
Rust as a Language for High Performance GC Implementation

Yi Lin† Stephen M. Blackurn† Antony L. Hosking†∗$ Michael Norrish∗

†Australian National University ∗Data61, Australia $Purdue University, USA
†{yi.lin,steve.blackburn,antony.hosking}@anu.edu.au ∗{antony.hosking,michael.norrish}@data61.csiro.au

Abstract
High performance garbage collectors build upon performance-
critical low-level code, typically exhibit multiple levels of concur-
rency, and are prone to subtle bugs. Implementing, debugging and
maintaining such collectors can therefore be extremely challeng-
ing. The choice of implementation language is a crucial considera-
tion when building a collector. Typically, the drive for performance
and the need for efficient support of low-level memory operations
leads to the use of low-level languages like C or C++, which offer
little by way of safety and software engineering benefits. This risks
undermining the robustness and flexibility of the collector design.
Rust’s ownership model, lifetime specification, and reference bor-
rowing deliver safety guarantees through a powerful static checker
with little runtime overhead. These features make Rust a com-
pelling candidate for a collector implementation language, but they
come with restrictions that threaten expressiveness and efficiency.

We describe our experience implementing an Immix garbage
collector in Rust and C. We discuss the benefits of Rust, the obsta-
cles encountered, and how we overcame them. We show that our
Immix implementation has almost identical performance on micro
benchmarks, compared to its implementation in C, and outperforms
the popular BDW collector on the gcbench micro benchmark. We
find that Rust’s safety features do not create significant barriers to
implementing a high performance collector. Though memory man-
agers are usually considered low-level, our high performance im-
plementation relies on very little unsafe code, with the vast major-
ity of the implementation benefiting from Rust’s safety. We see our
experience as a compelling proof-of-concept of Rust as an imple-
mentation language for high performance garbage collection.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection),
Run-time environments

General Terms Experimentation, Languages, Performance, Mea-
surement

Keywords memory management, garbage collection, Rust

1. Introduction
A fast yet robust garbage collector (GC) is the key to garbage col-
lected language runtimes. However, implementing such a GC is not
easy. First, a collector must manipulate raw memory, depending
on carefully optimized code to do so, making it naturally prone to
memory bugs. Second, high performance GCs are rich in concur-
rency, typically featuring thread parallelism, including thread-local
allocation, parallel tracing, and possibly mutator concurrency, mak-
ing it prone to race conditions and extremely time consuming bugs.

What makes the situation worse is that the implementation lan-
guage usually does not provide help in terms of memory safety
and thread safety. The imperative of performance encourages the
use of languages such as C and C++ in collector implementations.
But their weak type system, lack of memory safety, and lack of
integrated support for concurrency [5] throws memory and thread
safety squarely back into the hands of developers.

Poor software engineering leads not only to hard-to-find bugs
and performance pitfalls, but decreases reuse, inhibiting progress
by thwarting creativity and innovation. Unfortunately, program-
ming languages often place positive traits such as abstraction and
safety at odds with performance. However, we are encouraged:
first, by prior work [10, 11] that shows that in an implementation
such as a garbage collector, low-level code is the exception, not
the rule; and second by the Rust programming language, which
rather boldly describes itself as a systems programming language
that runs blazingly fast, prevents segfaults, and guarantees thread
safety [14].

We evaluate the software engineering of a high performance
collector, and our experience confirms the prior work. In particu-
lar, we confirm that: (i) performance-critical code is very limited in
its scope, (ii) memory-unsafe code is very limited in its scope, and
(iii) language-supported, high performance thread-safe data struc-
tures are fundamental to collector implementation. For these rea-
sons, a well-chosen language may greatly benefit collector imple-
mentations without compromising performance.

Our prior experience in collector implementation includes both
C/C++ and high level languages. This, and the emergence of Rust
led us to evaluate it as a language for high performance collector
implementation. Rust is type, memory, and thread safe; all safety
features that we believe will help in delivering a robust collector.
Rust also permits unsafe operations (and inline assembly1) in un-
safe blocks, allowing us to access bare memory, and to fine-tune
performance on fast paths when needed. Furthermore, Rust uses a
powerful compile-time safety checker to shift as much as possible
of the safety burden to compile time, avoiding runtime overheads
where possible. The checker is based on Rust’s model of object
ownership, lifetimes, and reference borrowing. The model elimi-

1 Inline assembly is currently only available in nightly releases, and not
used in this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ISMM’16, June 14, 2016, Santa Barbara, CA, USA
ACM. 978-1-4503-4317-6/16/06...$15.00
http://dx.doi.org/10.1145/2926697.2926707

89

nates the possibility of dangling pointers and races, and ensures
memory safety. However, this model also restricts the language’s
expressiveness. Mapping semantics required of a collector imple-
mentation into Rust’s language model was the major challenge that
we faced during the work. Ultimately, we found that not only was
this achievable, but that we could do so with no discernable over-
head compared to an implementation of the same collector written
in C.

The principal contributions of this paper are: (i) a discussion of
the challenges of implementing a high-performance collector in a
type, memory and thread-safe language, (ii) a discussion of the se-
mantic impedance between Rust’s language model and the seman-
tic requirements of a collector implementation, (iii) a performance
comparison evaluating Rust and C implementations of the same
high performance collector design, and (iv) a comparison with the
popular Boehm-Demers-Weiser (BDW) collector implemented in
C [7, 8].

We start by describing how we are able to use Rust’s particular
language features in our high performance collector implementa-
tion. We then discuss cases where we found it necessary to abuse
Rust’s unsafe escape hatches, avoiding its restrictive semantics, and
ensuring the performance and semantics we required. Finally, we
conduct a head-to-head performance comparison between our col-
lector implementation in Rust and a mostly identical implementa-
tion in C to demonstrate that if used properly, the safety and ab-
straction cost from Rust is minimal, compared to an unsafe lan-
guage such as C. Also we show that both implementations outper-
form BDW, a production-level GC. This suggests that it is possible
to have a fast GC implementation that also benefits from its imple-
mentation language’s safety guarantees.

2. Related Work
There has been much previous work addressing the implementation
of efficient collectors in safe languages [1, 2, 4, 11, 13, 18]. The
advantages of using safe languages demonstrated by these projects
motivate our work. However, our use of Rust takes some further
steps: (i) Rust guarantees type, memory, and thread safety. Previous
work uses languages that make weaker safety guarantees such as
type safety and weaken memory safety (by disabling GC) and leave
thread safety exposed. (ii) Rust has considerably more restricted se-
mantics and expressiveness, since it performs most safety checks at
compile time. This constrains GC implementation, and invites the
question of whether implementing a high performance GC in Rust
is even viable. (iii) Rust is an off-the-shelf language. We take the
challenge to map GC features efficiently to the language semantics
and we use Rust without changes to the base language. Previous
work changed or augmented the semantics of the implementation
languages to favor GC implementation [11, 18].

