996b.The Java Application Programming Interface, Volume 1: Core Packages.
Addison-Wesley.

GOSLING, J., YELLIN , F.,AND TEAM, T. J. 1996c.The Java Application Programming Interface, Volume 2: Window Toolkit
and Applets. Addison-Wesley.

HOSKING, A. L. 1995.Lightweight Support for Fine-Grained Persistence on Stock Hardware. Ph.D. thesis, University of
Massachusetts at Amherst. Available as Department of Computer Science Technical Report 95-02.

HOSKING, A. L. 1996. Residency check elimination for object-oriented persistent languages. See [Connor and Nettles 1996].

HOSKING, A. L., BROWN, E.,AND MOSS, J. E. B. 1993. Update logging for persistent programming languages: A
comparative performance evaluation. InProceedings of the International Conference on Very Large Data Bases, Dublin,
Ireland, pp. 429–440. Morgan Kaufmann.

HOSKING, A. L. AND MOSS, J. E. B. 1993a. Object fault handling for persistent programming languages: A performance
evaluation. InProceedings of the ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, Washington, DC, pp. 288–303.

HOSKING, A. L. AND MOSS, J. E. B. 1993b. Protection traps and alternatives for memory management of an object-oriented
language. InProceedings of the ACM Symposium on Operating Systems Principles, Asheville, North Carolina, pp.
106–119.

HOSKING, A. L. AND MOSS, J. E. B. 1995. Lightweight write detection and checkpointing for fine-grained persistence.
Technical Report 95-084 (Dec.), Department of Computer Sciences, Purdue University.

HUDSON, R. L., MOSS, J. E. B., DIWAN , A., AND WEIGHT, C. F. 1991. A language-independent garbage collector toolkit.
Technical Report 91-47 (Sept.), Department of Computer Science, University of Massachusetts at Amherst.

L INDHOLM , T. AND YELLIN , F. 1996.The Java Virtual Machine Specification. Addison-Wesley.

MOSS, J. E. B. 1989. Addressing large distributed collections of persistent objects: The Mneme project’s approach. In
R. HULL , R. MORRISON, AND D. STEMPLE (Eds.),Proceedings of the International Workshop on Database

5



Programming Languages, Salishan Lodge, Gleneden Beach, Oregon, pp. 269–285. Morgan Kaufmann. Also available as
COINS Technical Report 89-68, University of Massachusetts.

MOSS, J. E. B. 1990. Design of the Mneme persistent object store.ACM Transactions on Information Systems 8,2 (April),
103–139.

MOSS, J. E. B.AND HOSKING, A. L. 1994. Expressing object residency optimizations using pointer type annotations. In
M. ATKINSON, D. MAIER, AND V. BENZAKEN (Eds.),Proceedings of the International Workshop on Persistent Object
Systems, Workshops in Computing, Tarascon, France, pp. 3–15. Springer-Verlag, 1995.

MOSS, J. E. B.AND SINOFSKY, S. 1988. Managing persistent data with Mneme: Designing a reliable, shared object interface.
In K. R. DITTRICH (Ed.),Proceedings of the International Workshop on Object Oriented Database Systems, Volume 334
of Lecture Notes in Computer Science, Bad Münster am Stein-Ebernburg, Germany, pp. 298–316.Advances in
Object-Oriented Database Systems, Springer-Verlag, 1988.

6


