
Managing Persistent Data with Mneme�

User�s Guide to the Client Interface�

J� Eliot B� Moss Tony Hosking Eric Browny

February ��� ����

Object Oriented Systems Laboratory

Department of Computer Science
University of Massachusetts

Amherst� MA �����

Abstract

We present the client interface of the prototype Mneme persistent object store� Mneme
stores objects� preserving their identity and structural relationships� Its goals include
portability� low overhead and extensibility� This document is intended to be an in�
troduction to Mneme for applications programmers� We discuss the basic concepts of
Mneme and the interface from the programmer�s point of view� An example application
program is given in the appendix�

�This project is supported by National Science Foundation Grants CCR�������	 and DCR�
����

�� and by Digital Equipment Corporation� Apple Computer� Inc�� GTE Laboratories� and
the Eastman Kodak Company�

yAuthors� present address� Department of Computer Science� Lederle Graduate Research Cen�
ter� University of Massachusetts� Amherst� MA� �
��
� telephone �	

� �	��	���� Internet ad�
dresses Moss�cs�umass�edu� Hosking�cs�umass�edu� and Brown�cs�umass�edu�

User�s Guide to the Mneme Client Interface �

� Introduction

The Mneme persistent object store is part of an overall e�ort to integrate programming
language and database features so as to provide better support for cooperative� information
intensive tasks� Such tasks include computer	aided design
CAD�� computer aided software
engineering
CASE�� document preparation�publishing and o
ce automation applications�
as well as hypertext and other advanced information systems and tools to support group
work� These applications commonly need to store and retrieve considerable amounts of
highly structured information in a distributed system context� where many people may be
cooperating on large tasks�

The approach that Mneme takes to supporting these tasks is to provide the illusion of
a large shared heap of objects� directly accessible from the programming language used to
build the applications�

This document serves as an introduction to the interface presented to Mneme clients�
We discuss Mneme from the point of view of programmers wishing to use Mneme to provide
persistent objects to their own applications� Readers interested in a deeper discussion of the
design and implementation of Mneme� and the goals and rationales that in�uenced it� are
referred to �Moss� ������

� Basic Concepts

Mneme presents a number of abstractions to its clients� objects� handles� object pointers�
�les and pools� Brie�y� an object is a collection of bytes and references to other Mneme
objects� Each object is uniquely referenced by an object identi�er� Acquiring a handle on�
or a pointer to� an object guarantees a client access to the internals of that object until such
time as the handle is destroyed� or the pointer is released� Objects are grouped together
into units called �les� Each �le has a distinguished object called the root object� from which
all other objects within the �le may be reached� Objects may reference other objects in the
same �le� or objects in other �les� Every Mneme object is also associated with exactly one
pool� which determines the policy under which the object is managed� There may be many
object pools within a �le� each with their own management policy� We now describe these
concepts in more detail�

��� Objects

A Mneme object consists of three parts� slots� bytes and attribute bits� When an object
is created its size is speci�ed by indicating the number of slots� s� and the number of bytes�
b� that it should contain� The slots part of an object is a vector of ��	bit signed integers�
indexed from � to s��� Each slot contains one of three things� a distinguished empty value�
an immediate integer value� or an object identi�er
id�� Every Mneme object has a distinct
id� allowing the object to be located and accessed� Ids and immediates are distinguished
by their sign� ids are positive� immediates are negative� The empty slot has the value ��

User�s Guide to the Mneme Client Interface �

Clients are responsible for converting immediates to slots� and vice versa� This is easily
accomplished by negating the value of the immediate or slot�

The bytes part is an uninterpreted vector of �	bit bytes� indexed from � to b� �� Bytes
must not be used to store object ids� This separation of slots from bytes permits garbage
collection of the store� and automatic and transparent id interpretation�

Attribute bits
on the order of �� are made available to clients to mark special properties
of objects� such as being read	only� Mneme speci�es no particular use for them but they are
provided as a hook for extensions�

Mneme considers objects to be typeless� If any type is to be imposed on an object it is
done so by the client
e�g�� type information might be stored in the �rst slot of an object��
Mneme objects embody the desired structure and minimal object semantics necessary for
a large class of applications� but no particular interpretation is imposed on these objects�
Every object has an id� and the object�s slots describe its pointer relationships to other
objects� This structure is simple� general and e
cient in storage and access�

��� Handles

A handle is a data structure that provides e
cient access to the internals of an object�
To manipulate an object in the Mneme store using the Mneme call interface� one must �rst
acquire a handle on it� by presenting its id� When access is no longer desired� the handle
may be destroyed� The actions of creating and destroying handles serve several purposes�
Creating a handle is the time at which the corresponding object may be fetched from the
store� causing what we call an object fault� unless of course the object is already resident� So
long as the handle is held� the object is known to be available� and further checks are not
required�

While handles permit faster access to an object� their main drawback is that they consume
substantial space� For this reason� clients must allocate and deallocate the space for all
handles� Creating a handle simply initializes the handle�s contents� and makes available its
corresponding object� Destroying a handle does not deallocate the space for the handle� but
informs Mneme that guaranteed access to the object is being relinquished�

��� Pointers

The Mneme call interface� using handles� was designed to provide safe client access to
objects� with maximal protection from arbitrary modi�cation� Sophisticated clients may
wish to acquire a direct pointer to an object� allowing them to modify its internals directly�
We provide routines that return a direct pointer to an object� so that clients can bypass the
overhead of manipulating objects through the call interface� Acquiring a pointer to an object
guarantees access to it� until such time as a release operation is performed on it� Clients
must indicate if they have modi�ed an object� any time prior to releasing it�

User�s Guide to the Mneme Client Interface �

��� Files

Mneme groups objects together into units called �les� A �le of objects can be separately
named and located within the overall distributed store� Every Mneme object resides in a
�le� and there is no provision for moving objects from one �le to another�

Files provide a convenient unit of storage and modularity� A Mneme �le� or groups of
related �les� are intended to be reasonable units of backup� recovery� garbage collection�
and transfer between di�erent Mneme stores� A �le may contain on the order of one million
objects� Although individual �les are constrained in the number of objects they may contain�
there is no constraint on the total space of objects� since there is no limit on the number of
�les that may be constructed�

An object id is valid only while the �le in which the object resides is open� This means
that clients should not retain ids for use after the �le has been closed� Nor should clients
synthesize their own ids� This means that clients need some way to begin accessing objects
from a newly opened �le� To accomplish this each �le has a distinguished root object from
which all other objects in the �le may directly� or indirectly
via other objects�� be reached�
Any object may be made the root of a �le� Objects not accessible from the root may become
targets for garbage collection
since there is no way for them to be accessed anyway��

Files are created and opened using the �le�s name in the form of an FNAME� Once a �le
has been opened� further operations are performed on the �le using its �le id
FILEID�� A
new �le id is assigned to a �le each time the �le is opened� Therefore� a �le id is valid only
for as long as the �le remains open� File ids should be treated like object ids in that they
should not be retained for use after the �le has been closed and clients should not synthesize
their own �le ids�

��� Pools and Strategies

In addition to grouping objects physically in �les� Mneme also allows objects to be
grouped logically� according to the policy under which they are managed� Such logical
groupings of objects by management policy are called pools� Each Mneme object is a member
of exactly one pool� A management strategy is associated with each pool when it is created�
A strategy is a vector of routines for making individual policy decisions�

Mneme de�nes a default pool strategy that should be acceptable to most clients� however
we expect to provide further strategies to clients as we determine their needs� Sophisticated
users are free to develop their own strategies� and Mneme provides means by which strategy
routine vectors may be �lled in by an application�

Mneme currently supports two strategy routines� one determines where a new object
is placed on disk� thus controlling physical clustering of objects� the other decides how a
physical clustering of objects is to be grown when the cluster of objects is written back
to disk� In the future we expect to support further pool policy decisions� allowing �exible
approaches to object clustering� storage allocation� prefetch� concurrency� bu�ering�caching�
and perhaps even security and versioning�

Within a �le a pool has a unique identi�er called its pool number
POOLNUM�� Pool numbers
do not change once they have been assigned and users may store them for future reference

User�s Guide to the Mneme Client Interface �

to a pool� In order to distinguish a pool in one �le from a pool in another �le with the same
pool number� a pool id
POOLID� is assigned to each pool when its �le is opened� In general�
pool ids are required for any operation involving a pool� Like object ids and �le ids� pool ids
are valid only for as long as the �le containing the pool remains open� Routines are provided
that convert back and forth between pool numbers and pool ids�

� The Client Interface

The interface is designed with several programming conventions in mind�

� Every routine returns a standard result code� A negative return code indicates an error�
zero
MN SUCCESS� indicates unquali�ed success� and a positive code indicates a speci�c
success condition� Errors are trapped by Mneme�s exception handling mechanism� The
default exception handler simply prints a message and returns the error code�

� Any routine that must return data of unknown size allocates the space for that data
itself� setting a pointer variable supplied by the client� Clients must free the storage
when it is no longer needed using the memory allocation and deallocation functions
supplied by Mneme� Fixed size result items are always allocated by the client� to allow
e
cient static or stack allocation� The client passes the address of these items to the
Mneme routines as required�

� While C does not support data abstraction� several types are considered abstract in
the Mneme interface� and client code should not make assumptions about how they
are represented� These types include FNAME� POOLID� POOLNUM� STRATID� ID� HANDLE�
SLOT� FILEID and HANDLER �

In the following presentation arguments to routines are labelled to indicate their role
more clearly� IN indicates an argument that is passed by value� INOUT indicates an argument
that is passed by reference� and OUT indicates an argument that speci�es the address of a
location in which a result is to be returned� Each operation is assumed to return MN SUCCESS

if it completes successfully� unless it returns a more speci�c success code� A list of possible
return codes
other than MN SUCCESS� is given with the description of each operation�

��� General and File Operations

The initialization routine establishes a Mneme session� performing initialization of system
data structures� This routine should be invoked once� before any other Mneme operation�
to establish a context of interaction with the Mneme store�

� MnInit ��

Initiate a Mneme session�

Mneme �les are identi�ed either by a name or an id� Data type FNAME is the Mneme
abstraction for a �le name� The following macros are provided to set up and examine
variables of type FNAME�

User�s Guide to the Mneme Client Interface �

� fname setStr �string� fnamePtr�

Set up the given FNAME to refer to the �le named by the string� Argument string
must be a null	terminated C string� while fnamePtr is a pointer to a variable of type
FNAME�

� fname isEqual �fname�� fname��

Determine if the given FNAMEs refer to the same �le�

� fname isNil �fname�

Determine if the given FNAME refers to a �le�

The following �le operations expect a �le name
in the form of an FNAME� as an argument�

� MnFileExists �IN FNAME �fname�

MNPTRISNULL fname is null
MNFILEXIST The existence of the �le cannot be determined

Returns MN TRUE
�� if the named �le exists and can be accessed� and MN FALSE
�� if
the �le de�nitely does not exist�

� MnFileCreate �IN FNAME �fname� OUT FILEID �fid�

MNPTRISNULL One of the pointer arguments is null
MNFILTABFUL Unable to open any more �les
MNFILCREAT Unable to create the �le
MNFILOPEN Unable to open the �le
MNSEGCREAT Unable to allocate the �le�s internal tables

Create and open a new �le as named� assigning it a �le id�

� MnFileDestroy �IN FNAME �fname�

MN FAILURE File does not exist� or is currently open
MNPTRISNULL fname is null

Destroy the named �le�

� MnFileRename �IN FNAME �oldName� FNAME �newName�

MN FAILURE File does not exist� is currently open�
or another �le having the new name already exists

MNPTRISNULL One of the pointer arguments is null

Rename the �le�

� MnFileOpen �IN FNAME �fname� OUT FILEID �fid�

MNPTRISNULL One of the pointer arguments is null
MNFILTABFUL Unable to open any more �les
MNFILOPEN Unable to open the �le
MNSEGREAD Unable to read the �le�s internal tables

Open the named �le� assigning it a �le id�

User�s Guide to the Mneme Client Interface �

� MnFileId �IN FNAME �fname� OUT FILEID �fid�

MN FAILURE File does not exist� or is not currently open
MNPTRISNULL One of the pointer arguments is null

Determine the �le id of the named �le�

The remaining �le operations are oriented towards �le ids�

� MnFileClose �INOUT FILEID �fid�

MNPTRISNULL fid is null
MNBADFILEID fid is invalid
MNSEGWRITE Unable to write the �le
MNFILCLOSE Unable to close the �le

Close the identi�ed �le� If the operation succeeds then the given FILEID will be set
to EMPTY FILEID�

� MnFileName �IN FILEID fid� OUT FNAME �fname�

MNBADFILEID fid is invalid
MNPTRISNULL fname is null

Determine the name of the identi�ed �le�

� MnFileGetPools �IN FILEID fid� OUT POOLID ��poolIds���� int �count�

MNPTRISNULL One of the pointer arguments is null
MNBADFILEID fid is invalid

Allocate an array consisting of the pool ids of all the pools in the indicated �le� The
size of the array is returned in count� When the array is no longer needed the client
must free its space with a call to mn free� Note that there is no correlation between a
pool id�s index in the array and the pool number associated with that pool�

� MnFileSetRoot �IN FILEID fid� HANDLE �h� ID id�

MNBADFILEID fid is invalid
MNBADOBJECT Either the given HANDLE is invalid�

or if h is null then id is invalid

Set the root object of the �le from the handle� or� if the handle pointer is null� the
object id�

� MnFileGetRoot �IN FILEID fid� HANDLE �h� ID �id�

MNSEGFETCH The object was faulted from disk

this is a success code�

MNBADFILEID fid is invalid
MNPTRISNULL id is null

Determine the root object of the �le� If the handle pointer is not null then create a
handle for the object�

User�s Guide to the Mneme Client Interface �

��� Object and Handle Operations

A few operations related to objects use ids� but most use handles� We �rst discuss the
operations that use ids�

� MnObjectCreate �IN POOLID p� LONG s� LONG b� BYTE attr� ID nearId�

OUT HANDLE �h� ID �id�

MNBADPOOLID p is invalid
MNEMPTYSTRAT Pool p has no associated strategy
MNBADSLOTNUM s is out of range
MNBADBYTENUM b is out of range
MNPOOLCONFLICT Pool of nearId object con�icts with given pool
MNPTRISNULL id is null

Create a new object having the given number of slots� s� and bytes� b� and initial
attribute bits attr� If the nearId argument is non	zero� then it hints that the new
object should be allocated �close to� the object it indicates� The operation returns the
id of the newly created object� and� if h is not the null pointer� a handle for the object
as well�

� MnObjectCompare �IN ID id�� ID id��

Returns MN TRUE
�� if the arguments id� and id� refer to the same object� and
MN FALSE
�� if they do not�

The �rst group of handle oriented routines are simple inquiries�

� MnObjectPool �IN HANDLE �h� OUT POOLID �p�

MnObjectFile �IN HANDLE �h� OUT FILEID �f�

MNPTRISNULL One of the pointer arguments is null

Determine the pool��le that contains the indicated object�

� MnObjectNumBytes �IN HANDLE �h� OUT LONG �b�

MnObjectNumSlots �IN HANDLE �h� OUT LONG �s�

MNPTRISNULL One of the pointer arguments is null

Determine the number of bytes�slots in the indicated object�

The second group allows access to the three parts of an object�

� MnObjectAttrs �IN HANDLE �h� BYTE andMask� BYTE xorMask� OUT BYTE �attr�

MNPTRISNULL One of the pointer arguments is null

Suppose that the current value of the attributes of the speci�ed object is v� The result
of this operation
which is also stored in the object as the new value for its attributes�
is�
v�andMask��xorMask� This allows any of the four Boolean operations on a single
bit value
set� clear� invert� nothing� to be performed individually to each attribute
bit� all at once� requiring only one attribute routine�

�� is the logical exclusive�or operator�

User�s Guide to the Mneme Client Interface �

� MnObjectGetBytes �IN HANDLE �h� LONG first� LONG count�

OUT BYTE �bytes�

MnObjectPutBytes �IN HANDLE �h� LONG first� LONG count� BYTE �bytes�

MNPTRISNULL One of the pointer arguments is null
MNBADBYTENUM first is out of range
MNBADCOUNT count is out of range

Read�write count bytes from�to the object� beginning at the byte indexed by first�

� MnObjectGetSlot �IN HANDLE �h� LONG which� OUT SLOT �slot�

MnObjectPutSlot �IN HANDLE �h� LONG which� SLOT slot�

MNPTRISNULL One of the pointer arguments is null
MNBADSLOTNUM which is out of range

Read�write the slot indexed by which from the object�

� MnObjectGetSlots �IN HANDLE �h� LONG first� LONG count�

OUT SLOT �slots�

MnObjectPutSlots �IN HANDLE �h� LONG first� LONG count� SLOT �slots�

MNPTRISNULL One of the pointer arguments is null
MNBADSLOTNUM first is out of range
MNBADCOUNT count is out of range

Read�write count slots from�to the object� beginning at the slot indexed by first�

� MnCopyBytes �IN HANDLE �from� HANDLE �to�

LONG fromFirst� LONG toFirst� LONG count�

MNPTRISNULL One of the pointer arguments is null
MNBADBYTENUM One of fromFirst or toFirst is out of range
MNBADCOUNT count is out of range

Copy a range of bytes from one object to another� If the destination object is the same
as the source object and the ranges overlap then the copy will be performed so that
source bytes are not overwritten before they have been copied�

� MnCopySlots �IN HANDLE �from� HANDLE �to�

LONG fromFirst� LONG toFirst� LONG count�

MNPTRISNULL One of the pointer arguments is null
MNBADSLOTNUM One of fromFirst or toFirst is out of range
MNBADCOUNT count is out of range

Copy a range of slots from one object to another� If the destination object is the same
as the source object and the ranges overlap then the copy will be performed so that
source slots are not overwritten before they have been copied�

� MnObjectFillBytes �IN HANDLE �h� LONG first� LONG count� BYTE byte�

MNPTRISNULL h is null
MNBADBYTENUM first is out of range
MNBADCOUNT count is out of range

Fill a range of bytes with a given byte value�

User�s Guide to the Mneme Client Interface �

� MnObjectFillSlots �IN HANDLE �h� LONG first� LONG count� SLOT slot�

MNPTRISNULL h is null
MNBADSLOTNUM first is out of range
MNBADCOUNT count is out of range