There are also projects2 that implement collectors in Rust for
Rust. Though these projects use Rust as the implementation lan-
guage, their focus is in introducing GC as a language feature to
Rust. Their implementations do not reflect the state of the art of
GC, and they do not report performance: the delivery of both sig-
nificantly adds difficulty in a collector implemented in Rust. Our
work takes on the challenge of achieving both, to deliver a high-
performance advanced collector implementation.

2 A reference counted type with cycle collection for Rust: https://
github.com/fitzgen/bacon-rajan-cc; a simple tracing (mark
and sweep) garbage collector for Rust: https://github.com/
Manishearth/rust-gc.

3. Rust Background
We now introduce some of the key concepts in Rust used in this
paper.

Ownership. In Rust, variable binding grants a variable unique
ownership of the value it is bound to. This is similar to C++11’s
std::unique_ptr, but it is mandatory for Rust as it is the key
concept upon which Rust’s memory safety is built. Unbound vari-
ables are not allowed, and rebinding involves move semantics,
which transfers the ownership of the object to the new variable
while invalidating the old one.3 When a variable goes out of scope,
the associated ownership expires and resources are reclaimed.

References. Acquiring the ownership of an object for accessing is
expensive because the compiler must emit extra code for its proper
destruction on expiry. A lightweight approach is to instead borrow
references to access the object. Rust allows one or more co-existing
immutable references to an object or exactly one mutable reference
with no immutable references. The ownership of an object cannot
be moved when it is borrowed. This rule eliminates data races, as
mutable (write) and immutable (read) references are made mutually
exclusive by the rule. More interestingly, this mutual exclusion is
guaranteed mostly at compile time by Rust’s borrow checker.

Data Guarantees (Wrapper Types). An important feature of Rust
is that the language and its library provide various wrapper types
with different guarantees and tradeoffs. For example, plain ref-
erences such as &T and &mut T statically guarantee a read-write
‘lock’ for single-threaded code with no runtime overhead, while
RefCell<T> offers the same guarantee at the cost of runtime
checks but is useful when the program has complicated data flow.
Our implementation uses the following wrapper types as described
in later sections of the paper. Box<T> represents a pointer which
uniquely owns a piece of heap-allocated data. Arc<T> is another
frequently used wrapper which provides an atomically reference-
counted shared pointer to data of type T, and guarantees the data
stays accessible until every Arc<T> to it goes out of scope (i.e.,
the count drops to zero). A common idiom to share mutable data
among threads is Arc<Mutex<T>> which provides a mutual ex-
clusive lock for type T, and allows sharing the mutex lock across
threads.

Unsafe. Rust provides a safe world where there are no data races
and no memory faults. However, the semantics in safe Rust are in
some cases either too restrictive or too expensive. Rust allows un-
safe code, such as raw pointers (e.g., *mut T), forcefully allowing
sharing data across threads (e.g., unsafe impl Sync for T{}),
intrinsic functions (e.g., mem::transmute() for bit casting with-
out check), and external functions from other languages (e.g.,
libc::malloc()). Unsafe is a powerful weapon for program-
mers to wield at their own risk. Rust alerts programmers by re-
quiring unsafe code to be contained within a block that is marked
unsafe, or exposed to the caller by marking the containing function
as itself unsafe.

4. Using Rust
We now describe key aspects of how we use Rust’s language fea-
tures to construct a high performance garbage collector. In Sec-
tion 5 we discuss how we found it necessary to abuse Rust, se-
lectively bypassing its restrictive semantics to achieve the perfor-
mance and semantics necessary for a high performance collector.

For the sake of this proof of concept implementation, we imple-
ment the Immix garbage collector [3]. We use it because it: (i) is

3 Rebinding of Copy types, such as primitives, makes a copy of the value
for the new variable instead of moving ownerships; the old variable remains
valid.

90

https://github.com/fitzgen/bacon-rajan-cc
https://github.com/fitzgen/bacon-rajan-cc
https://github.com/Manishearth/rust-gc
https://github.com/Manishearth/rust-gc

1 #[derive(Copy, Clone, Eq, Hash)]
2 pub struct Address(usize);
3

4 impl Address {
5 // address arithmetic
6 #[inline(always)]
7 pub fn plus(&self, bytes: usize) -> Address {
8 Address(self.0 + bytes)
9 }

10

11 // dereference a pointer
12 #[inline(always)]
13 pub unsafe fn load<T: Copy> (&self) -> T {
14 *(self.0 as *mut T)
15 }
16

17 // bit casting
18 #[inline(always)]
19 pub fn from_ptr<T> (ptr: *const T) -> Address {
20 unsafe {mem::transmute(ptr)}
21 }
22

23 // cons a null
24 #[inline(always)]
25 pub unsafe fn zero () -> Address {
26 Address(0)
27 }
28

29 ...
30 }

Figure 1. An excerpt of our Address type, showing some of its
safe and unsafe methods.

a high-performance garbage collector, (ii) has interesting charac-
teristics beyond a simple mark-sweep or copying collector, and
(iii) has a well-documented publicly available reference implemen-
tation. Our implementation supports parallel (thread-local) alloca-
tion and parallel collection. We have not yet implemented oppor-
tunistic compaction, nor generational or reference counting vari-
ants [16]. We do not limit our discussion to the Immix algorithm,
but rather we consider Rust’s broader suitability as a GC imple-
mentation language.

Our implementation follows three key principles: (i) the collec-
tor must be high performance, with all performance-critical code
closely scrutinized and optimized, (ii) we do not use unsafe code
unless absolutely unavoidable, (iii) we do not modify the Rust lan-
guage in any way.

The remainder of this section considers four distinct elements
of our experience of Rust as a GC implementation language: (i) the
encapsulation of Address and ObjectReference types, (ii) man-
aging ownership of address blocks, (iii) managing global ownership
of thread-local allocations, and (iv) utilizing Rust libraries to sup-
port efficient parallel collection.

4.1 Encapsulating Address Types
Memory managers manipulate raw memory, conjuring language-
level objects from raw memory. Experience shows the importance
of abstracting over both arbitary raw addresses and references to
user-level objects [4, 11]. Such abstraction offers type safety and
disambiguation with respect to implementation-language (Rust)
references. Among the alternatives, raw pointers can be mislead-
ing and dereferencing an untyped arbitrary pointer may yield un-
expected data, while using integers for addresses implies arbitrary
type casting between pointers and integers, which is dangerous.

