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ABSTRACT

Hussein, Ahmed M. M.S., Purdue University, December 2013. On Tracing the Memory
Behavior of Dalvik Applications. Major Professor: Antony L. Hosking.

The Dalvik virtual machine hosts all user applications for the Android platform. Writ-

ten in the Java programming language, the performance of these applications is critical to

the user experience of Android. Understanding the behavior of applications running on

Dalvik is central to diagnosing application bottlenecks and also to improving the support

provided by Dalvik to representative workloads. To date, no infrastructure for Dalvik has

allowed understanding of application behavior in the context of the Dalvik implementa-

tion. This thesis develops and applies a memory profiling framework for measuring the

platform-independent memory behavior of applications running on Dalvik. Validation of

the resulting profiling framework is achieved by porting standard Java benchmarks with

known memory behaviors so that they can execute on Dalvik with substantially similar

profiles. The profiling framework thus allows evaluation of industry-standard Android

benchmarks to be done with confidence.
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1 INTRODUCTION

The mobile telecommunications industry has grown rapidly over the last three decades.

Mobile applications are increasingly important as applications migrate from desktops to

smartphones and other mobile devices. The web-site comScore
TM

released a study in May

of 2012, showing that more mobile subscribers used mobile apps than browsed the web on

their devices: 51.1% vs. 49.8%, respectively [4].

Mobile applications are available through application-distribution platforms, operated

by the owner of the mobile operating system, such as Apple App Store,
TM

Google Play,
TM

Windows Phone Store
TM

and BlackBerry App World
TM

.

In this thesis we examine the behavior of mobile applications (commonly referred to as

apps) targeted to Google’s Android platform [9]. While Android apps are Java programs,

they represent an application space quite distinct from that of standard Java platforms for

enterprise and server applications. Thus, it is likely that they will exhibit behaviors some-

what different from previous standard Java workloads. Having a profiling infrastructure

that natively handles apps targeting Android allows exploration of that space, as well as

comparison against other Java platforms.

1.1 Objective

Our objective is to analyze and profile the memory behavior of Android apps, and to

relate that behavior to the underlying Dalvik virtual machine (Dalvik) on which they run.

To do this we must understand not only the nature of the apps themselves, and their memory

demands, but also the internal details of Dalvik’s memory management and how it meets

those demands. This thesis addresses both of these components for understanding memory

behavior of Android apps.
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Table 1.1: Language breakdown in Android

Language Code lines Comment lines Comment ratio Percentage

C 4,714,358 1,543,234 24.7% 35.2%

C++ 2,262,766 801,948 26.2% 17.4%

Java 1,391,395 983,138 41.4% 13.1%

All 14,986,373 3,644,452 24.318% 100%

1.2 Contribution

Our contribution is instrumentation of the Dalvik memory manager to extract platform-

independent (i.e., independent of Dalvik) metrics from execution of arbitrary Android apps,

including both the industry-standard Android benchmark Quadrant [17], and a selection

of standard Java benchmarks drawn from the SPECjvm98 and DaCapo suites [2, 5] that

we have ported to Android [9]. The latter serve as reference points for validation of our

profiling infrastructure, since their behaviors have previously been studied extensively [2,

6].

Intrinsic app memory behavior may influence power consumption, memory footprint,

and responsiveness, but the ways in which Dalvik services that behavior may be as big an

influence on those metrics. The tools that we develop in this thesis will allow app behavior

to be correlated with the underlying implementation strategies used in Dalvik, to diagnose

pathologies in those strategies, and to inform innovations in Dalvik’s implementation that

can better serve the needs of apps.

1.3 Android and Dalvik

Android is a free development platform based on Linux and open source [11]. There

are 32 languages used in the Android source code repository. Table 1.1 shows the top

languages used to write the Android platform [7].
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Dalvik is designed and written by Dan Bornstein to be suitable for systems that are con-

strained in terms of memory and processor speed. Dalvik compiles Java application code

into machine-independent instructions similar to Java bytecodes, which are then executed

by Dalvik on the mobile device.

The main reason for a non-standard bytecode format is the fact that Dalvik uses a

register-based architecture instead of a stack-based one. Dalvik uses an instruction set that

can directly access local variables as if in registers, in order to reduce overhead of loading

and storing values from the stack. The compiled Android code format is dex (Dalvik Ex-

ecutable) files which are in turn zipped into a single apk (Android Application Package)

file on the device.

A Dalvik tool called dx converts Java class files into dex files. Multiple classes can

be included in a single dex file. During the conversion process, all the constants shared

between classes are included once for the sake of space optimizations. As of Android 2.2,

Dalvik has a just-in-time (JIT) compiler. The latter can modify the executable code for fur-

ther optimizations. Methods frequently executed may be inlined to reduce call overheads.

Dalvik allows multiple VM instances to run at the same time and takes advantage of the

underlying operating system (Linux) for security and process isolation.

Dalvik applications are usually developed in Java language using the Android Software

Development Kit (SDK). The latter works on Windows, Linux, and Mac OS X, creating

an app that can be deployed on any Android device. Native Development Kit (NDK) is

another tool used to write applications or extensions in C or C++. NDK is used to write

and deploy native libraries (as described in the following section).

