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Abstract

The transformation of large, off-the-shelf Java applications to support complex new functionality essentially
requires generation of an entirely new application that retains the execution semantics of the original.
We describe such a whole-program modification in the context of RuggedJ, a dynamic transparent Java
distribution system.
We discuss the proxy-based object model that allows remote Java objects to be referenced in the same
way as those residing on the current virtual machine, the optimizations that allow us to bypass proxies
in the case of purely local or remote object, and the mechanisms needed to guarantee that static data
remain unique in a distributed system. We then detail some of the more interesting features involved when
implementing this object model in rewritten bytecode, including transformations required within method
bodies and coordination between bytecode and the run-time system that distributes an application across
the network.

Keywords: Java, Bytecode Transformation, Load-Time Rewriting, Transparent Distribution, Object
Model

1 Introduction

Automatic code modification for Java applications is a widely-used technique that
adds functionality to existing software. Aspect-oriented programming or bytecode
rewriting make it trivial for programmers to implement cross-cutting concerns such
as logging, error handling, or profiling without modification to original applications.
More complex is the comprehensive transformation of an application; generating an
entirely new program that retains the execution semantics of the original, while
adding substantive new functionality.

In this paper we describe the process of pervasive transformation in our trans-
parently distributed Java system, RuggedJ. We use load-time dynamic bytecode
transformation to generate an entirely new class hierarchy that mirrors the struc-
ture of an off-the-shelf Java application, adding the necessary functionality to ex-
ecute the application across a network of Java virtual machines. While we discuss
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our program transformation process in the context of RuggedJ, many of our tech-
niques would be equally useful to other large-scale modification applications such
as persistence.

We discuss a proxy-based object model that abstracts object implementation,
hiding whether they are local or remote to a given virtual machine. This model
allows for objects to be distributed and migrated across the RuggedJ network while
still preserving the execution semantics and class hierarchy of the original applica-
tion. Additionally, by referring to transformed classes in rewritten bytecode only
using interfaces we allow the elimination of proxies in the common case where an
object is known to be always local or remote.

Performing our transformations at the bytecode level affords us several major
advantages: We do not require access to the original application source; we can per-
form our transformation at class-load time, taking advantage of dynamic knowledge
of the execution environment; the relative simplicity of bytecode when compared to
source allowing our rewrites to be more general; and we can perform incremental
changes on-the-fly, referring to generated classes that may or may not be created
on demand without having to perform a whole-program compilation.

2 Application Distribution with RuggedJ

The current trend in microprocessor technology is for increases in the number of
cores on a processor to replace the once-familiar increases in processor speed. The
immediate implication for application developers is that we can no longer rely on
the next generation of processors to make our systems run faster; we must instead
take advantage of parallelism on individual machines and, increasingly, distribution
across clusters of commodity machines.

Unfortunately, the implementation of complex distributed systems demands a
great deal of additional effort from programmers and is liable to introduce obscure
bugs. Objects must be allocated and tracked across nodes, method calls and field
accesses must take into account the location of their targets, objects may need to be
migrated from node to node in order to gain acceptable performance, and so forth.

RuggedJ is an automatic transparent distribution system that aims to eliminate
these concerns by transforming a Java application to run across a cluster of ma-
chines. We achieve this through a combination of a run-time distribution library
and a transformation process that creates a new, distribution-aware, application
from a set of standard Java class files.

Our implementation of RuggedJ is mostly complete. The bytecode transforma-
tion process is in place and tested on realistic applications running on a single node.
We have distributed simple applications, but are currently working on the complete
distribution of complex systems.

2.1 The RuggedJ Network

A RuggedJ network consists of a set of Java virtual machines (VMs) that distribute
and run an off-the-shelf Java application. Each virtual machine (a node, in RuggedJ
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Fig. 1. The RuggedJ System Architecture

terminology) contains an instance of the RuggedJ run-time library that interacts
with the run-times on other nodes to coordinate the execution of an application.
Figure 1 shows the construction of a RuggedJ network:

We refer to a single physical machine available to RuggedJ as a host. This is
distinct from a node; a single host can run multiple nodes. RuggedJ is designed
to be platform-agnostic, in that a network can consist of heterogeneous hosts. We
require only that each host is capable of running a fully-functional Java VM, and
that all VMs run the same version of Java, including the standard class libraries.

Each node consists of two parts: the transforming class loader and the run-time
library. The presence of a transforming class loader on each node allows a given
class to be rewritten differently on different nodes, taking advantage of the capa-
bilities of the host or knowledge of the execution environment. We designate the
node upon which the application starts to be the head node. As well as functioning
as a standard RuggedJ node, the head node acts as a central location for the appli-
cation, handling I/O requests and other operations that require native access to a
particular host. It also acts as an overseer for coordination between nodes: the head
node maintains full information on the location of objects and the condition of the
network, providing other nodes with a definitive source for this information. While
the head node can present a bottleneck, it is necessary not only as a co-ordinator
but also as a location for classes that cannot be distributed (see Section 3.4)

2.2 Application Partitioning

The partitioning strategy for a given application is defined by the application de-
veloper. While substantial research exists in the literature concerning automatic
application partitioning [9, 13, 19], we feel that one is more likely to arrive at
an optimal partitioning when developing it using the domain-specific application
knowledge available to the programmer. Additionally, many automatic partitioning
schemes rely on an advance knowledge of the network configuration under which
an application will run. This runs counter to our aim of environmental flexibility,
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Fig. 2. Classes generated by the RuggedJ class loader

where one can use an application partitioning on a RuggedJ network made up of
arbitrary nodes.

To allow the partitioning developer to take full advantage of the RuggedJ net-
work available, we provide a plug-in interface to which one can attach a partitioning
strategy, allowing access to the RuggedJ run-time’s dynamic internal state (network
conditions, node load levels, etc.). RuggedJ consults the strategy for the running
application both at class-loading time, guiding the rewrites that the system applies
to a class, and at run time, allowing it to base its dynamic decisions upon the cur-
rent state of the network. Some of the options available to the partitioning designer
are discussed in Section 4.4

2.3 Run-Time Support

The RuggedJ run-time library manages the interaction between rewritten bytecode
on remote nodes, allowing separate processes to interact and execute a single appli-
cation. Parts of the library are called by rewritten code, while others coordinate to
provide networking services and to generate an accurate picture of the network as
a whole.

Library Functionality: The run-time library provides functionality to rewrit-
ten bytecode. Many of the operations required to support distribution require com-
plex code sequences. Specifying such operations within a rewritten method would
very quickly lead to unreadable bytecode, which is difficult to debug. Instead, we
delegate to the run-time library all operations that require more than a very simple
bytecode sequence.

Run-time Co-ordination: There are several key tasks performed by the run-
time to co-ordinate execution between nodes. These include monitoring the net-
work and host configurations and status, tracking the location of objects for remote
method calls and message passing between nodes.

3 The RuggedJ Object Model

We accomplish distribution in RuggedJ by abstraction of object locations. We
achieve this through use of proxies for objects. Proxies allow the implementation
of an object to vary depending on whether it is local or remote, while presenting a
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single interface to external code. For every class in the original application, RuggedJ
generates a series of classes and interfaces, as shown in Figure 2.

We split classes into two parts: the fields and methods that make up per-object
state (the instance parts), and those that are specific to the class (the static parts).
This is necessary in order to ensure that static data exists exactly once in the
RuggedJ network; Section 3.3 discusses this issue further.

When the RuggedJ class loader has rewritten a class, it presents only the trans-
formed version for loading into the Java VM. The VM never sees the original class,
which removes the possibility of conflicts between modified and unmodified classes.
The only exception to this is in the case of unmodifiable classes, which we describe
in Section 3.4.

3.1 Instance Classes

Focusing on the instance parts of Figure 2, we see the three classes and one interface
that RuggedJ generates from the instance parts of each application class X:

Interface X: The interface contains an abstract version of each instance method
present in the original application class, as well as get and set methods for each field
(see Section 4.2). The name of the interface is significant. By using the name of
the original class, the Java type system will recognize an object that implements
this interface as the original class. This property simplifies the rewriting of certain
bytecode structures, such as instanceof checks and exception handling, and re-
moves the need to transform every reference to the original class. The local, stub
and proxy classes each implement the interface, and rewritten code refers to a class
primarily via its rewritten interface.

Class X local: The local class contains the fields and the implementation of
each instance method from the original class. One can thus think of it as the
“actual” object. Any methods invoked upon the object must ultimately execute on
an instance of the local class.

Class X stub: The stub class represents a remote object (i.e., one for which
a local version exists on a different node). The stub contains a globally-unique
identifier of the remote object, and it implements each method of the interface as a
remote method invocation.

Class X proxy: The proxy class provides a level of indirection between calling
code and the local or stub implementation of an object. It contains a single field
that holds a reference to either a local or stub object, and implementations of every
method in the interface that invoke the relevant method on the referenced object.

Where the original application allocates an object of type X, the transformed
version creates a pair of objects. One is either an X local or X stub, depending
on the node upon which the allocation occurs. The other is an X proxy object that
references the local or stub object. By referring to proxies rather than local or stub
object in rewritten code, RuggedJ ensures that only a single pointer exists to a
local or stub object on a given node. This allows objects to migrate easily from
node to node: should an object move from the local node, it is necessary only to
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Fig. 3. Inheritance between transformed classes

update the reference in the proxy from the local class to a stub. Migration without
proxies would require updating all references in objects or on stacks, which would
be prohibitively expensive.

The design of the object model, however, does allow for the direct allocation
of local or stub objects, bypassing the proxy. This is desirable for objects that
are known never to migrate, such as those objects directly tied to the local virtual
machine (such as file handles, class objects, and so forth), or objects known by the
author of the partitioning strategy to exist on only one machine (such as temporary
objects or local data structures). Allocating proxies for such objects would be
unnecessary, adding the overhead of indirection when the referenced object is never
going to change. In these cases, RuggedJ instead simply allocates either the local
or stub object.

We can use X proxy, X local, and X stub objects interchangeably in this man-
ner because each implements the generated interface X. We make all method calls
within rewritten code in terms of the interface, and field accesses go through the
generated get and set methods. By calling methods through interfaces, we mini-
mize the transformation necessary on calling code, while maximizing flexibility in
the types of objects used.

3.2 Inheritance

As well as providing a mechanism by which we can reference different versions of a
class uniformly, RuggedJ’s generated interfaces maintain the inheritance relation-
ships between original classes. Figure 3 shows the relationship between transformed
classes (omitting static parts).

The original application’s inheritance relationship between subclass Y of class
X appears as the transformed interface Y extending interface X. Since rewritten
code refers to objects exclusively by interface, this allows one to use any object that
implements Y when the original code required an instance of X. Similarly, checkcast
or instanceof operations operate over interfaces, and produce the same results in
transformed code as in the original application.

Each transformed class Y local, Y stub and Y proxy extends the equivalent
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part of class X. This is not necessary to preserve the inheritance relationships of
the original application. Other than when allocating objects, rewritten code never
refers to these individual classes. Rather, this subclassing works to simplify the
implementation of these classes. Without it, each class would have to contain the
fields and implementations for every method of the superclasses of its unmodified
version, which would lead to duplication of code and overly-complex classes.

3.3 Static Classes

Turning to the static parts in Figure 2, we see that RuggedJ generates an additional
interface and two classes:

Interface X static: This interface contains each static method and get/set
methods for each static field in the original class. It functions similarly to the
instance interface X. Both X static local and X static stub classes implement
X static, allowing rewritten code to use them interchangeably.

Class X static local: This class contains the static fields and implementations
of each static method from the original class. RuggedJ modifies both fields and
methods to be instance members of X static local rather than static members.
This allows class X static local to fulfill the requirements of interface X static,
and decouples the implementation of static members from the implementation of
the VM.

Class X static stub: The static stub acts similarly to the instance stub class.
It contains implementations of each method in interface X static that perform
remote invocations on the appropriate X static local object.

Transforming static methods of original class X into instance members of class
X static local serves two purposes. First, it allows the static part of an object
to be treated as any other object in the RuggedJ network. This allows us to take
advantage of any object migration or caching performed by the system for static
data as well as individual objects. More importantly, however, is the fact that
transforming static data to representation as an object allows us to ensure that only
one copy of the data exists in the network. Were static fields left unmodified, each
VM that loads class X would have its own copy of each field, leading to inconsistent
data.

We use the concept of static singletons to maintain unique static data. The
RuggedJ run-time library creates static objects on demand, and coordinates be-
tween nodes to guarantee that the network contains at most one instance of
X static local. Once some node has allocated the singleton, all other nodes will
create X static stub objects as required. By managing static singletons through
the run-time, we eliminate the need for a X static proxy class. Since rewritten
code does not store references to the static singleton, we ensure that each node has
a single reference to a given static singleton. Should the need arise to migrate a
static singleton, we must update only this one reference.
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Fig. 4. Wrapping unmodifiable classes

3.4 Unmodifiable Classes

While RuggedJ can rewrite the majority of application classes as described in Sec-
tion 3.1, there are a subset of application and Java standard library classes that it
cannot. This limitation arises from the presence of native code. We cannot rewrite
a method implemented using Java’s native interface, and such a method will not
be aware of the presence of transformed classes. It may attempt to access fields or
methods that we have modified or that are not available. We call these classes un-
modifiable, and do not rewrite them. Tilevich and Smaragdakis define such classes
to be those accessible by native code: classes that contain native methods, those
passed to or returned from unmodifiable classes, the types of fields in unmodifiable
classes, and superclasses of unmodifiable classes [20]. While it is theoretically pos-
sible for native code to access other (indeed, any) classes in the system, they found
this heuristic to be sufficient for the realistic applications they examined.

Since we do not transform unmodifiable classes, we cannot distribute them. In
practice, we find that the majority of unmodifiable classes exist within the Java
standard libraries, and are often closely tied to the underlying VM. This does not
prove to be a great obstacle to the distribution of an application, since such classes
would not move in any case. However, it is necessary that remote nodes be able to
reference instances of unmodifiable classes. To this end, we generate wrappers for
unmodifiable classes.

Figure 4 shows the classes we generate for an unmodifiable class. It is important
to note that in this case, class Z is the original, unmodified class; we generate
the wrapping classes as part of a reserved package to avoid naming conflicts with
the original. Class gen.Z local acts as a wrapper around the original class Z. It
contains a reference to the instance of the unmodifiable class, with implementations
of instance methods, each of which calls the appropriate method on the wrapped
object. We generate gen.Z stub and gen.Z proxy identically to the stub and proxy
classes described in Section 3.1.

Class gen.Z static local acts as a static singleton for the wrapped class,
with one important difference. Since an unmodifiable class may directly access
static members, we cannot rewrite such static data to form instance methods of
gen.Z static local. Thus, the methods of the static local class instead simply
delegate to the original class. To ensure uniqueness in static data, a given unmodi-
fiable class can thus access static data only on a single node. While this limits the
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Fig. 5. Generated array classes

potential for distribution, in practice most such classes tend to be allocated only on
the head node, with transformable application classes running on all other nodes.

Rewritten code interacts with unmodifiable code using the interfaces and wrap-
ping classes in the same way as regular classes. This allows the same transparency
with regard to object location for wrapped classes that exists for transformed classes.
However, since the unmodifiable code itself is unaware of transformed classes, we
must unwrap objects when passing them as arguments to unmodifiable code, and
re-wrap returned objects. The unwrapping process is simple: the methods with
Z local unwrap any transformed class arguments (recall that, by definition, all
classes passed to unmodifiable code are themselves unmodifiable and so can be un-
wrapped). Wrapping return values is slightly more difficult, since we must ensure
that a given object has only one wrapper—an object returned multiple times from
unmodifiable code must always be wrapped by the same object. We control this in
the RuggedJ run-time library, which tracks generated wrappers and creates a new
wrapper only if the object has not been wrapped before.

3.5 Arrays

When distributing an application, we must transform not only objects but also
arrays. To this end, we generate classes for array types, as shown in Figure 5.

We generate a set of interfaces and classes for every pair of array content and
dimensionality used in the application. The interface contains get and set methods
for the array content, as well as methods to perform standard operations such as
getting the length or hash value for the array. Class Array of Y 1 local is a wrap-
per for a one-dimensional array of Y objects (the contents of which are themselves
instances of local, stub, or proxy classes that implement interface Y). Array classes
do not need static singletons, since arrays maintain no static state.

We generate the classes for multi-dimensional arrays in the same way as for
single dimension arrays (we represent a two-dimensional array of Y by interface
Array of Y 2 and so forth), with the local class containing a wrapped array. The
wrapped array is always one-dimensional, so Array of Y 2 local contains an array
of Array of Y 1 objects. As well as simplifying the implementation of arrays, this
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design allows us to spread large multi-dimensional arrays across multiple nodes.

3.6 Hand-Coded Classes

A final, small, subset of classes within RuggedJ are hand-written and loaded unmod-
ified into the Java VM. These are classes that require specific, customized imple-
mentations within the RuggedJ network. For example, java.lang.System contains
several methods for which we define special semantics: we must redirect all refer-
ences to System.out to the head node, rather than to the local machine. Since
performing such one-off transformations would be laborious and would complicate
the transformation framework, we prefer instead simply to load a hand-coded ver-
sion of these classes.

4 Implementation

Beyond generating new classes, implementation of the RuggedJ object model re-
quires widespread modification to application bytecode. In this section we describe
some of the more interesting features of the rewriting process.

4.1 Bytecode Rewriting Tools

When implementing RuggedJ, the first decision we needed to make was the level
at which to rewrite. High-level tools such as AspectJ [10] and MetaAspectJ [8]
would allow us to specify RuggedJ’s transformations in Java source code. While
this is adequate to add code to a method, more complex transformations would
require an additional tool. A more flexible approach is that of Javassist [3, 4],
which allows one to specify transformed code in Java syntax, which it compiles
with a custom compiler. This offers a lower-level interface to rewriting. However, we
found that its on-demand compilation approach made whole-program modification
difficult. Ultimately, we found that ASM [1] supports a good balance of direct
access to method bytecode while hiding awkward details such as management of
constant pools and the selection of instructions with hard-coded local variable slots.
These two abstractions vastly simplified the design of transformations and generated
bytecode, making ASM more useful to us than the similarly-featured BCEL [5].

4.2 Transforming Method Bodies

Of the classes we generate for a given application class, only the local and static
local versions contain copied bytecode. We generate all other classes from scratch.
Thus, we apply the following transformations only to the bodies of local and static
local classes.

Instance Method Invocation: We must refer to all transformed objects in
RuggedJ by interface rather than class type, allowing us to vary the implementation
of a class among proxy, local, or stub transparently to the calling code. This clearly
requires modification to method call sites, transforming invokevirtual bytecodes
to invokeinterface.
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We need a more complicated rewrite in the case of invokespecial bytecodes,
used to call private methods, constructors, or superclass methods. We can call
private methods in the same way as regular methods (for the sake of simplicity, we
modify all methods to be public; the original Java compilation enforced the access
controls). However, we cannot call constructors or superclass methods through an
interface. We must invoke a constructor upon the appropriate class; we describe
this process in Section 4.4. Superclass invocations must specify the superclass type
upon which to invoke a method (in case a subclass has overridden the method).
This does not present a problem since we knot that the code we are modifying is
within a local class, the superclass of which we also know.

Instance Field Accesses: We must rewrite accesses to instance fields, since
direct access to a field assumes that an object is local. To this end, we replace every
instance field access by a call to the appropriate get or set method in the interface.

This policy obviously adds an unnecessary level of indirection when the accessed
field belongs to the accessing object. A more subtle problem exists, however, that
necessitates special handling of such accesses. Under the Java VM specification, the
only operation that may occur in a constructor before the invocation of a superclass
constructor is the initialization of a field in the local object. Rewriting such a field
invocation to a method call would cause a verification error, since a method call
cannot precede the superclass constructor call. We can detect cases where a field
access occurs on the accessing object using a simple flow analysis, as we describe in
Section 4.5.

Static Method Bodies: As we discussed in Section 3.3, we transform static
fields and methods within the static local class to be members of the static singleton
object. While transforming fields is straightforward, we must rewrite static method
bodies to function as instance methods. The first local variable slot in an instance
method is reserved for the this pointer, referring to the object upon which the
method is invoked. Static methods are not invoked on any object, and so do not
have a this pointer. Thus, when converting a static method to an instance method
we must to update all local variable references to allow for the new reference.

This transformation can cause major changes to the bytecode sequence of a
method. Not only does it change the parameters to local variable bytecodes, but
the bytecodes themselves may change. For example, the aload 3 bytecode operates
as an aload with a parameter of 3. Incrementing the local variable slot upon which
this bytecode operates would require replacing the aload 3 bytecode (a one-byte
instruction) by an aload with an argument of 4 (a two-byte instruction). This will
affect the offsets of future bytecodes, and will require updates to jump instructions,
exception handling blocks, and so on. Fortunately, a bytecode rewriting toolkit such
as ASM abstracts away most of these details.

4.3 Accessing Static Singletons

As in the case of instance field accesses and method invocations, we must rewrite
static accesses. However, the presence of static singletons makes the process some-
what more complex. First, the RuggedJ run-time library must locate the appropri-
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ate static singleton by looking it up in a hash table of static objects. If the required
singleton is unavailable, the run-time library must first determine whether a single-
ton exists on another node and, failing that, create one. This involves coordination
with the other nodes in the network to find an existing singleton, or synchronization
with the head node to avoid two nodes simultaneously creating singletons. When
the code has found the singleton, the modified bytecode can then invoke the nec-
essary method on it. In the case of field accesses, this consists of a call to the
appropriate get or set method.

This is clearly a costly operation, particularly in the case where the static sin-
gleton is a stub, and a method invocation requires access to a remote object. As
such, we minimize access to static singletons as far as possible. We observe that
the static singleton exists only to ensure that there is only one copy of static data.
Therefore, we need to call the singleton only when we may access that state: calls
to static methods that do not read or write the singleton’s fields do not go through
the singleton. Rather, they call a local version of the static method. Indeed, for
classes with no static state, it is not necessary to create a static singleton at all.

Initialization of static data is performed by the run-time system when a static
singleton is created. Any static{} code block is transformed into an instance
method, allowing it to be called at the appropriate time during singleton creation.
Static final fields (constants) are treated in the same way as all other static fields;
constants are initialized by the static initializer, and can have different values on
different nodes (consider a constant initialized to a host’s IP address). Forcing static
final fields to go through a static singleton is conservative, and can be optimized in
many cases.

4.4 Allocation

The object allocation process involves interaction between the rewritten bytecode in
a method and the partitioning strategy defined by the application author. It is the
primary means by which one distributes an application. By strategically allocating
objects on remote nodes and remotely invoking methods, one can perform large
computations across a collection of nodes.

We define an allocation site as an instance of a new bytecode. When rewriting
an allocation site, the RuggedJ rewriting class loader first queries the partitioning
plug-in with static site information to request a load-time allocation strategy. The
allocation site information includes the class and method in which the allocation
site occurs and the type it allocates. Based on this, the partitioning can return one
of three options:

Allocate Locally: If the policy knows that the code uses the particular type
of object principally on the local node, we can streamline the allocation process to
create the local version of the class. This is a fairly common case: some classes
rely on local resources, many objects are temporary and of purely local interest,
and domain-specific knowledge may determine that an object will rarely be used by
another node. The partitioning plug-in may also determine whether to allocate a
proxy to allow for later migration, or simply to allocate the local version directly,
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allowing it to be remotely referenced but not migrated.
Allocate Remotely: On the other hand, a policy may sometimes know that

we should always allocate an object on a different node. This may be the case if
the partitioning strategy dictates to spread objects of a certain across the network
for load balancing purposes, or that a particular class would benefit from a resource
that is not available on the local host. This option allocates both a proxy and a
stub object, and determines at run-time on which node to allocate the object.

Allocate Dynamically: Finally, there are cases where we will not know the
best allocation node for an object until run time. This may be the case if we should
evenly distribute the objects of a class over the network: the location of the object
will depend on the run-time distribution pattern. This option defers the decision of
whether to allocate a local or stub class until run time.

Each of these options causes the rewriting class loader to replace the allocation
site with a different bytecode sequence. In the case of a local allocation, the bytecode
sequence simply creates a new local object, with or without a proxy. The remote
allocation sequence involves a call to the run-time library to determine the node
upon which to create the object, then a remote creation request and creation of a
stub object and proxy. Finally, the dynamic allocation option generates both sets
of bytecode, with a call to the run-time library to determine which to execute.

A final complication when rewriting an allocation site is that of calling the appro-
priate constructor. The constructor call for an object can be an arbitrary distance
from the new bytecode that creates the object to pass to the constructor, since
there may be an arbitrary number of operations to compute the arguments to the
constructor. There may even be other constructor calls between the two bytecodes,
since the arguments to the constructor may require creation of new objects. We
take advantage of the fact that every new bytecode has exactly one constructor call,
and so we can match a new bytecode with its constructor call using a simple stack-
based scanning technique. We scan forward through the bytecode stream pushing
any new bytecodes, and popping them when we encounter constructor calls. The
final constructor we encounter therefore belongs to the original new bytecode.

4.5 Flow Analysis

The vast majority of bytecode modifications in RuggedJ are context-independent;
their implementations do not require knowledge of the method as a whole. Aside
from the method scanning required to locate constructors mentioned above, there
exist two cases for which we need to analyze the method body.

The first concerns operations on arrays. As discussed in Section 3.5, we replace
all arrays in a RuggedJ network with wrapping objects. This presents problems
during the rewriting phase since, unlike most bytecodes that operate over refer-
ences, array operations (aaload, aastore, arraylength, etc) do not encode type
information. One can determine the type of the array reference and return value
only by modeling the run-time stack. Since we rewrite these bytecodes to standard
invokeinterface method calls, we need to know both the type and dimensionality
of the array upon which to invoke the method. We find this information using a a
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standard bytecode flow analysis of types of objects that tags each array bytecode
with the type of array currently on top of the stack.

The second flow analysis we require is to track the this pointer in instance
methods. As mentioned in Section 4.2, the RuggedJ rewriting class loader must
differentiate between field accesses on the current object and those on others. Since
we know that the this pointer exists in local array slot 0, we can track any references
that start life with an aload 0 bytecode, determining them to be references to the
current object.

This analysis is, by its nature, conservative. It can produce a false negative
when, for example, code passes a reference to a method that then returns something
of the same type. The return value could be the original reference or a different
object. This conservatism is not a problem since we employ the analysis mostly for
optimization, so missing a reference does not violate correctness. The only occasion
where we rely on this analysis is where a field initialization occurs prior to the
super-constructor call in a constructor. However, since the only field initializations
that may occur before that call are to the local object, the analysis will always be
accurate in this case.

4.6 Uncooperative Code

As with most large-scale automatic application transformation systems, RuggedJ
cannot guarantee correctness in all cases. There are certain corner cases where
an adversarial programmer can foil the rewriting system into producing incorrect
results. However, we are confident that such cases are rare under normal circum-
stances.

The most apparent area in which our rewrites might lead to errors is reflection.
An application developer generally has more knowledge of the run-time properties
of objects in an application, and could use Java’s reflection system to perform
operations on a class that may not be possible in the rewritten system. With that
said, we do take measures to avoid this by intercepting reflective calls and updating
arguments or types to fit within the RuggedJ system, allowing most common usages
of reflection to operate within our system.

We also do not support applications that define their own custom class loaders.
Since RuggedJ uses a rewriting class loader, we cannot integrate the operations that
may be performed by an application’s own class loading system.

Finally, we are aware of several ways in which native code could produce incorrect
results within RuggedJ. The heuristics discussed in Section 3.4 allow our system
to accommodate most native code, but the Java Native Interface allows native
code virtually limitless access to the VM. By allocating or invoking methods on
arbitrary objects a native method can perform operations that are incompatible
with RuggedJ’s transformations. This problem will most likely arise in a non-
adversarial application though use of static singletons. The Java Native Interface
CallStatic<type>Method methods allow native code to invoke static methods of
arbitrary classes. Reflectively invoking a static method of a class that requires
a static singleton will result in the call failing in RuggedJ. However, allowing for
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arbitrary static method calls would mean that no class could have a static singleton
and so could only be accessed from a single node, making distribution impossible.

5 Related Work

The system that most closely resembles RuggedJ is J-Orchestra [18]. Indeed, J-
Orchestra influenced many of RuggedJ’s original design decisions. However, J-
Orchestra’s fundamental goal is different from RuggedJ’s. J-Orchestra aims for
“resource-driven distribution,” where one shares an application between a small
set of machines with specific capabilities. For example, a transformed system may
perform calculations on a back-end server, while displaying its user interface on a
PDA. This differs from RuggedJ’s goal of distributing an application across a cluster
of machines, taking advantage of additional hardware to exploit parallelism. The
design of each system reflects these differing objectives.

The major difference between the two systems is that RuggedJ performs dynam-
ically many functions that J-Orchestra performs statically. J-Orchestra determines
a partitioning ahead of time for a given network configuration. Guided by a whole-
program analysis, a user determines which classes should have their instances allo-
cated on each network location. This approach works well for J-Orchestra’s usage,
since it targets small clusters with clear roles for each machine. However, RuggedJ
performs this partitioning at run time using an application-specific partitioning
plug-in to decide dynamically upon the location of remote objects. Similarly, one
can see the static/dynamic difference in the way in which J-Orchestra rewrites ap-
plication code. It transforms classes ahead of time, generating proxies and remote
representations as Java source that one then compiles, producing a jar file for each
network location. This is in contrast to our approach of rewriting at class load-
time, which gives us the ability to generate bytecode tuned to the RuggedJ network
upon which the application is running, and removes the system’s dependence on an
external compiler.

Another consequence of J-Orchestra’s ahead-of-time partitioning strategy is that
it makes all partitioning decisions on a per-class basis. In contrast, RuggedJ’s
dynamic partitioning system allows per-instance decisions, allowing us to allocate
instances of a given class on arbitrary nodes within the network. Not only does this
let us take advantage of current network conditions that cannot be predicted ahead
of time, but it also allows us to perform load-balancing by distributing key objects
of a given class across the network.

Finally, there are differences in the object model implemented by each system
that we feel allow RuggedJ more flexibility when executing large applications. In
J-Orchestra, the fundamental class for objects that code may reference remotely is
the proxy, while in RuggedJ it is the interface. Rewritten bytecode in J-Orchestra
refers to proxies rather than interfaces, removing the ability to elide proxies for
objects that are known to be either local or remote. Additionally, J-Orchestra’s
approach to arrays differs in that it considers arrays of a given type but of different
dimensionality to be related, while RuggedJ considers an array type to consist of
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both a base type and dimension, allowing for a more flexible partitioning scheme.
There exist several other projects that seek to simplify the distribution of Java.

Space limitations prevent us from discussing these systems in detail, but none follow
the same approach as RuggedJ.

Terracotta [17] is an open-source JVM-level clustering framework that uses byte-
code rewriting techniques to generate a distributed Java application without the
requirement to code to a specific API. The Terracotta approach is superficially sim-
ilar to that taken by RuggedJ, but there are several fundamental differences: Ter-
racotta requires that the application developer label “root” references with altered
semantics through which one can reach shared objects, while RuggedJ considers
all objects as potentially reachable from remote nodes. Additionally, Terracotta
is heavily based upon a central server node, which manages the canonical versions
of all shared objects. We maintain canonical versions of objects throughout the
cluster.

Addistant [16] uses bytecode transformation to distribute legacy code, but does
not aim to distribute large parts of the application. AIDE [14] uses a modified
JVM to offload execution from portable devices to servers, whereas RuggedJ runs
on unmodified VMs. JavaParty[7, 15], Javanaise [6], Do! [11, 12] and Java// [2] each
provide language-level features to Java that simplify distributed programming, while
RuggedJ performs its transformation at the bytecode level without modification to
the original source.

6 Conclusion

Whole-program transformation is a powerful technique that allows one to add sub-
stantive new functionality to an existing off-the-shelf application. In this paper we
have presented the object model implemented by a transformed application running
under the RuggedJ transparent distribution system. We have outlined the classes
and interfaces required for a flexible, dynamic distributed system and described
how such an object model maintains the semantics of the original application. We
then discussed the process of transforming an application to implement this ob-
ject model, including the classes generated, modification to method bodies, and the
dynamic distribution of an application though object allocation.

We believe that the techniques described in this paper offer insight into some of
the issues involved in large-scale transformation of Java applications, and may serve
to guide future implementations not only of distributed Java but of any system that
uses indirection to achieve object transparency.
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