Abstracting address types also allows us to distinguish ad-
dresses from object references for the sake of software engineering
and safety. Addresses and object references are two distinct ab-
stract concepts in GC implementations: an address represents an

arbitrary location in the memory space managed by the GC and
address arithmetic is allowed (and necessary) on the address type,
while an object reference maps directly to a language-level object,
pointing to a piece of raw memory that lays out an object and that
assumes some associated language-level per-object meta data (such
as an object header, dispatch table, etc). Converting an object ref-
erence to an address is always valid, while converting an address to
an object reference is unsafe.

Abstracting and differentiating addresses is important, but since
addresses are used pervasively in a GC implementation, the ab-
straction must be efficient, both in space and time. We use a single-
field tuple struct to provide Address and ObjectReference,
abstracting over Rust’s word-width integer usize to express ad-
dresses, as shown in Figure 1. This approach disables the oper-
ations on the inner type, and allows a new set of operations on
the abstract type. This abstraction adds no overhead in type size,
and the static invocation of its methods can be further marked as
#[inline(always)] to remove any call overhead. So while the
types have the appearance of being boxed, they are materialized as
unboxed values with zero space and time overheads compared to an
untyped alternative, whilst providing the benefits of strong typing
and encapsulation.

We restrict the creation of Addresss to be either from raw
pointers, which may be acquired from mmap and malloc, or de-
rived from an existing Address. Address creation from arbitrary
integers is forbidden, with the single exception of the constant
Address::zero(). This serves as an initial value for some fields
of type Address within other structs, since Rust does not allow
structs with uninitialized fields. A safer alternative in Rust is to
use Option<Address> initialized as None to indicate that there
is no valid value. However, this adds an additional conditional and
a few run-time checks to extract the actual address value in the
performance-critical path of allocation, which adds around 4% per-
formance overhead. We deem this tradeoff not to be worthwhile
given the paramount importance of the allocation fast path and the
infrequency with which this idiom arises within the GC implemen-
tation. Thus we choose to allow Address::zero() but mark it as
unsafe so that implementors are explicitly tasked with the burden
of ensuring safety.

Our implementation of ObjectReference follows a very sim-
ilar pattern. The ObjectReference type provides access to per-
object memory manager metadata (such as mark-bits/-bytes). An
Address cannot be safely cast to an ObjectReference; the
allocator code responsible for creating objects must do so via
an unsafe cast, explicitly imposing the burden of correctness
for fabricating objects onto the implementer of the allocator. An
ObjectReference can always be cast to an Address.

4.2 Ownership of Memory Blocks
Thread-local allocation is an essential element of high performance
memory management for multithreaded languages. The widely
used approach is to maintain a global pool of raw memory re-
gions from which thread-local allocators take memory as they need
it, and to which thread-local collectors push memory as they re-
cover it [1]. This design means that the common case for allocation
involves no synchronization, whilst still facilitating sharing of a
global memory resource. The memory manager must ensure that
it correctly manages raw memory blocks to thread-local alloca-
tors, ensuring exclusive ownership of any given raw block. Note,
however that once objects are fabricated from these raw blocks,
they may (according to the implemented language’s semantics) be
shared among all threads. Furthermore, at collection time a parallel
collector may have no concept of memory ownership, with each
thread marking objects at any place in the heap, regardless of any

91

1 // thread local allcator
2 pub struct AllocatorLocal {
3 ...
4 space: Arc<Space>,
5

6 // allocator may own a block it can allocate into
7 // Option suggests the possibily of being None,
8 // which leads to the slow path to acquire a block
9 block: Option<Box<Block>>

10 }
11

12 // global space, shared among multiple allocators
13 pub struct Space {
14 ...
15 usable_blocks : Mutex<LinkedList<Box<Block>>>,
16 used_blocks : Mutex<LinkedList<Box<Block>>>
17 }
18

19 impl AllocatorLocal {
20 fn alloc_from_global (&mut self,
21 size: usize, align: usize) -> Address {
22 // allocator will return the ownership of
23 // current block (if any) to global space
24 if block.is_some() {
25 let block = self.block.take().unwrap();
26 self.space.return_used_block(block);
27 }
28

29 // keep trying acquiring a new block from space
30 loop {
31 let new_block
32 = self.space.get_next_usable_block();
33 ...
34 }
35 }
36 }

Figure 2. Ownership transfer between the global memory pool and
a thread local allocator.

notion of ownership over the object’s containing block. We make
this guarantee by using Rust’s ownership semantics.

Ownership is the key part of Rust’s approach to delivering both
performance and safety. We map the ownership semantics to this
scenario to make the guarantee that each block managed by our
GC is in a coherent state among usable, used, or being allocated
into by a unique thread. To achieve this, we create Block objects,
each of which uniquely represents the memory range of the block
and its meta data. The global memory pool owns the Blocks,
and arranges them into a list of usable Blocks and a list of used
Blocks (Figure 2). Whenever an allocator attempts to allocate, it
acquires the ownership from the usable Block list, gets the memory
address and allocation context from the Block, then allocates into
the corresponding memory. When the thread-local memory block is
full, the Block is returned to the global used list, and waits there for
collection. The Rust’s ownership model ensures that allocation will
not happen unless the allocator owns the Block, and, further every
Block is guaranteed to be in one of the three states: (i) owned by
the global space as a usable Block, (ii) owned by a single allocator,
and being allocated into, (iii) owned by the global space as a used
Block. During collection, the collector scavenges memory among
used Blocks, and classifies them as usable for further allocation if
they are free.

4.3 Globally Accessible Per-Thread State
A thread-local allocator avoids costly synchronization on the allo-
cation fast path because mutual exclusion among allocators is en-
sured. This is something that Rust’s ownership model ensures can
be implemented very efficiently. However parts of the thread-local
allocator data structure may be shared at collector time (for exam-

ple, allocators might be told to yield by a collector thread via this
data structure). Rust will not allow for a mixed ownership model
like this except by making the data structure shared, which means
that all accesses are vectored through a synchronized wrapper type,
ensuring that every allocation is synchronized, thus defeating the
very purpose of the thread-local allocator.

We deal with this by breaking the per-thread Allocator into
two parts, a thread-local part and a global part, as shown in FIg-
ure 3. The thread-local part includes the data that is accessible
strictly within current thread and an Arc reference to its global part.
All shared data goes to the global part (with a safe wrapper if muta-
bility is required). This allows efficient access to thread local data,
while allowing shared per-thread data to be accessed globally.

1 pub struct AllocatorLocal {
2 // fields that are strictly thread local
3 ...
4

5 // fields that are logically per allocator
6 // but need to be accessed globally
7 global: Arc<AllocatorGlobal>
8 }
9

10 pub struct AllocatorGlobal {
11 // any field in this struct that requires
12 // mutability needs to be either be atomic
13 // or lock-guarded
14 ...
15 }
16

17 // statics that involve dynamic allocation
18 lazy_static! {
19 pub static ref ALLOCATORS
20 : Vec<Arc<AllocatorGlobal>> = vec![];
21 }

Figure 3. Separating a per-thread Allocator into two parts. The
local part is strictly thread local, while the global part can be
accessed globally.

4.4 Library-Supported Parallelism
Parallelism is essential to high performance collector implementa-
tions. Aside from the design of the high level algorithm, the ef-
ficiency of a collector depends critically on the implementation
of fast, correct, parallel work queues [12]. In a marking collector
such as Immix and most tracing collectors, a work queue (or ‘mark
stack’) is used to manage pending work. When a thread finds new
marking work, it adds a reference to the object to the work queue,
and when a thread needs work, it takes it from the work queue.
Ensuring efficient and correct operation of a parallel work queue
is a challenging aspect of high performance collector implementa-
tion [4, 12].

We were pleased to find that Rust provides a rich selection of
safe abstractions that perform well as part of its standard and ex-
ternal libraries (known as crates in Rust parlance). Using an ex-
ternal crate is as simple as adding a dependency in the project
configuration, which greatly benefits code reusability. The use of
standard libraries is deeply problematic when using a modified
or restricted language subset, as has been commonly used in the
past [1, 2, 4, 11, 13, 18]. For example, if using a restricted subset of
Java, one must be able to guarantee that any library used does not
violate the preconditions of the subset, which may be extremely re-
strictive (such using only the fully static subset of the language, ex-
cluding allocation and dynamic dispatch). Consequently, standard
libraries are off limits when using restricted Java to build a garbage
collector.

92

We utilize two crates in Rust, std::sync::mpsc, which pro-
vides a multiple-producers single-consumer FIFO queue, and
crossbeam::sync::chase_lev4, which is a lock-free Chase-
Lev work stealing deque that allows multiple stealers and one sin-
gle worker [9]. We use these two abstraction types as the backbone
of our parallel collector with a modest amount of additional code
to integrate them.

Our parallel collector starts single-threaded, to work on a local
queue of GC roots; if the length of the local queue exceeds a
certain threshold, the collector turns into a controller and launches
multiple stealer collectors. The controller creates an asynchronous
mpsc channel and a shared deque; it keeps the receiver end for
the channel, and the worker for the deque. The sender portion and
stealer portion are cloned and moved to each stealer collector. The
controller is responsible for receiving object references from stealer
threads and pushing them onto the shared deque, while the stealers
steal work (ObjectReferences) from the deque, do marking and
tracing on them, and then either push the references that need to
be traced to their local queue for thread-local tracing or, when the
local queue exceeds a threshold, send the references back to the
controller where the references will be pushed to the global deque.
When the local queue is not empty, the stealer prioritizes getting
work from the local queue; it only steals when the local queue is
empty.

Using those existing abstract types makes our implementation
straightforward, performant and robust: our parallel marking and
tracing features only 130 LOC (shown as Appendix B) while there
are over one thousand lines of well tested code from the libraries
to support our implementation. We measure and discuss the per-
formance of our parallel marking and tracing implementation in
Section 6.

5. Abusing Rust
In the previous section, we described how Rust’s semantics af-
fect the implementation of a high performance garbage collector.
Though Rust’s model is sometimes restrictive, in most cases we
were able to fairly straightforwardly adapt the collector design to
take full advantage of Rust’s safety and performance. However,
there are a few places where we found that Rust’s safety model
was too restrictive to express the necessary semantics efficiently,
and thus found ourselves having to dive into unsafe code, where
the programmer bears responsibility for safety, rather than Rust and
its compiler.

5.1 Shared Bit and Byte Maps
Garbage collectors often implement bit maps and byte maps to rep-
resent collection state, mapping addresses to table offsets. Exam-
ples include card tables (which remember modified memory re-
gions), and mark tables (which remember marked objects). To im-
plement these correctly and efficiently, they are frequently byte
maps (allowing atomic update). Semantics may include, for exam-
ple, multiple writers but idempotent transitions: during the mark
phase, the writers may only set the mark byte (not clear it). For ex-
ample, an object map indicates the start of objects: in a heap where
every object is 8-byte aligned, every bit in such a bitmap can repre-
sent whether an 8-byte aligned address is the start of an object. In
Immix, a line mark table is used to represent the state of every line
in the memory space — an unsigned byte (u8) for every 256-bytes
of allocated memory.

During allocation, the line mark table may be accessed by mul-
tiple allocator threads, exclusively for the addresses that they are al-
locating into. Since every allocator allocates into a non-overlapping
memory block, they access non-overlapping elements in the line

4 https://github.com/aturon/crossbeam

1 pub struct AddressMapTable {
2 start : Address,
3 end : Address,
4

5 len : usize,
6 ptr : *mut u8
7 }
8 // allow sharing of AddressMapTable across threads
9 unsafe impl Sync for AddressMapTable {};

10 unsafe impl Send for AddressMapTable {};
11

12 impl AddressMapTable {
13 pub unsafe fn set (&self, addr: Address, value: u8)
14 {
15 let index = addr.diff(self.start) >> LOG_PTR_SIZE;
16 unsafe {
17 let ptr = self.ptr.offset(index);
18 // intrinsics::atomic_store_relaxed(ptr, value);
19 *ptr = value;
20 }
21 }
22 }

Figure 4. Our AddressMapTable allows concurrent access with
unsafe methods. The user of this data structure is responsible for
ensuring that it is used safely.

mark table. However, in Rust, if we were to create the line mark
table as a Rust array of u8, Rust would forbid concurrent writing
into the array. Ways to bypass this within the confines of Rust are
to either break the table down into smaller tables, or to use a coarse
lock on the large table, both of which are impractical.

On the other hand, during collection, the mutual exclusion en-
joyed by the allocator does not exist: two collector threads may race
to mark adjacent lines, or even the same line. The algorithm ensures
that such races are benign, as both can only set the line to ‘live’ and
storing to a byte is atomic on the target architecture. However, in
Rust, it is strictly forbidden to modify a shared object’s non-atomic
fields without going through a lock. We are unaware of a reliable
solution to this in stable Rust releases, which do not support an
AtomicU8 type, nor intrinsic atomic operations as in the nightly
releases.

Instead, we use the work-around shown in Figure 4. We general-
ize the line mark table as an AddressMapTable. We wrap the nec-
essary unsafety into the AddressMapTable implementation which
almost entirely comprises safe code. We acknowledge also that for
proper atomicity of the byte store (with respect to both the compiler
and target) we should also be using an atomic operation to store the
value rather than a normal assignment. Here we rely on the Rust
compiler to generate an x86 byte store which is atomic. Otherwise,
there are reasonable compiler optimizations that could defeat the
correctness of our code [6]. What is more, the target architecture
might not have an atomic byte store operation. The availability of
LLVM intrinsics in the non-stable nightly Rust releases would al-
low us to use a relaxed atomic store to achieve the correct code,
as shown in the comment. This exposes a shortcoming in Rust’s
current atomic types where we desire an AtomicU8 type, along
the lines of the existing AtomicUsize. This need is reflected in
the recently accepted Rust RFC #1543: ‘Add more integer atomic
types’ [15].

6. Evaluation
The two primary objectives of our proof-of-concept implementa-
tion were to establish: (i) to what extent we are able to exploit
Rust’s safety (hopefully minimizing the amount of unsafe code),
and (ii) the impact of Rust on performance. In this section, we dis-

93

https://github.com/aturon/crossbeam

cuss our evaluation of our proof-of-concept collector, focusing on
these concerns.

6.1 Safe Code
Our first major challenge was to map our collector design into the
Rust language. As we discuss in Sections 4 and 5, for the main
part, the collector implementation can be expressed entirely in safe
Rust code. As shown in Table 1, 96 % of 1449 lines of the code
are safe. This suggests that though GC is usually considered to be
a low-level module that operates heavily on raw memory, the vast
majority of its code can in fact be safe, and can benefit from the
implementation language if that language offers safety.

Language Files Lines of Code Unsafe LOC (%)
Rust 13 1449 58 (4.0%)

Table 1. Unsafe code is minimal in our implementation.

The unsafe code amounts to 4.0 % and mainly comes from just
two sources. The first is where unsafe is required for access to
raw memory, such as dereferencing raw pointers during tracing,
manipulating object headers, zeroing memory, etc. This is unavoid-
able in memory manager implementations. Our experience shows
that through proper abstraction, the unsafe code for accessing raw
memory can be restricted to a small proportion of the code base.
The second source of unsafety is due to Rust’s restricted seman-
tics. Rust trades expressiveness for the possibility of statically en-
forcing safety. Section 4 shows that for most of the cases, we are
able to adapt our collector implementation to Rust’s constraints. In
the exceptional case described in Section 5 where Rust stands in
our way, we are able to encapsulate it in a small amount of unsafe
code.

Our experience demonstrates that a garbage collector can be
implemented in a safe language such as Rust with very little unsafe
code. Furthermore, we can report that, subjectively, the discipline
imposed upon us by Rust was a real asset when we went about this
non-trivial systems programming task with its acute performance
and correctness focus.

6.2 Performance
Our second challenge was to deliver on our goal of high per-
formance. Since at this stage we are implementing a standalone
garbage collector, not yet integrated into a larger language run-
time, it is hard to provide performance evaluation via comprehen-
sive benchmarks; instead we use micro benchmarks to evaluate the
collector. We are not interested in evaluating garbage collection al-
gorithms per se (we take an existing algorithm off the shelf). Rather,
we simply wish to provide proof of concept for an implementation
of a high performance collector in Rust and show that it performs
well in comparison to an equivalent collector written in C. To this
end, we are particularly interested in the performance of critical hot
paths, both for collection and allocation since the performance of
the algorithm itself is already established [3], and our prior experi-
ence demonstrates the overwhelming criticality of these hot paths
to performance.

6.2.1 Micro Benchmarks
To evaluate the performance of our implementation in Rust, we
also implemented the collector in C, following the same Immix al-
gorithm. We did not try to make the two implementations exactly
identical, but used the features of the available language in a natu-
rally fluent way. For most scenarios described in Section 4 and 5, it
is either unnecessary or simply impossible to write C code the same
way as Rust code. The C implementation allows us to set a base-
line for performance in an implementation language that is known

to be efficient and allows a head-to-head comparison for Rust per-
formance. We took particular care to ensure that the performance-
critical hot paths were implemented efficiently in the respective lan-
guages.

We chose three performance-critical paths of the collector to run
single-threaded as micro benchmarks: allocation, object marking,
and object tracing. Each micro benchmark allocates 50 million
objects of 24 bytes each, which takes 1200 MB of heap memory; we
use a 2000 MB memory for each run so that the GC will not collect
spontaneously (we control when tracing and collection occurs in
the respective micro benchmarks). In each micro benchmark, we
measure the time spent on allocating, marking, and tracing the 50
million objects. We use rustc 1.6.0 stable release for Rust, and clang
3.7 for C, both of which use LLVM 3.7 as backend. We run each
implementation with 20 invocations on a 22 nm Intel Core i7 4770
processor (Haswell, 3.4 GHz) with Linux kernel version 3.17.0.
The results appear in Table 2.

C Rust (% to C)
alloc 370 ± 0.1 ms 374 ± 2.9 ms (101%)
mark 63.7 ± 0.5 ms 64.0 ± 0.7 ms (100%)
trace 267 ± 2.1 ms 270 ± 1.0 ms (101%)

Table 2. Average execution time with 95% confidence interval for
micro benchmarks of performance critical paths in GC. Our imple-
mentation in Rust performs the same as the C implementation.

From the micro benchmark results, we can see that with careful
performance tuning, the Rust implementation matches the perfor-
mance of our C implementation across all the three micro bench-
marks (identifying most performance critical paths in a collector
implementation). In our initial implementation (without fine per-
formance tuning), Rust was within 10% slowdown of C on micro
benchmarks. We found it encouraging, considering: (i) our source
code in Rust offers stronger abstraction than C, a low-level imper-
ative language, and (ii) the source code enjoys Rust’s safety guar-
antees. We then fine-tuned the performance, examining assembly
code generated for each implementation, where necessary altering
fast path code to avoid idioms with negative performance implica-
tions. Our micro benchmarks have tiny kernels and are memory in-
tensive, and one instruction may affect results. We found although
rustc is agressive it is quite predicatable making it not difficult to
generate highly performant code. Lack of tools for finer control on
the generated code such as branch hints may be a drawback of the
Rust compiler, but did not hinder performance in the micro bench-
marks. Appendix A shows Rust code for the allocation fast path,
and Appendix B shows the code for mark and trace fast path in a
parallel collector.

6.2.2 Library-based Parallel Mark and Trace
We evaluate the performance scaling of parallel GC in our im-
plementation. As described in Section 4.4, we quickly imple-
mented the parallel mark and trace collector by completely bas-
ing its parallelism on existing Rust crates: std::sync::mpsc and
crossbeam:: sync::chase_lev. They provide all the concur-
rency as the backbone of our parallel collector. This implementa-
tion approach is high-level and productive, but as we shall show, it
is also performant.

We use a micro benchmark to trace 50 quad trees of depth ten to
allow parallel collectors to build a reasonable local work queue for
thread-local tracing and to push excessive references to the global
deque. We use a large heap to avoid spontaneous collections during
the tree allocation. We run this with twenty invocations on the
same i7 Haswell machine, using from zero to seven GC worker
threads, and measure the tracing time. Note that zero means no

94

Figure 5. Performance scaling for our fast implemented libraries-
based parallel mark and trace collector.

parallel GC while one to seven reflect the number of GC worker
threads (with one additional controller thread). Seven workers with
one controller is the full capacity of our machine (four cores with
eight SMT threads). Figure 5 shows the results along with a line
indicating hypothetical perfect scaling (which assumes workloads
are equally divided among threads with no overhead compared to a
single-threaded collector).

With parallel GC disabled, single-threaded marking and tracing
takes 605 ms, while with one worker thread, the benchmark takes
716 ms. The overhead is due to sending object references back to
the global deque through an asynchronous channel, and stealing
references from the shared deque when the local work queue is
empty. With two and three worker threads, the scaling is satis-
factory, with execution times of 378 ms and 287 ms (52.8 % and
40.0 % compared with one worker). When the number of worker
threads exceed four, the scaling starts to fall off slightly. With seven
worker threads, the execution time is 166 ms, which is 23.2 % of
one worker thread. The performance degradation is most likely
from two sources: (i) GC workers start to share resources from the
same core after every core hosts one worker, (ii) having one central
controller thread to receive object references and push them to the
global deque starts to be a performance bottleneck. These results
could undoubtedly be improved with further tuning. However, as it
is one tricky part of the implementation, and we worked towards a
working (and safe) implementation with limited time and limited
lines of code by using existing libraries, the approach itself is inter-
esting and demonstrates the performance tradeoff due to improved
productivity. We believe the performance scaling is good, and that
having a language that provides higher level abstractions can ben-
efit a parallel GC implementation (and possibly a concurrent GC)
greatly.

6.2.3 GCBench
We compare our Immix implementation in Rust with the BDW
collector on the gcbench micro benchmark. We enable thread-local
allocators and parallel marking with eight GC threads on BDW. We
run on the same machine for the comparison, and use a moderate
heap size of 25 MB (which is roughly 2× minimal heap size).

In a run of 20 invocations (as shown in Table 3), the aver-
age execution time for BDW is 172 ms, while the average for
our implementation is 97 ms (79 % faster). We do not find the re-
sult surprising. Our GC implements an Immix allocator which is

mainly a bump pointer allocator, while BDW uses a free list alloca-
tor. Immix outperforms freelist allocators by 16% in large bench-
marks [17]; we expect the performance advantage is even bigger in
micro benchmarks that allocate in a tight loop. We ran our alloc
micro benchmark for BDW, and we find that the performance dif-
ference between our allocator and the BDW allocator is similar,
confirming our belief. Our GC implementation is different from
the BDW collector in a few other respects, which contribute to the
performance difference: (i) Our GC is conservative with stacks but
precise with the heap, while the BDW collector is conservative with
both; (ii) Our GC presumes a specified heap size and reserves con-
tiguous memory space for the heap and metadata side tables during
initialization, while the BDW collector allows dynamic growing of
a discontiguous heap.

We also compared the two collectors with a multi-threaded
version of gcbench (as mt-gcbench in Table 3). Both collectors
use eight allocator threads, and eight GC threads. The results show
that our implementation performs 2× faster than BDW on this
workload. Our implementation outperforms the BDW collector on
gcbench and mt-gcbench (respectively by 79 % and 2×), which
suggests our implementation in Rust delivers good performance
compared to the widely used BDW collector.

BDW Immix(Rust) % of BDW
gcbench 172 ± 0.8 ms 97 ± 0.3 ms 56%
mt-gcbench 1415 ± 3.1 ms 466 ± 1.9 ms 33%

Table 3. Performance comparison between our Immix GC in Rust
and BDW on gcbench and multi-threaded gcbench.

We conclude that using Rust to implement GC does not preclude
high performance, and justify this with the following observations:
(i) our implementation in Rust performs as well as our C imple-
mentation using the same algorithm in performance-critical paths,
and (ii) our implementation in Rust outperforms the widely-used
BDW collector on gcbench and mt-gcbench. This result shows
the capability of Rust for high-performance GC implementations,
as a language with memory, thread and type-safety.

7. Conclusion
Rust is a compelling language that makes strong claims about its
suitability for systems programming, promising both performance
and safety. We explored Rust as the implementation language for
a high performance garbage collector by implementing the Immix
garbage collector in both C and Rust, and used micro benchmarks
to evaluate their performance alongside the well-established BDW
collector.

We found that the Rust programming model is quite restrictive,
but not needlessly so. In practice we were able to use Rust to imple-
ment Immix. We found that the vast majority of the collector could
be implemented naturally, without difficulty, and without violat-
ing Rust’s restrictive static safety guarantees. In this paper we have
discussed each of the cases where we ran into difficulties and how
we overcame those challenges. Our experience was very positive:
we enjoyed programming in Rust, we found its restrictive program-
ming model helpful in the context of a garbage collector implemen-
tation, we appreciated access to its standard libraries (something
missing when using a restricted language such as restricted Java),
and we found that it was not difficult to achieve excellent perfor-
mance. Our experience leads us to the view that Rust is very well
suited to garbage collection implementation.

95

Acknowledgments
We gratefully acknowledge the comments and thoughtful feedback
that we received from Kathryn McKinley, Eliot Moss, Hans Boehm
and our anonymous reviewers. Data61 is funded by the Australian
Government through the Department of Communications and the
Australian Research Council through the ICT Centre of Excellence
Program. This work is also supported by National Science Foun-
dation grant no. CCF-1408896 and Australian Research Council
Discovery grant no. DP140103878.

References
[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J.

Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen. Implementing
Jalapeño in Java. In ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, Denver, Col-
orado, Nov. 1999. doi: 10.1145/320384.320418.

[2] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar, and M. Trapp. The
Jikes Research Virtual Machine project: Building an open source re-
search community. IBM Systems Journal, 44(2):399–417, May 2005.
doi: 10.1147/sj.442.0399.

[3] S. M. Blackburn and K. S. McKinley. Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator perfor-
mance. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, Tucson, Arizona, June 2008. doi: 10.
1145/1375581.1375586.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High
performance garbage collection in Java with MMTk. In International
Conference on Software Engineering, Edinburgh, Scotland, May 2004.
doi: 10.1109/icse.2004.1317436.

[5] H.-J. Boehm. Threads cannot be implemented as a library. In ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, Chicago, Illinois, June 2005. doi: 10.1145/1065010.
1065042.

[6] H.-J. Boehm. How to miscompile programs with “benign” data races.
In USENIX Conference on Hot Topics in Parallelism, Berkeley, Cal-
ifornia, May 2011. URL http://www.usenix.org/events/
hotpar11/tech/final_files/Boehm.pdf.

[7] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software Practice and Experience, 18(9):807–820, Sept.
1988. doi: 10.1002/spe.4380180902.

[8] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly parallel garbage
collection. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, San Francisco, California, June 1992.
doi: 10.1145/113445.113459.

[9] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In
ACM Symposium on Parallelism in Algorithms and Architectures, Las
Vegas, Nevada, July 2005. doi: 10.1145/1073970.1073974.

[10] D. Frampton. Garbage collection and the case for high-level low-level
programming. PhD thesis, Australian National University, June 2010.

[11] D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner, D. Grove,
J. E. B. Moss, and S. I. Salishev. Demystifying magic: high-level
low-level programming. In ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, Washington, DC, Mar.
2009. doi: 10.1145/1508293.1508305.

[12] Y. Ossia, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. Leikehman, and
A. Owshanko. A parallel, incremental and concurrent GC for servers.
In ACM SIGPLAN Conference on Programming Language Design
and Implementation, Berlin, Germany, June 2002. doi: 10.1145/
512529.512546.

[13] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine construc-
tion. In ACM SIGPLAN Symposium on Object-Oriented Program-
ming, Systems, Languages, and Applications, Portland, Oregon, Oct.
2006. doi: 10.1145/1176617.1176753.

[14] Rust. The Rust Language. URL https://www.rust-lang.
org.

[15] Rust RFC 1543. Add more integer atomic types, May 2016. URL
https://github.com/rust-lang/rfcs/pull/1543.

[16] R. Shahriyar, S. M. Blackburn, X. Yang, and K. M. McKinley. Tak-
ing off the gloves with reference counting Immix. In ACM SIG-
PLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications, Indianapolis, Indiana, Oct. 2013. doi: 10.
1145/2509136.2509527.

[17] R. Shahriyar, S. M. Blackburn, and K. S. McKinley. Fast conservative
garbage collection. In ACM International Conference on Object Ori-
ented Programming, Systems, Languages, and Applications, Portland,
Oregon, Oct. 2014. doi: 10.1145/2660193.2660198.

[18] C. Wimmer, M. Haupt, M. L. van de Vanter, M. Jordan, L. Daynès,
and D. Simon. Maxine: An approachable virtual machine for, and in,
Java. ACM Transactions on Architecture and Code Optimization, 9(4):
30:1–30:24, Jan. 2013. doi: 10.1145/2400682.2400689.

Appendices

Here we present the key Rust code in our implementation, notably
fast-path allocation and parallel mark and trace.

A. Allocation Fastpath
1 pub struct ImmixMutatorLocal {
2 id : usize,
3

4 // use raw pointer here instead of AddressMapTable
5 // to avoid indirection in the fast path
6 alloc_map : *mut u8,
7 space_start: Address,
8

9 // cursor and limit will be invalid after GC.
10 // we avoid using Option<Address>. instead,
11 // we reset both cursor and limit to Address::zero()
12 // so that alloc will go to slow path
13 cursor : Address,
14 limit : Address,
15 line : usize,
16

17 space : Arc<ImmixSpace>,
18 block : Option<Box<ImmixBlock>>,
19

20 global : Arc<ImmixMutatorGlobal>
21 }
22

23 impl ImmixMutatorLocal {
24 ..
25

26 #[inline(always)]
27 pub fn alloc(&mut self,
28 size: usize, align: usize)
29 -> Address
30 {
31 let start
32 = self.cursor.align_up(align);
33 let end = start.plus(size);
34

35 if end > self.limit {
36 // thread-local slow path
37 self.try_alloc_from_local(size, align)
38 } else {
39 self.cursor = end;
40 start
41 }
42 }
43

44 // one byte(u8) per every word-aligned address:
45 // 6 bits to encode referneces in first 48 bytes
46 // 1 bit to indicate the start of an object
47 // 1 bit to indicate whether it is larger than
48 // 48 bytes
49 // we use a side table to store the byte

96

http://dx.doi.org/10.1145/320384.320418
http://dx.doi.org/10.1147/sj.442.0399
http://dx.doi.org/10.1145/1375581.1375586
http://dx.doi.org/10.1145/1375581.1375586
http://dx.doi.org/10.1109/icse.2004.1317436
http://dx.doi.org/10.1145/1065010.1065042
http://dx.doi.org/10.1145/1065010.1065042
http://www.usenix.org/events/hotpar11/tech/final_files/Boehm.pdf
http://www.usenix.org/events/hotpar11/tech/final_files/Boehm.pdf
http://dx.doi.org/10.1002/spe.4380180902
http://dx.doi.org/10.1145/113445.113459
http://dx.doi.org/10.1145/1073970.1073974
http://dx.doi.org/10.1145/1508293.1508305
http://dx.doi.org/10.1145/512529.512546
http://dx.doi.org/10.1145/512529.512546
http://dx.doi.org/10.1145/1176617.1176753
https://www.rust-lang.org
https://www.rust-lang.org
https://github.com/rust-lang/rfcs/pull/1543
http://dx.doi.org/10.1145/2509136.2509527
http://dx.doi.org/10.1145/2509136.2509527
http://dx.doi.org/10.1145/2660193.2660198
http://dx.doi.org/10.1145/2400682.2400689

50 #[inline(always)]
51 pub fn init_object(&mut self,
52 obj: Address, encode: u8) {
53 let index = (obj.diff(self.space_start)
54 >> LOG_PTR_SIZE) as isize;
55 unsafe {
56 *self.alloc_map.offset(index) = encode;
57 }
58 }
59 }

B. Parallel Mark and Trace
1 extern crate crossbeam;
2

3 #[cfg(feature = "parallel-gc")]
4 use self::crossbeam::sync::chase_lev::*;
5

6 #[cfg(feature = "parallel-gc")]
7 pub fn start_trace(roots: &mut Vec<ObjectReference>,
8 immix_space: Arc<ImmixSpace>,
9 lo_space: Arc<FreeListSpace>)

10 {
11 // create work deque: one Worker with several
12 // Stealers. Worker can push to deque, while
13 // Stealer can only pull
14 let (mut worker, stealer) = deque();
15

16 // push roots to the shared deque
17 while !roots.is_empty() {
18 worker.push(roots.pop().unwrap());
19 }
20

21 loop {
22 // since the deque allows only one Worker,
23 // we create an asynchronous channel for
24 // stealers to pass back references to the
25 // controller, then the controller
26 // with the Worker will push them to deque
27 let (sender, receiver)
28 = channel::<ObjectReference>();
29

30 // launch parallel GC threads
31 let mut gc_threads = vec![];
32 for _ in
33 0..GC_THREADS.load(atomic::Ordering::Relaxed)
34 {
35 let new_immix_space = immix_space.clone();
36 let new_lo_space = lo_space.clone();
37 let new_stealer = stealer.clone();
38 let new_sender = sender.clone();
39 let t = thread::spawn(move || {
40 start_steal_trace(new_stealer, new_sender,
41 new_immix_space,
42 new_lo_space);
43 });
44 gc_threads.push(t);
45 }
46

47 // controller gives up its Sender,
48 // thus only stealers own Sender.
49 // when all stealers quit (Senders dropped),
50 // the loop ends
51 drop(sender);
52

53 // main loop for the controller
54 loop {
55 // fetch from the channel
56 let recv = receiver.recv();
57 match recv {
58 // push obj reference to deque
59 Ok(obj) => worker.push(obj),
60 // job finishes
61 Err(_) => break
62 }
63 }
64

65 // a sanity check:
66 // since we use an asynchronous channel, it is
67 // possible that stealers find an empty deque
68 // and quit before the controller receives and
69 // pushes more work to the deque. however, this

70 // never happened for us. defining a reasonable
71 // PUSH_BACK_THRESHOLD will allow stealers enough
72 // time to work through their local queue before
73 // trying to fetch work from global deque.
74 // for robustness, we need a backup solution here,
75 // and it has little implications on performance
76 // unless triggered
77 match worker.try_pop() {
78 // leftover work in the deque (the rare case)
79 // we will relaunch gc threads
80 Some(obj_ref) => worker.push(obj_ref),
81 // parallel gc finishes
82 None => break
83 }
84 }
85 }
86

87 #[cfg(feature = "parallel-gc")]
88 fn start_steal_trace
89 (stealer: Stealer<ObjectReference>,
90 job_sender: Sender<ObjectReference>,
91 immix_space: Arc<ImmixSpace>,
92 lo_space: Arc<FreeListSpace>)
93 {
94 let mut local_queue = vec![];
95

96 // load invariant fields used in the loop
97 let line_mark_table = &immix_space.line_mark_table;
98 let alloc_map = immix_space.alloc_map.ptr;
99 let trace_map = immix_space.trace_map.ptr;

100 let immix_start = immix_space.start();
101 let immix_end = immix_space.end();
102 let mark_state = objectmodel::MARK_STATE
103 .load(Ordering::Relaxed) as u8;
104

105 loop {
106 let obj = {
107 // fetch work from local queue if possible
108 if !local_queue.is_empty() {
109 local_queue.pop().unwrap()
110 } else {
111 // otherwise, steal from global deque
112 let work = stealer.steal();
113 match work {
114 // global deque is empty, the thread quits
115 Steal::Empty => return,
116 // lost a race to steal, retry
117 Steal::Abort => continue,
118 // get work load, proceed tracing object
119 Steal::Data(obj) => obj
120 }
121 }
122 };
123

124 // as steal_trace_object() is inlined,
125 // passing arguments is no-op
126 steal_trace_object(obj, &mut local_queue,
127 &job_sender, alloc_map,
128 trace_map, line_mark_table,
129 immix_start, immix_end,
130 mark_state, &lo_space);
131 }
132 }
133

134 // functions are inlined so we omit
135 // parameters/arguments
136 #[inline(always)]
137 #[cfg(feature = "parallel-gc")]
138 pub fn steal_trace_object(...) {
139 let addr = obj.to_address();
140

141 if addr >= immix_start && addr < immix_end {
142 // mark object in immix space
143 mark_as_traced(trace_map, immix_start,
144 obj, mark_state);
145 // and associated lines
146 line_mark_table.mark_line_live(addr);
147

148 let mut base = addr;
149 loop {
150 let value

97

151 = objectmodel::get_ref_byte(alloc_map,
152 immix_start, obj);
153 let ref_bits =
154 lower_bits(value, REF_BITS_LEN);
155 let short_encode =
156 test_nth_bit(value, SHORT_ENCODE_BIT);
157

158 // fast path trace for common patterns
159 match ref_bits {
160 // first word is reference
161 0b0000_0001 => {
162 steal_process_edge(base, ...);
163 },
164 // first two words are references
165 0b0000_0011 => {
166 steal_process_edge(base, ...);
167 steal_process_edge(base.plus(8), ...);
168 },
169 // first 4 words are references
170 0b0000_1111 => {
171 steal_process_edge(base, ...);
172 steal_process_edge(base.plus(8), ...);
173 steal_process_edge(base.plus(16), ...);
174 steal_process_edge(base.plus(24), ...);
175 },
176 // more patterns
177 ...
178 // slow path
179 _ => trace_object_slow(base, ref_bits)
180 }
181

182 // for objects that are smaller than 48 bytes,
183 // its reference locations can be encoded within
184 // 1 byte
185 // we finished tracing its fields
186 if short_encode {

187 return;
188 } else {
189 // for larger objects, we adjust base pointer
190 // and trace again
191 base = base.plus(REF_BITS_LEN * 8);
192 }
193 }
194 } else {
195 // mark and trace a large object
196 lo_space.mark_trace(obj)
197 }
198 }
199

200 pub const PUSH_BACK_THRESHOLD : usize = 50;
201

202 #[inline(always)]
203 #[cfg(feature = "parallel-gc")]
204 pub fn steal_process_edge(...) {
205 // load the objectreference from the field
206 let obj = unsafe{addr.load::<ObjectReference>()};
207

208 // push the object reference to work queue
209 // if it is not zero and not traced
210 if !obj.to_address().is_zero()
211 && !is_traced(trace_map, immix_start,
212 obj, mark_state) {
213 // prioritize using local queue
214 if local_queue.len() < PUSH_BACK_THRESHOLD {
215 local_queue.push(obj_addr);
216 } else {
217 job_sender.send(obj_addr).unwrap();
218 }
219 }
220 }

98

	Introduction
	Related Work
	Rust Background
	Using Rust
	Encapsulating Address Types
	Ownership of Memory Blocks
	Globally Accessible Per-Thread State
	Library-Supported Parallelism

	Abusing Rust
	Shared Bit and Byte Maps

	Evaluation
	Safe Code
	Performance
	Micro Benchmarks
	Library-based Parallel Mark and Trace
	GCBench

	Conclusion
	Appendices
	Allocation Fastpath
	Parallel Mark and Trace