1.3.1 Android Architecture

The Android platform is built as a stack of various layers running on top of each other

such that the lower-level layers provide services to upper-level layers [3]. Figure 1.1 shows

android layers.
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Applications

Application Framework

Libraries Android Runtime

Dalvik Virtual 
Machine

Linux Kernel

Core Libraries

libc

Figure 1.1.: Android architecture

Linux kernel: Android uses Linux for its operating system services such as networking,

process management, and memory management. The Android kernel includes sev-

eral additions and changes to the Linux kernel:

hardware support: the kernel has ARM architecture ports, and other necessary sys-

tem code to support various Android devices;

shared memory: Android has a file-based shared memory system called ashmem,

allowing processes that are not related by ancestry to share memory maps by

name;

binder: a lightweight system for inter-process communication (IPC) and remote

procedure call (RPC);

wakelocks: Android’s default state is to sleep in order to reduce power consumption.

Wakelocks prevent the device from going to sleep [8]; defining a wakelock of
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type IDLE prevents the device from entering the low-power state, enabling it

to be more responsive; defining a wakelock of type SUSPEND prevents the

system from suspending; the currently defined wakelocks can be queried using

the command cat /proc/wakelocks;

logger: a logging mechanism optimized for high-speed writes.

Native libraries: These are pre-installed by the phone vendor. The libraries represent the

modules compiled down to native machine code to provide some of the common ser-

vices needed by the apps. An example of these libraries are 2D/3D graphic libraries.

The libraries are not standalone processes. Instead, they are called by higher-level

programs.

Android runtime: The Android runtime includes Dalvik and the core Java libraries. The

core Java libraries that come with Android are different from Java Mobile Edition

libraries. We show the difference between the core libraries later in Section 4.2.

Applications run as separate processes within the Dalvik kernel. Each application

runs in its own instance of the Android run-time system, and the core of each instance

is a Dalvik VM.

Application framework: The application framework provides services to apps. The most

important parts of the framework are as follows:

activity manager: manages the app life cycle;

content provider: provides encapsulation of data that needs to be shared between

applications;

notification manager: handles events such as arriving messages and alerts.

Application: The highest layer in the Android architecture is the application. An app rep-

resents a program with a distinct system identity that runs on the device and interacts

with the user. Each app has a stack of components: Activities, Broadcast-Receivers,

Services, and Content-Providers. Security features are provided through a permis-
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sion mechanism that enforces restrictions on the specific operations that a particular

process can perform [10].

1.4 Thesis Organization

We have only briefly described some of the main characteristics of Android and Dalvik.

Further details appear in later chapters. In Chapter 2 we describe memory management in

Dalvik. Chapter 3 defines the set of metrics we use to analyze the Dalvik memory behavior,

followed by a description of our implementation methodology.

Chapter 4 lists the main characteristics of the apps and benchmarks used to validate

the memory profiler. The description will be accompanied by details of the procedure

we followed to port standard Java benchmarks to Android, along with some of the main

differences between standard Java’s core libraries and those of Android.

The specifications of the environment used to evaluate the profiler is described in Chap-

ter 5, which also includes the results generated from our memory profiler for the Quadrant

standard benchmark for Dalvik. Finally, we give conclusions and suggest directions for

future work in Chapter 6.
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2 DALVIK MEMORY MANAGEMENT

Android relies on Linux-permissions to achieve security; it runs each VM instance in a

separate process. In order to reduce the overhead of this separation model, Dalvik shares

common classes and objects across running VMs. Each application shares one master copy

of all the read-only portions of the VM, using copy-on-write. As a result, Android

can run more programs in a tightly-constrained memory environment. The first VM to

start, called the Zygote, is the process responsible for loading the common objects into

memory. In this chapter, we describe in detail the memory initialization steps and the

garbage-collection implementation in Dalvik.

2.1 Garbage-Collection Implementation

Dalvik uses a Concurrent Mark-and-Sweep (CMS) algorithm [15] to collect dead ob-

jects. The following sections detail the internal data structures used to manage the live

objects and the advantages and the short-comings of the current implementation.

2.1.1 Mark-and-Sweep

Mark-and-sweep (MS) was the first garbage collection algorithm to be developed that

is able to reclaim cyclic data structures [15]. MS is categorized as a tracing garbage col-

lector because it traces out the accessible objects in the program, called reachable-objects

(whether in a direct or indirect way).

MS maintains a set of locations in heap that are not used by any objects. The allocation

requests can be then satisfied by finding the appropriate block of free memory. When an

allocation cannot be satisfied MS stops all threads in order to identify which objects are no

longer reachable.
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f o r each r o o t v a r i a b l e r

mark ( r ) ;

sweep ( ) ;

Listing 2.1: Mark-Sweep algorithm

For the purpose of identifying reachable objects, roots are defined to be the set of local

variables on the stack plus the static variables. The roots represent the starting points from

which the algorithm traces the objects. All objects referenced by the roots are considered

directly accessible by the program. On the other hand, an object is indirectly accessible if

it is referenced by a field in some other (directly or indirectly) reachable object.