Fill a range of slots with a given slot value�

Recall that a slot can be empty� contain an id� or contain an immediate value� The
following operations allow these cases to be distinguished�

� MnSlotIsEmpty �SLOT slot�

MnSlotIsData �SLOT slot�

MnSlotIsId �SLOT slot�

Return MN TRUE
�� if the given slot is the empty slot� data� or an id� respectively�
Return MN FALSE
�� otherwise�

Finally� there are three operations on handles themselves�

� MnHandleCreate �IN ID id� OUT HANDLE �h�

MNSEGFETCH The object was faulted from disk

this is a success code�

MNPTRISNULL h is null
MNBADID id is invalid

Create a handle for the object corresponding to the given id� This operation initializes
the contents of the handle� possibly faulting in the object� and permits the client to
access the internals of the object� The client must allocate the space for the handle�

� MnHandleDestroy �INOUT HANDLE �h�

MNPTRISNULL h is null

Destroy the given handle� This operation signals that the client is relinquishing access
to the object� nulling out the handle�s contents� It does not deallocate the space for
the handle� so that the handle may be reinitialized for a di�erent object in a later call
to MnHandleCreate�

� MnHandleId �IN HANDLE �h� OUT ID �idPtr�

MNPTRISNULL One of the pointer arguments is null

Determine the id of the object corresponding to the given handle�

��� Direct Pointer Operations

The following routines are provided to allow sophisticated clients direct access to objects
in the Mneme bu�ers� bypassing the call interface described in the previous section� Clients
wishing to use these routines should be aware that direct access permits arbitrarily bad
modi�cation of objects� and that appropriate care should be taken�

User�s Guide to the Mneme Client Interface ��

Acquiring a direct pointer to a Mneme object exposes its internals� which are slightly
di�erent to the abstraction presented by the call interface� The principal di�erence is the
use of persistent object identi�ers
pids�� Object identi�ers� as stored in the slots of objects
within the Mneme store� always name objects within the same �le as the object containing
the identi�er� Because clients may have many �les open at the same time during a Mneme
session� a pid� which is unique only within one �le� must be converted into a client id for use
by the client� The call interface takes care of this conversion automatically� However� clients
using the direct pointer interface must perform this conversion for themselves� To assist in
this� we include a number of routines for converting identi�ers�

The following operations name an object using a client id�

� MnIdPtr �IN ID id� int mod� OUT PTR �ptr�

MNSEGFETCH The object was faulted from disk
this is a success code�
MNPTRISNULL ptr is null
MNBADID id is invalid

Acquire a pointer to the object identi�ed by the client id� indicating if it is to be
modi�ed
mod non	zero��

� MnIdMod �IN ID id�

MNBADID id is invalid
MNRELEASE object is not resident

Indicate the object is modi�ed�

� MnIdRelease �IN ID id� int mod�

MNBADID id is invalid
MNRELEASE object is not resident

Release the object� indicating if it has been modi�ed
mod non	zero��

The corresponding operations for pids are as follows�

� MnPidPtr �IN FILEID fid� PID pid� int mod� OUT PTR �ptr�

MNSEGFETCH The object was faulted from disk
this is a success code�
MNPTRISNULL ptr is null
MNBADFILEID fid is invalid
MNBADPID pid is invalid

Acquire a pointer on the identi�ed object in the given �le� indicating if it is to be
modi�ed
mod non	zero��

� MnPidMod �IN FILEID fid� PID pid�

MNBADFILEID fid is invalid
MNBADPID pid is invalid
MNRELEASE object is not resident

Indicate the object is modi�ed�

User�s Guide to the Mneme Client Interface ��

� MnPidRelease �IN FILEID fid� PID pid� int mod�

MNBADFILEID fid is invalid
MNBADPID pid is invalid
MNRELEASE object is not resident

Release the object� indicating if it has been modi�ed
mod non	zero��

For clients who desire higher performance at the cost of minimal error checking� the
following two routines are provided� The routines do not follow the Mneme convention of
returning an RCODE� Rather� the desired pointer is returned by the functions� If the returned
value is NULL� the operation has failed and a global status variable� MnStatus� will contain
the error code� It is assumed that the arguments to the functions are valid�

� PTR MnPidPtrNoMod �IN FILEID fileId� PID pid�

Return a pointer to the identi�ed object in the given �le� assuming modi�cations will
not be made�

� PTR MnPidPtrMod �IN FILEID fileId� PID pid�

Return a pointer to the identi�ed object in the given �le� assuming modi�cations will
be made�

The object creation routine is similar to MnObjectCreate� However� it always returns a
direct object pointer rather than optionally returning a handle�

� MnObjectCreatePtr �IN POOLID p� LONG s� LONG b� BYTE attr� ID nearId�

OUT PTR �ptr� ID �id�

MNBADPOOLID p is invalid
MNEMPTYSTRAT Pool p has no associated strategy
MNBADSLOTNUM s is out of range
MNBADBYTENUM b is out of range
MNPOOLCONFLICT Pool of nearId object con�icts with given pool
MNPTRISNULL One of ptr or id is null

Create a new object having the given number of slots� s� and bytes� b� and initial
attribute bits attr� If the nearId argument is non	zero� then it hints that the new
object should be allocated �close to� the object it indicates� The operation returns the
id of the newly created object� and a direct pointer to its �rst slot�

We also provide routines for determining information about an object� given a direct
object pointer� Notice that there is just one routine� MnPtrInfo� corresponding to the two
routines� MnObjectNumBytes and MnObjectNumSlots�

� MnPtrInfo �IN PTR ptr� OUT LONG �s� LONG �b�

MNPTRISNULL One of the pointer arguments is null
MNBADPTR ptr does not point to the �rst slot of a Mneme object

Determine the number of slots and bytes in the object�

User�s Guide to the Mneme Client Interface ��

� MnPtrAttrs �IN PTR ptr� BYTE andMask� BYTE xorMask� OUT BYTE �attr�

MNPTRISNULL One of ptr or result is null

This is the direct pointer routine corresponding to MnObjectAttrs�

Finally� there are conversion routines for converting a client id to a �le and pid� and vice
versa�

� MnIdPid �IN ID id� OUT PID �pid�

MNBADID id is invalid
MNPTRISNULL pid is null

Convert a client id into a pid�

� MnIdFile �IN ID id� OUT FILEID �fid�

MNBADID id is invalid
MNPTRISNULL fid is null

Determine what �le the object is in�

� MnPidId �IN FILEID fid� PID pid� OUT ID �id�

MNBADFILEID fid is invalid
MNBADPID pid is invalid
MNPTRISNULL id is null

Convert a pid into a client id�

��� Pool and Strategy Operations

Recall that an object�s pool determines its management policy� In future releases of
Mneme pools will have attributes associated with them� allowing them to have arbitrary�
client	speci�ed
and strategy	speci�c� parameters� and routines will be provided for setting
and retrieving these attributes� For now� the following routines permit the creation of pools�
and tailoring of the strategy routines�

� MnPoolCreate �IN FILEID f� STRATID s� OUT POOLID �p�

MNBADFILEID f is invalid
MNPTRISNULL p is null
MNBADSTRATID s is invalid
MNTOOMANYPOOLS Unable to allocate space for a new pool

Create a new pool in the indicated �le� having the given strategy� The default strategy
has STRATID �
DEFAULT STRAT��

� MnStrategySetRoutine �IN STRATID s� STRAT EVENT e� RCODE ��routine����

MNBADSTRATID s is invalid
MNBADEVENT e is invalid
MNPTRISNULL routine is null

User�s Guide to the Mneme Client Interface ��

This routine is for the use of sophisticated users wishing to de�ne pool policies that use
their own strategy routines� Currently� Mneme allows for a maximum of �� possible
strategies� reserving strategies �
SYSTEM STRAT� and �
DEFAULT STRAT� for itself� This
means that clients may use STRATIDs � through �� to identify their own strategies�
however there are no guarantees that any of these strategy identi�ers will be available
to clients in the future�

� MnPoolNumId �IN FILEID fileId� POOLNUM poolNum� OUT POOLID �poolId�

MNBADFILEID fileId is invalid
MNBADPOOLID poolNum is invalid
MNPTRISNULL poolId is null

Obtain the pool id for the pool with number poolNum in the �le identi�ed by fileId�

� MnPoolIdNum �IN POOLID poolId� OUT POOLNUM �poolNum�

MNBADPOOLID poolId is invalid
MNPTRISNULL poolNum is null

Obtain the pool number for the pool identi�ed by poolId�

��� Pro�ling and File Information Operations

The interface o�ers several operations for acquiring statistics and counts� Two data types
are provided� FILEDATA is a structure that holds allocation information about a Mneme �le�
and PROFDATA is a structure that contains counts of various operations� For each structure
operations are provided to print the structure on the standard output� sample data into a
client	supplied structure� and reset the pro�ling counts�

� MnFileInfoPrint �IN FILEID fid�

MNBADFILEID fid is invalid

Print allocation information about the �le�

� MnFileInfoCopy �IN FILEID fid� OUT FILEDATA �fdata�

MNBADFILEID fid is invalid
MNPTRISNULL fdata is null

Determine �le allocation information�

Since the collection of pro�ling statistics a�ects the performance of Mneme� there is a
compiler �ag PROFILE that enables or disables collection
see the Mnememake�le for details��
The following routines all return an error code if pro�ling has been disabled�

� MnProfileReset ��

MNNOPROFILE Pro�ling is disabled

Reset the pro�le counters to initial values� Clients should call this when pro�ling
should begin�

User�s Guide to the Mneme Client Interface ��

� MnProfilePrint ��

MNNOPROFILE Pro�ling is disabled

Print the current pro�ling counts�

� MnProfileCopy �PROFDATA �pdata�

MNNOPROFILE Pro�ling is disabled
MNPTRISNULL pdata is null

Sample the current pro�ling counts�

��	 Exception Handling

The client interface also includes an exception handling facility that traps all errors as
they occur� A stack of exception handlers is maintained� and Mneme provides routines that
permit clients to push and pop their own exception handlers on this stack� The stack is
initialized with a default exception handler that simply prints an error message and returns
the error code� Whenever an exception occurs the handler that is on the top of the stack
is invoked to deal with it� Exception handlers may defer action to the next handler below
them on the stack using the following macro�

� deferToNextHandler �rcode�

All exception handlers must conform to the signature�
RCODE handler �IN HANDLER NODE �nextNode� RCODE rcode�

The routines for pushing and popping handlers are as follows�

� MnHandlerPush �HANDLER �handler�

MNPTRISNULL handler is null

Push a handler on the stack� where handler points to a routine having the mandated
signature for exception handlers as de�ned above�

� MnHandlerPop ��

MNPOPHANDLER Attempted to pop the default handler from the stack

Pop a handler from the stack�

References

�Moss� ����� J� Eliot B� Moss� Design of the Mneme persistent object store� ACM Trans�

Inf� Syst� �� �
Apr� ������ ��������

User�s Guide to the Mneme Client Interface ��

A� An Example

In this section we present an annotated example Mneme application that builds a com	
plete tree of arbitrary height and degree� and then performs an in	order traversal on the tree�
Each node in the tree is represented as a Mneme object� and the root node of the tree is the
root object of the Mneme �le� Each node may have a number of bytes of data associated with
it� Each internal
i�e�� non	leaf� node also requires as many slots as the degree of the tree�
to hold the ids of its subtrees� The program interactively requests the following parameters
from the user�

� Branching factor
i�e�� degree� of the tree�

� Height of tree�

� Number of data bytes to be allocated per node�

� Whether the data bytes should be read from each node as it is traversed�

� Whether the data bytes should be written as each node is traversed�

� Whether the tree �le should be closed
forcing the tree nodes to disk� and then reopened
before the tree is traversed� If the �le is closed then the traversal will cause the nodes
of the tree to be faulted in from disk as they are needed�

We list the program� and intersperse it with comments�

� include 	mneme
mneme�h�

static POOLID poolId

static BYTE data�����

Include the Mneme header �le and declare static variables� poolIdwill be used to identify
the pool in which each of the nodes are to be created�

void createTree �height� branches� bytes� this�

int height

int branches

int bytes

ID �this

�

HANDLE handle

if �height �� �� �
� height of leaves is � �

int slots � �

MnObjectCreate �poolId� slots� bytes� �� EMPTY�ID� �handle� this�

MnObjectPutBytes ��handle� �� bytes� data�

� else �

User�s Guide to the Mneme Client Interface ��

int child

ID subtree

int slots � branches

MnObjectCreate �poolId� slots� bytes� �� EMPTY�ID� �handle� this�

MnObjectPutBytes ��handle� �� bytes� data�

for �child � �
 child 	 slots
 child��� �

createTree �height � �� branches� bytes� �subtree�

MnObjectPutSlot ��handle� child� subtree�

�

�

MnHandleDestroy ��handle�

�

createTree builds a tree of height height and degree branches� The Mneme ID of the
root node of this tree is returned via this� The routine recursively calls itself to build the
subtrees of this node�

void traverseTree �this� read� write�

ID this

int read

int write

�

HANDLE handle

int slots

int bytes

int child

ID subtree

MnHandleCreate �this� �handle�

MnObjectNumSlots ��handle� �slots�

MnObjectNumBytes ��handle� �bytes�

if �read�

MnObjectGetBytes ��handle� �� bytes� data�

if �write�

MnObjectPutBytes ��handle� �� bytes� data�

for �child � �
 child 	 slots
 child��� �

MnObjectGetSlot ��handle� child� �subtree�

traverseTree �subtree� read� write�

�

MnHandleDestroy ��handle�

�

User�s Guide to the Mneme Client Interface ��

traverseTree does an in	order traversal of the tree whose root node has Mneme id this�
The parameters read and write determine whether the data bytes should be read or written
as the node is traversed�

RCODE myHandler �nextNode� rcode�

HANDLER�NODE �nextNode

RCODE rcode

�

printf ��Defer to next handler����n��

return�deferToNextHandler�rcode��

�

To illustrate the use of the exception handling facilities we de�ne our own handler routine
that just prints a message and defers to the next handler� Function main queries for the
necessary parameters� initializes the Mneme session� illustrates the use of exception handlers�
creates the Mneme �le and the tree� and traverses it� printing out various pro�ling statistics
along the way�

main �� �

int branches

int bytes

int height

char str����

int read� write� close

FNAME fname

FILEID fileId

ID root

do �

printf ��Enter branching factor� ��

� while �scanf ���d�� �branches� �� ��

do �

printf ��Enter height� ��

� while �scanf ���d�� �height� �� ��

do �

printf ��Enter bytes stored
retrieved per node �up to ����� ��

� while �scanf ���d�� �bytes� �� � �� bytes � ����

do �

printf ��Should the traversal read data from the nodes �y
n�� ��

� while �scanf ���s�� str� �� � �� �str��� �� �y� �� str��� �� �n���

read � str��� �� �y�

do �

printf ��Should the traversal write data to the nodes �y
n�� ��

� while �scanf ���s�� str� �� � �� �str��� �� �y� �� str��� �� �n���

write � str��� �� �y�

do �

User�s Guide to the Mneme Client Interface ��

printf ��Should file be closed before tree traversal �y
n�� ��

� while �scanf ���s�� str� �� � �� �str��� �� �y� �� str��� �� �n���

close � str��� �� �y�

printf ���n��

� Initialise the Mneme session �

MnInit ��

� Illustrate exception handlers �

MnHandlerPush �myHandler�

� Push my handler �

MnHandlerPush ��HANDLER ��NULL�

� Generate an exception �

MnHandlerPop ��

� Pop my handler �

fname�setStr ��Tree�mn�� �fname�

if �MnFileExists ��fname��

MnFileDestroy ��fname�

MnProfileReset ��

printf ��Creating file����n��

MnFileCreate ��fname� �fileId�

MnPoolCreate �fileId� DEFAULT�STRAT� �poolId�

printf ��done�n��

MnProfilePrint ��

printf ���nCreating tree����n��

createTree �height� branches� bytes� �root�

MnFileSetRoot �fileId� �HANDLE ��NULL� root�

printf ��done�n��

MnProfilePrint ��

MnFileInfoPrint �fileId�

if �close� �

printf ���nClosing file����n��

MnFileClose ��fileId�

printf ��done�n��

MnProfilePrint ��

MnFileOpen ��fname� �fileId�

MnFileGetRoot �fileId� �HANDLE ��NULL� �root�

�

printf ���nTraversing tree����n��

traverseTree �root� read� write�

User�s Guide to the Mneme Client Interface ��

printf ��done�n��

MnProfilePrint ��

MnFileInfoPrint �fileId�

printf ���nClosing file����n��

MnFileClose ��fileId�

printf ��done�n��

MnProfilePrint ��

�

B� Using the Direct Pointer Interface

We recode routines createTree and traverseTree using direct pointers�

void createTree �height� branches� bytes� this�

int height

int branches

int bytes

ID �this

�

PTR ptr

if �height �� �� �
� height of leaves is � �

int slots � �

int i

MnObjectCreatePtr �poolId� slots� bytes� �� EMPTY�ID� �ptr� this�

memcpy �ptr� data� bytes�

� else �

int child

ID subtree

int slots � branches

MnObjectCreatePtr �poolId� slots� bytes� �� EMPTY�ID� �ptr� this�

memcpy ��SLOT ��ptr � slots� data� bytes�

for �child � �
 child 	 slots
 child��� �

createTree �height � �� branches� bytes� �subtree�

MnIdPid �subtree� ���PID ��ptr��child��

�

�

MnIdRelease ��this� ��

�

� There is no need to indicate this�� as modified� since

� it was just created� and Mneme knows it is modified�

User�s Guide to the Mneme Client Interface ��

�

�

void traverseTree �this� read� write�

ID this

int read

int write

�

PTR ptr

LONG slots

LONG bytes

int child

ID subtree

FILEID fileId

MnIdFile �this� �fileId�

MnIdPtr �this� write� �ptr�

� Indicate intention to modify �

MnPtrInfo �ptr� �slots� �bytes�

if �read�

memcpy �data� �SLOT ��ptr � slots� bytes�

if �write�

memcpy ��SLOT ��ptr � slots� data� bytes�

for �child � �
 child 	 slots
 child��� �

MnPidId �fileId� ��PID ��ptr��child�� �subtree�

traverseTree �subtree� read� write�

�

MnIdRelease �this� ��

� Intention to modify already noted �

�

