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Abstract

The transformation of large, off-the-shelf Java applications to support complex new functionality essentially requires generation
of an entirely new application that retains the execution semantics of the original. We describe such a whole-program modification
in the context of RuggedJ, a dynamic transparent Java distribution system.

We discuss the proxy-based object model that allows remote Java objects to be referenced in the same way as those residing on
the current virtual machine, the optimizations that allow us to bypass proxies in the case of purely local or remote object, and the
mechanisms needed to guarantee that static data remain unique in a distributed system. We then detail some of the more interesting
features involved when implementing this object model in rewritten bytecode, including transformations required within method
bodies and coordination between bytecode and the run-time system that distributes an application across the network.
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1 Introduction

Automatic code modification for Java applications is a widely-used technique that adds func-
tionality to existing software. Aspect-oriented programming or bytecode rewriting make it
trivial for programmers to implement cross-cutting concerns such as logging, error handling,
or profiling without widespread modification to original applications. More complex is the
comprehensive transformation of an application; the generation of an entirely new program
that retains the execution semantics of the original, while adding substantive new functionality.

In this paper we describe the process of application transformation in our transparently dis-
tributed Java system, RuggedJ. We use load-time dynamic bytecode transformation to generate
an entirely new class hierarchy that mirrors the structure of an off-the-shelf Java application,
adding the necessary functionality to execute the application across a network of Java virtual
machines. While we discuss our program transformation process in the context of RuggedJ,
many of our techniques would be equally useful in other large-scale application modification
systems such as persistence.

We discuss a proxy-based object model that abstracts the implementation of objects, hiding
whether they are local or remote to a given virtual machine. This model allows for objects to
be distributed and migrated across the RuggedJ network while still preserving the execution
semantics and class hierarchy of the original application. Additionally, by referring to trans-
formed classes in rewritten bytecode only using interfaces we allow the elimination of proxies
in the common case where an object is known to be either always local or always remote.

Performing our transformations at the bytecode level affords us several major advantages:
We do not require access to the original application source, which may often be unavailable or
outdated; we can perform our transformation at class-load time, allowing us to take advantage
of dynamic knowledge of the execution environment and to tailor our rewrites accordingly;
the relative simplicity of bytecode when compared to source allows our rewrites to be more
general and thus easier to implement and maintain; and we can perform incremental changes
on-the-fly, referring to generated classes that may or may not be created on demand without
having to perform a whole-program compilation.
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Fig. 1. The RuggedJ System Architecture

2 Application Distribution with RuggedJ

The current trend in microprocessor technology is for increases in the number of cores on a
processor to replace the once-familiar increases in processor speed. The immediate implication
for application developers is that we can no longer rely on the next generation of processors
to make our systems run faster; we must instead take advantage of parallelism on individual
machines and, increasingly, distribution across clusters of cheap commodity machines.

Unfortunately, the implementation of complex distributed systems demands a great deal of
additional effort from programmers and is liable to introduce obscure bugs. Objects must be
allocated and tracked across nodes, method calls and field accesses must take into account the
location of their targets, objects may need to be migrated from node to node in order to gain
acceptable performance, and so forth.

RuggedJ is an automatic transparent distribution system that aims to eliminate these con-
cerns by transforming a standard, off-the-shelf Java application to run across a cluster of ma-
chines. We achieve this through a combination of a run-time distribution library and a transfor-
mation process that creates a new, distribution-aware, application from a set of standard Java
class files.

2.1 The RuggedJ Network

A RuggedJ network consists of a set of Java virtual machines (VMs) that cooperate to distribute
and run an off-the-shelf Java application. Each virtual machine (a node, in RuggedJ terminol-
ogy) contains an instance of the RuggedJ run-time library that interacts with the run-times on
other nodes to coordinate the execution of an application.

Figure 1 shows the construction of a RuggedJ network:
Hosts: We refer to a single physical machine available to RuggedJ as a host. It should

be noted that this is distinct from a node; a single host can run multiple nodes. RuggedJ is
designed to be platform-agnostic, in that a network can consist of heterogeneous hosts. We
require only that each host is capable of running a fully-functional Java VM, and that all VMs
run the same version of Java, including the standard class libraries.

Nodes: Each node consists of two parts: the transforming class loader and the run-time
library. The presence of a transforming class loader on each node allows a given class to
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be rewritten differently on different nodes, taking advantage of the capabilities of the host or
knowledge of the execution environment.

The node upon which the application starts we designate to be the head node. As well
as functioning as a standard RuggedJ node, the head node acts as a central location for the
application, handling I/O requests and other operations that require native access to a particular
host. It also acts as an overseer for coordination between nodes: the head node maintains full
information on the location of objects and the condition of the network, providing other nodes
with a definitive source for this information.

2.2 Application Partitioning

The partitioning strategy for a given application is defined by the application developer.
While substantial research exists in the literature concerning automatic application partition-
ing [9, 13, 19], we feel that one is more likely to arrive at an optimal partitioning when one
develops it using the domain-specific application knowledge available to the programmer. Ad-
ditionally, many automatic partitioning schemes rely on an advance knowledge of the network
configuration under which an application will run. This runs counter to our aim of environ-
mental flexibility, where one can use an application partitioning on a RuggedJ network made
up of arbitrary nodes.

To allow the partitioning developer to take full advantage of the RuggedJ network available,
we provide a plug-in interface to which one can attach a partitioning strategy. This interface
allows the partitioning strategy writer access to the RuggedJ run-time’s dynamic internal state
(network conditions, node load levels, etc.). The system consults the strategy for the running
application both at class-loading time, guiding the rewrites that the system applies to a class,
and at run time, allowing it to base its dynamic decisions upon the current state of the network.

2.3 Run-Time Support

The RuggedJ run-time library manages the interaction between rewritten bytecode on remote
nodes, allowing separate processes to interact and execute a single application. It is made
up of several key systems, some called by rewritten code, while others coordinate to provide
networking services and to generate an accurate picture of the network as a whole.

Library Functionality: One of the main duties of the run-time library is to provide func-
tionality to rewritten bytecode. Many of the operations required to support distribution re-
quire complex code sequences. Specifying such operations within a rewritten method would
very quickly lead to unreadable and, more importantly, unmaintainable bytecode. Instead, we
delegate to the run-time library all operations that require more than a very simple bytecode
sequence.

Network Configuration: Since every instance of a RuggedJ network may exist on a unique
network configuration, it is important to determine the environment under which an application
executes. This includes gathering information concerning host capabilities, network speeds,
connectivity patterns, and so forth. The RuggedJ run-time collects and propagates this informa-
tion between nodes, and monitors for changes to the operating environment as the application
executes.

Object Tracking: Objects in RuggedJ are either local or remote to a given node. The
run-time library tracks the current location of remote objects, which it addresses by globally
consistent Unique Identifiers (UIDs). The system generates these identifiers on demand when
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Fig. 2. Classes generated by the RuggedJ class loader

an object first becomes known to more than one node, removing the overhead of tracking
objects that never escape the local node.

Messaging: The run-time library supports MPI-based messaging by rewritten applications,
abstracting away details of inter-node communication. Rewritten bytecode uses messaging for
remote method calls and allocation requests. The run-time library itself also uses messaging to
update other nodes on the status of the execution environment, such as host load levels, network
congestion, and so forth. It makes this information available to the partitioning system to allow
it to perform load-balancing and to make informed partitioning decisions.

3 The RuggedJ Object Model

We accomplish distribution in RuggedJ by abstraction of object locations. We achieve this
through use of proxies for objects. Proxies allow the implementation of an object to vary
depending on whether it is local or remote, while presenting a single interface to external code.
For every class in the original application, RuggedJ generates a series of classes and interfaces,
as shown in Figure 2.

It splits classes into two parts: the fields and methods that make up per-object state (the
instance parts), and those that are specific to the class (the static parts). This is necessary
in order to ensure that static data exists exactly once in the RuggedJ network; Section 3.3
discusses this issue in depth.

When the RuggedJ class loader has rewritten a class, it presents only the transformed ver-
sion of the class for loading into the Java VM. The VM never sees the original class, which
removes the possibility of conflicts between modified and unmodified classes. The only excep-
tion to this is in the case of unmodifiable classes, which we describe in Section 3.4.

3.1 Instance Classes

Figure 2 shows the three classes and one interface that RuggedJ generates from the instance
parts of each application class X:

Interface X: The interface contains an abstract version of each instance method present in
the original application class, as well as get and set methods for each field (see Section 4.2.2).
The name of the interface is significant. By using the name of the original class, the Java
type system will recognize an object that implements this interface as the original class. This
property simplifies the rewriting of certain bytecode structures, such as instanceof checks
and exception handling, and removes the need to transform every reference to the original class.

4



McGachey

The local, stub and proxy classes each implement the interface, and rewritten code refers to a
class primarily via its rewritten interface.

Class X local: The local class contains the fields and the implementation of each instance
method from the original class. One can thus think of it as the “actual” object. Any methods
invoked upon the object must ultimately execute on an instance of the local class.

Class X stub: The stub class represents a remote object (i.e., one for which a local version
exists on a different node). The stub contains the UID of the remote object, and it implements
each method of the interface as a remote method invocation.

Class X proxy: The proxy class provides a level of indirection between calling code and
the local or stub implementation of an object. It contains a single field that contains a reference
to either a local or stub object, and implementations of every method in the interface that invoke
the relevant method on the referenced object.

Where the original application allocates an object of type X, the transformed version creates
a pair of objects. One is either an X local or X stub, depending on the node upon which
the allocation occurs. The other is an X proxy object that references the local or stub object.
By having object references in rewritten code point to proxies rather than pointing directly to
local or stub objects, RuggedJ ensures that only a single pointer exists to a local or stub object
on a given node. This allows objects to migrate easily from node to node: should an object
move from the local node, it is necessary only to update the reference in the proxy from the
local class to a stub. Migration without proxies would require updating all references in objects
or on stacks, which would be prohibitively expensive.

The design of the object model, however, does allow for the direct allocation of local or
stub objects, bypassing the proxy. This is desirable for objects that are known never to migrate,
such as those objects directly tied to the local virtual machine (such as file handles, class
objects, and so forth), or objects known by the author of the partitioning strategy to exist on
only one machine (such as temporary objects or local data structures). Allocating proxies for
such objects would be counterproductive, adding the overhead of indirection when accessing
the object when the referenced object is never going to change. In these cases, RuggedJ instead
simply allocates either the local or stub object.

We can use X proxy, X local, and X stub objects interchangeably in this manner
because each implements the generated interface X. We make all method calls within rewritten
code in terms of the interface, and field accesses go through the generated get and set methods.
By calling methods through interfaces, we minimize the transformation necessary on calling
code, while maximizing flexibility in the types of objects used.

3.2 Inheritance

As well as providing a mechanism by which we can reference different versions of a class uni-
formly, RuggedJ’s generated interfaces maintain the inheritance relationships between original
classes. Figure 3 shows the relationship between transformed classes (omitting static parts).

The original application’s inheritance relationship between subclass Y of class X appears
as the transformed interface Y extending interface X. Since rewritten code refers to objects
exclusively by interface, this allows one to use any object that implements Y when the original
code required an instance of X. Similarly, checkcast or instanceof operations operate
over interfaces, and produce the same results in transformed code as in the original application.

Each transformed class Y local, Y stub and Y proxy extends the equivalent part of
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Fig. 3. Inheritance between transformed classes

class X. This is not necessary to preserve the inheritance relationships of the original applica-
tion. Other than when allocating objects, rewritten code never refers to these individual classes.
Rather, this subclassing works to simplify the implementation of these classes. Without it, each
class would have to contain the fields and implementations for every method of the superclasses
of its unmodified version, which would lead to duplication of code and overly-complex classes.

3.3 Static Classes

As shown in Figure 2, RuggedJ generates an additional interface and two classes to represent
the static parts of an original application class:

Interface X static: This interface contains each static method and get/set methods for
each static field in the original class. It functions similarly to the instance interface X. Both
X static local and X static stub classes implement X static, allowing rewritten
code to use them interchangeably.

Class X static local: The static local class contains the static fields and implementations
of each static method from the original class. RuggedJ modifies Both fields and methods to
be instance members of X static local rather than static members. This allows class
X static local to fulfill the requirements of interface X static, and decouples the im-
plementation of static members from the implementation of the VM.

Class X static stub: The static stub acts similarly to the instance stub class. It contains
implementations of each method in interface X static that perform remote invocations on
the appropriate X static local object.

The transformation of the static methods of original class X into instance members of class
X static local serves two purposes. First, it allows the static part of an object to be
treated as any other object in the RuggedJ network. This allows us to take advantage of any ob-
ject migration or caching performed by the system for static data as well as individual objects.
More importantly, however, is the fact that transforming static data to representation as an ob-
ject allows us to ensure that only one copy of the data exists in the network. Were static fields
left unmodified, each VM that loads class X would have its own copy of each field, leading to
inconsistent data.

We use the concept of static singletons to maintain unique static data. The RuggedJ run-
time library creates static objects on demand, and coordinates between nodes to guarantee that
the network contains at most one instance of X static local. Once some node has allo-
cated the singleton, all other nodes will create X static stub objects as required. By man-
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Fig. 4. Wrapping unmodifiable classes

aging static singletons through the run-time, we eliminate the need for a X static proxy
class. Since rewritten code does not store references to the static singleton, we ensure that each
node has a single reference to a given static singleton. Should the need arise to migrate a static
singleton, we must update only this one reference.

3.4 Unmodifiable Classes

While RuggedJ can rewrite the majority of application classes as described in Section 3.1,
there are a subset of application and Java standard library classes that it cannot. This limitation
arises from the presence of native code. We cannot rewrite a method implemented using Java’s
native interface, and it will not be aware of the presence of transformed classes. As such, it
may attempt to access fields or methods that we have modified or that are not available. We
call these classes unmodifiable, and do not rewrite them. Tilevich and Smaragdakis define
such classes to be those accessible by native code: classes that contain native methods, those
passed to or returned from unmodifiable classes, the types of fields in unmodifiable classes,
and superclasses of unmodifiable classes [20]. While it is theoretically possible for native code
to access other (indeed, any) classes in the system, they found this heuristic to be sufficient for
the realistic applications they examined.

Since we do not transform unmodifiable classes, we cannot distribute them in the same
manner as regular classes. In practice, we find that the majority of unmodifiable classes exist
within the Java standard libraries, and are often closely tied to the underlying VM. This does
not pose a great difficulty to the distribution of an application, since such classes would not
move in any case. However, it is necessary that remote nodes be able to reference instances of
unmodifiable classes. To this end, we generate wrappers for unmodifiable classes.

Figure 4 shows the classes we generate for an unmodifiable class. It is important to note
that in this case, class Z is the original, unmodified class; we generate the wrapping classes as
part of a reserved package to avoid naming conflicts with the original. Class gen.Z local
acts as a wrapper around the original class Z. It contains a reference to the instance of the
unmodifiable class, with implementations of instance methods, each of which simply calls the
appropriate method on the wrapped object. We generate gen.Z stub and gen.Z proxy
identically to the stub and proxy classes described in Section 3.1.

Class gen.Z static local acts as a static singleton for the wrapped class, with one
important difference. Since an unmodifiable class may directly access static members, we
cannot rewrite such static data to form instance methods of gen.Z static local. Thus,
the methods of the static local class instead simply delegate to the original class. To ensure
uniqueness in static data, a given unmodifiable class can thus access static data only on a single
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Fig. 5. Generated array classes

node. While this limits the potential for distribution, in practice most such classes tend to be
allocated only on the head node, with transformable application classes running on all other
nodes.

Rewritten code interacts with unmodifiable code using the interfaces and wrapping classes
in the same way as regular classes. This allows the same transparency with regard to object
location for wrapped classes that exists for transformed classes. However, since the unmodifi-
able code itself is unaware of transformed classes, we must unwrap objects when passing them
as arguments to unmodifiable code, and re-wrap returned objects. The unwrapping process is
simple: the methods with Z local unwrap any transformed class arguments (recall that, by
definition, all classes passed to unmodifiable code are themselves unmodifiable and so can be
unwrapped). Wrapping return values is slightly more difficult, since we must ensure that a
given object has only one wrapper—an object returned multiple times from unmodifiable code
must always be wrapped by the same Z local object. This we control in the RuggedJ run-
time library, which tracks generated wrappers and creates a new wrapper only if the object has
not been wrapped before.

3.5 Arrays

When distributing an application, we must transform not only objects but also arrays. To this
end, we generate classes for array types, as shown in Figure 5.

We must generate a set of interfaces and classes for every pair of array content and di-
mensionality used in the application. The interface contains get and set methods for the array
content, as well as methods to perform standard array operations such as getting the size or
hash value for the array. Class Array of Y 1 local is a wrapper for a one-dimensional ar-
ray of Y objects (the contents of which are themselves instances of local, stub, or proxy classes
that implement interface Y). Array classes do not need static singletons, since arrays maintain
no static state.

We generate the classes for multi-dimensional arrays in the same way as for single di-
mension arrays (a two-dimensional array of Y we represent by interface Array of Y 2 and
so forth), with the local class containing a wrapped array. The wrapped array is always one-
dimensional, so Array of Y 2 local contains an array of Array of Y 1 objects. As
well as simplifying the implementation of arrays, this design allows one to spread large multi-
dimensional arrays across multiple nodes.
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3.6 Hand-Coded Classes

A final, small, subset of classes within RuggedJ are hand-written and loaded unmodified into
the Java VM. These are classes that require specific, customized implementations within the
RuggedJ network. For example, java.lang.System contains several methods for which
we define special semantics: we must redirect all references to System.out to the head
node, rather than to the local machine. Since performing such one-off transformations would
be laborious and would complicate the transformation framework, we prefer instead simply to
load a hand-coded version of these classes.

4 Implementation

Beyond generating of new classes, implementation of the RuggedJ object model requires
widespread modification to application bytecode. In this section we describe some of the more
interesting features of the rewriting process.

4.1 Bytecode Rewriting Tools

When implementing RuggedJ, the first decision we needed to make was the level at which to
rewrite. High-level tools such as AspectJ [10] and MetaAspectJ [8] would allow us to specify
RuggedJ’s transformations in Java source code. While this is adequate to add code to a method,
more complex transformations would require an additional tool. A more flexible approach is
that of Javassist [3, 4], which allows one to specify transformed code in Java syntax, which it
compiles with a custom compiler. This offers a lower-level interface to rewriting. However, we
found that its on-demand compilation approach made whole-program modification difficult.
Ultimately, we found that ASM [1]. supports a good balance of direct access to method byte-
code while hiding awkward details such as management of constant pools and the selection of
instructions with hard-coded local variable slots. These two abstractions vastly simplified the
design of transformations and generated bytecode, making ASM more useful to us than the
similarly-featured BCEL [5].

4.2 Transforming Method Bodies

Of the classes we generate for a given application class, only the local and static local versions
contain copied bytecode—we generate the methods in all other classes from scratch. Thus, we
apply the following transformations only to the bodies of local and static local classes.

4.2.1 Instance Method Invocation
We must refer to all transformed objects in RuggedJ by interface, rather than class type.
This allows us to vary the implementation of a class among proxy, local, or stub transpar-
ently to the calling code. This clearly requires modification to method call sites, transforming
invokevirtual bytecodes to invokeinterface.

We need a more complicated rewrite in the case of invokespecial bytecodes. Code
uses this bytecode to call private methods, constructors, or superclass methods. We can call
private methods in the same way as regular methods (for the sake of simplicity, we modify
all methods to be public; note that the original Java compilation enforced the access controls).
However, we cannot call constructors or superclass methods through an interface. We must
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invoke a constructor upon the appropriate class; we describe this process in Section 4.4. Su-
perclass invocations must specify the superclass type upon which to invoke a method (in case
a subclass has overridden the method). This does not present a problem since the code we are
modifying we know is within a local class, the superclass of which we also know.

4.2.2 Instance Field Accesses
we must rewrite accesses to instance fields, since direct access to a field assumes that an object
is local. To this end, we replace every instance field access by a call to the appropriate get or
set method in the interface.

There is an obvious drawback to this policy when the accessed field belongs to the access-
ing object. In this case, calling the get or set method adds an unnecessary level of indirection.
A more subtle problem exists, however, that necessitates special handling of such accesses.
Under the Java VM specification, the only operation that may occur in a constructor before the
invocation of a superclass constructor is the initialization of a field in the local object. Rewrit-
ing such a field invocation to a method call would cause a verification error, since a method
call cannot precede the superclass constructor call. We can detect cases where a field access
occurs on the accessing object using a simple flow analysis, as we describe in Section 4.5.

4.2.3 Static Method Bodies
As we discussed in Section 3.3, we transform static fields and methods within the static local
class to be members of the static singleton object. While transforming fields is straightforward,
we must rewrite static method bodies to function as instance methods. The first local variable
slot in an instance method is reserved for the this pointer, referring to the object upon which
the method is invoked. Static methods are not invoked on any object, and so do not have a
this pointer. Thus, when converting a static method to an instance method we must to update
all local variable references to allow for the new reference.

This transformation can cause major changes to the bytecode sequence of a method. Not
only does it change the parameters to local variable bytecodes, but the bytecodes themselves
may change. For example, the aload 3 bytecode operates as an aload with a parameter
of 3. Incrementing the local variable slot upon which this bytecode operates would require
replacing the aload 3 bytecode (a one-byte instruction) by an aload with an argument of
4 (a two-byte instruction). This will affect the offsets of future bytecodes, and will require
updates to jump instructions, exception handling blocks, and so on. Fortunately, a bytecode
rewriting toolkit such as ASM abstracts away most of these details.

4.3 Accessing Static Singletons

As in the case of instance field accesses and method invocations, we must rewrite static ac-
cesses. However, the presence of static singletons makes the process somewhat more complex.
First, the RuggedJ run-time library must locate the appropriate static singleton by looking it up
in a hash table of static objects. If the required singleton is unavailable, the run-time library
must first determine whether a singleton exists on another node and, failing that, create one.
This involves coordination with the other nodes in the network to find an existing singleton,
or synchronization with the head node to avoid two nodes simultaneously creating singletons.
When the code has found the singleton, the modified bytecode can then invoke the necessary
method on it. In the case of field accesses, this consists of a call to the appropriate get or set
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method.
This is clearly a costly operation, particularly in the case where the static singleton is a

stub, and a method invocation requires access to a remote object. As such, we minimize access
to static singletons as far as possible. We observe that the static singleton exists only to ensure
that there is only one copy of static data. Therefore, we need to call the singleton only when we
may access that state: static methods that do not read or write the singleton’s fields do not go
through the singleton. Rather, they call a local version of the static method. Indeed, for classes
with no static state, it is not necessary to create a static singleton at all.

4.4 Allocation

The object allocation process involves interaction between the rewritten bytecode in a method
and the partitioning strategy defined by the application author. It is the primary means by
which one distributes an application. By strategically allocating objects on remote nodes and
remotely invoking methods, one can perform large computations across a collection of nodes.

We define an allocation site as an instance of a new bytecode. When rewriting an allocation
site, the RuggedJ rewriting class loader first queries the partitioning plug-in with static site
information to request a load-time allocation strategy. The allocation site information includes
the class and method in which the allocation site occurs and the type it allocates. Based on this,
the partitioning can return one of three options:

Allocate Locally: If the policy knows that the code uses the particular type of object prin-
cipally on the local node, we can streamline the allocation process to create the local version
of the class. This is a fairly common case: some classes rely on local resources, many objects
are temporary and of purely local interest, and domain-specific knowledge may determine that
an object will rarely be used by another node. The partitioning plug-in may also determine
whether to allocate a proxy to allow for later migration, or simply to allocate the local version
directly.

Allocate Remotely: On the other hand, a policy may sometimes know that we should
always allocate an object on a different node. This may be the case if the partitioning strategy
dictates to spread objects of a certain across the network for load balancing purposes, or that
a particular class would benefit from a resource that is not available on the local host. This
option allocates both a proxy and a stub object, and determines at run-time on which node to
allocate the object.

Allocate Dynamically: Finally, there are cases where we will not know the best allocation
node for an object until run time. This may be the case if we should evenly distribute the objects
of a class over the network: the location of the object will depend on the run-time distribution
pattern. This option defers the decision of whether to allocate a local or stub class until run
time.

Each of these options causes the rewriting class loader to replace the allocation site with
a different bytecode sequence. In the case of a local allocation, the bytecode sequence simply
creates a new local object, with or without a proxy. The remote allocation sequence involves
a call to the run-time library to determine the node upon which to create the object, then a
remote creation request and creation of a stub object and proxy. Finally, the dynamic allocation
option generates both sets of bytecode, with a call to the run-time library to determine which
to execute.

A final complication when rewriting an allocation site is that of calling the appropriate
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constructor. The constructor call for an object can be an arbitrary distance from the new
bytecode that creates the object to pass to the constructor, since there may be an arbitrary
number of operations to compute the arguments to the constructor. There may even be other
constructor calls between the two bytecodes, since the arguments to the constructor may require
creation of new objects. We take advantage of the fact that every new bytecode has exactly one
constructor call, and so we can match a new bytecode with its constructor call using a simple
stack-based scanning technique. We scan forward through the bytecode stream pushing any
new bytecodes, and popping them when we encounter constructor calls. The final constructor
we encounter therefore belongs to the original new bytecode.

4.5 Flow Analysis

The vast majority of bytecode modifications in RuggedJ are context-independent: their im-
plementations do not require knowledge of the method as a whole. Aside from the method
scanning required to locate constructors mentioned above, there exist two cases for which we
need to analyze the method body.

The first case concerns operations on arrays. As discussed in Section 3.5, we replace all
arrays in a RuggedJ network with wrapping objects. This presents problems during the rewrit-
ing phase since, unlike most bytecodes that operate over references, array operation bytecodes
(aaload, aastore, arraylength, etc) do not encode type information. One can de-
termine the type of the array reference and return value only by modeling the run-time stack.
Since we rewrite these bytecodes to standard invokeinterface method calls, we need to
know both the type and dimensionality of the array upon which to invoke the method. We find
this information using a simple flow analysis that tags each array bytecode with the type of
array currently on top of the stack, i.e., a standard bytecode flow analysis of types of objects.

The second flow analysis we require is to track the this pointer in instance methods. As
mentioned in Section 4.2.2 it is necessary for the RuggedJ rewriting class loader to differentiate
between field accesses on the current object and those on others. Since we know that the this
pointer exists in local array slot 0, we can track any references that start life with an aload 0
bytecode, determining them to be references to the current object.

This analysis is, by its nature, conservative. It could produce a false negative when, for
example, code passes a reference to a method which then returns something of the same type.
The return value could be the original reference or one to a different object. This is not a prob-
lem, however, since in most cases we employ the analysis only for optimization, so missing a
reference does not violate correctness. The only occasion where we rely upon this analysis is
the case where a field initialization occurs prior to the super-constructor call within a construc-
tor. However since the only field initializations that may occur before a super-constructor call
are to the local object, the analysis will always be accurate in this case.

4.6 Uncooperative Code

As in the case of most large-scale automatic application transformation systems, RuggedJ can-
not guarantee correctness in all cases. There are certain corner cases where an adversarial
programmer can foil the rewriting system into producing incorrect results. However, we are
confident that such cases are rare under normal circumstances.

The most apparent area in which our rewrites might lead to errors is that of reflection.
An application developer generally has more knowledge of the run-time properties of objects
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within an application, and could use Java’s reflection system to perform operations on a class
that may not be possible in the rewritten system. With that said, we do take measures to avoid
this by intercepting reflective calls and updating arguments or types to fit within the RuggedJ
system, allowing most common usages of reflection to operate within our system.

We also do not support applications that define their own custom class loaders. Since
RuggedJ uses a rewriting class loader, we cannot integrate the operations that may be per-
formed by an application’s own class loading system.

Finally, we are aware of several ways in which native code could produce incorrect results
within RuggedJ. The heuristics discussed in Section 3.4 allow our system to accommodate
most native code, but the Java Native Interface allows native code virtually limitless access to
the VM. By allocating or invoking methods on arbitrary objects a native method can perform
operations that are incompatible with RuggedJ’s transformations.

This problem is most likely to arise in a non-adversarial application though the use of static
singletons. The Java Native Interface CallStatic<type>Method methods allow native
code to invoke static methods of arbitrary classes. Reflectively invoking a static method of a
class that requires a static singleton will result in the call failing in RuggedJ. However, allowing
for arbitrary static method calls would mean that no class could have a static singleton and so
could only be accessed from a single node, making distribution impossible.

5 Related Work

The system that bears closest resemblance to RuggedJ is J-Orchestra [18]. Indeed, J-Orchestra
influenced many of RuggedJ’s original design decisions. However, J-Orchestra’s fundamental
goal is different from RuggedJ’s. J-Orchestra aims for “resource-driven distribution,” where
one shares an application between a small set of machines with specific capabilities. For ex-
ample, a transformed system may perform calculations on a back-end server, while displaying
its user interface on a PDA. This differs from RuggedJ’s goal of distributing an application
across a cluster of machines, taking advantage of additional hardware to exploit parallelism.
The design of each system reflects these differing objectives.

The major difference between the two systems is that RuggedJ performs dynamically many
functions that J-Orchestra performs statically. J-Orchestra determines a partitioning ahead of
time for a given network configuration. Guided by a whole-program analysis, a user determines
which classes should have their instances allocated on each network location. This approach
works well for J-Orchestra’s usage, since it targets small clusters with clear roles for each ma-
chine. However, RuggedJ performs this partitioning at run time using an application-specific
partitioning plug-in to decide dynamically upon the location of remote objects. Similarly,
one can see the static/dynamic difference in the way in which J-Orchestra rewrites application
code. It transforms classes ahead of time, generating proxies and remote representations as
Java source that one then compiles, producing a jar file for each network location. This is in
contrast to our approach of rewriting at class load-time, which gives us the ability to generate
bytecode tuned to the RuggedJ network upon which the application is running, and removes
the system’s dependence on an external compiler.

Another consequence of J-Orchestra’s ahead-of-time partitioning strategy is that it makes
all partitioning decisions on a per-class basis. In contrast, RuggedJ’s dynamic partitioning sys-
tem allows per-instance decisions, allowing us to allocate instances of a given class on arbitrary
nodes within the network. Not only does this let us take advantage of current network condi-
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tions that cannot be predicted ahead of time, but it also allows us to perform load-balancing by
distributing key objects of a given class across the network.

Finally, there are differences in the object model implemented by each system that we
feel allow RuggedJ more flexibility when executing large applications. In J-Orchestra, the
fundamental class for objects that code may reference remotely is the proxy, while in RuggedJ
it is the interface. Rewritten bytecode in J-Orchestra refers to proxies rather than interfaces,
removing the ability to elide proxies for objects that are known to be either local or remote.
Additionally, J-Orchestra’s approach to arrays differs in that it considers arrays of a given type
but of different dimensionality to be related, while RuggedJ considers an array type to consist
of both a base type and dimension, allowing for a more flexible partitioning scheme.

There exist several other projects that seek to simplify the distribution of Java. Space limi-
tations prevent us from discussing these systems in detail, but none follow the same approach
as RuggedJ.

Terracotta [17] is an open-source JVM-level clustering framework that uses bytecode
rewriting techniques to generate a distributed Java application without the requirement to code
to a specific API. The Terracotta approach is superficially similar to that taken by RuggedJ, but
there are several fundamental differences: Terracotta requires that the application developer
label “root” references with altered semantics through which one can reach shared objects,
while RuggedJ considers all object as potentially reachable from remote nodes. Additionally,
Terracotta is heavily based upon a central server node, which manages the canonical versions
of all shared objects. We maintain canonical versions of objects throughout the cluster.

Addistant [16] uses bytecode transformation to distribute legacy code, but does not aim to
distribute large parts of the application. AIDE [14] uses a modified JVM to offload execution
from portable devices to servers, whereas RuggedJ runs on unmodified VMs. JavaParty[7, 15],
Javanaise [6], Do! [11, 12] and Java// [2] each provide language-level features to Java that
simplify distributed programming, while RuggedJ performs its transformation at the bytecode
level without modification to the original source.

6 Conclusion

Whole-program transformation is a powerful technique that allows one to add substantive new
functionality to an existing off-the-shelf application. In this paper we have presented the ob-
ject model implemented by a transformed application running under the RuggedJ transparent
distribution system. We have outlined the classes and interfaces required for a flexible, dy-
namic distributed system and described how such an object model maintains the semantics of
the original application. We then discussed the process of transforming an application to im-
plement this object model, including the classes generated, modification to method bodies, and
the dynamic distribution of an application though object allocation.

We believe that the techniques described in this paper offer insight into some of the issues
involved in large-scale transformation of Java applications, and may serve to guide future im-
plementations not only of distributed Java but of any system that uses indirection to achieve
object transparency.
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