By definition, all reachable objects are alive. Otherwise, the object is considered

garbage. MS consists of two phases as shown in Listing 2.1:

1. mark: finds and marks all accessible objects.

2. sweep: scans through the heap and reclaims unmarked objects.

In order to distinguish the live objects from garbage, the object status (mark/unmarked) is

stored in some sort of data structure like tables. By default, all objects are unmarked when

they are created. Thus, the marked field/entry is initially false.

An object p and all the object fields (indirectly accessible) can be marked by using the

recursive mark method shown in Listing 2.2. During sweep shown in Listing 2.2, MS

scans through all the objects in the heap in order to locate all the unmarked objects. The

memory space filled by the unmarked objects is reclaimed during the sweep. Finally, it

resets the mark field of every alive object to set it ready for the next cycle.

MS is guaranteed to terminate as the marked objects are not reinserted back into the

unprocessed queues. sweep does not unmark an object until it is finished scanning.

MS has two major short-comings. Allocating an object of length n requires finding a

contiguous set of memory locations to satisfy the request. The search is not guaranteed to

succeed even if the free memory in the heap contains the required amount of free space due

to the risk of fragmentation. The second short-coming known in MS is the suspension of
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vo id mark ( O b j e c t p )

i f ( ! p . marked )

p . marked = t r u e ;

f o r each O b j e c t q r e f e r e n c e d by p

mark ( q ) ;

vo id sweep ( )

f o r each O b j e c t p i n t h e heap

i f ( p . marked )

p . marked = f a l s e ;

e l s e

heap . r e l e a s e ( p ) ;

Listing 2.2: Mark and Sweep procedures
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the running threads, known as Stop-the-world. Execution resumes only after the unmarked

objects are reclaimed. Dalvik does not address the fragmentation short-coming. Instead,

Dalvik allows running a concurrent collector to reduce pauses due to the suspension of the

mutators.

2.1.2 Concurrent Mark-and-Sweep

CMS does not allow mutators to run until memory is exhausted [12]. As the mutators

allocate, concurrent collectors can run concurrently in order to reduce the overhead of

the pause time incurred from the suspension. The collector suspends the mutators at the

beginning of the collection cycle to scan the roots. Having scanned the roots, the mutators

can be resumed while the collector is running the mark phase. For the purpose of allowing

mutators to run concurrently during the mark phase, a write barrier is used to keep track

of the modified objects O. After the mark phase, the collector suspends the mutators one

more time to visit the set of the modified objects O.

Finally, the collector resumes the mutators during the sweep phase. CMS acquires its

main advantage from reducing the overall suspension time. In the context of smartphones

apps, the pause time reduction leads to a faster response time to user interaction. Hence,

CMS improves the user experience. Listing 2.3 shows the CMS implementation in Dalvik.

2.1.3 Memory Initialization

Constant values used by the VM are hardcoded in system/build.prop. By de-

fault, any constant defined in that file will override the default hardcoded values in the

source code. An instant of Dalvik can run as a standalone process. In the latter case, the

value can be passed as a command line argument.

The initial heap size is specified as gDvm.heapStartingSize. The maximum

heap size is represented by gDvm.heapMaximumSize. dvmHeapStartup sets the
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O b j e c t a l l o c a t e ( s i z e )

r e f = new ( s i z e ) ;

add ( r e f , w o r k L i s t ) ; /∗ i n i t i a l i z e s t h e o b j e c t t o be marked ∗ /

r e t u r n r e f ;

vo id shade ( r e f )

i f ( ! i sMarked ( r e f ) )

se tMark ( r e f ) ;

/∗ w o r k L i s t used t o keep t r a c k o f a l l t h e o b j e c t s ∗ /

add ( r e f , w o r k L i s t ) ;

vo id scan ( r e f )

f o r each f i e l d f i n p o i n t e r s ( r e f )

i f (∗ f != NULL)

shade (∗ f ) ;

vo id c o l l e c t ( )

s u s p e n d T h r e a d s ( ) ;

s c a n R o o t s ( ) ;

r e sumeThreads ( ) ;

mark ( ) ;

s u s p e n d t h r e a d s ( ) ;

/∗ r e v i s i t t h e r e f e r e n c e s m o d i f i e d by t h e m u t a t o r s ∗ /

mark ( ) ;

r e sumeThreads ( ) ;

sweep ( ) ;

Listing 2.3: Concurrent Mark and Sweep procedures in Dalvik
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limit the heap is allowed to grow by setting the value of gDvm.heapMaximumSize to

gDvm.heapGrowthLimit.

Dalvik has three main entities:

• GCHeap: holds all the tables used by the algorithm. Such tables are card-table

and weak-references.

• HeapSource: holds an array of heaps. The active heap will be the first entry

(zero index) while all the other heaps are kept in higher indexes. HeapSource

also holds the softLimit used as a threshold against the current allocated bytes.

Whenever the allocated bytes reaches the softLimit the allocation will fail to

allow the heap growth. To indicate whether the heapSource instance was created

within a zygote process, the field sawZygote is set to true. Finally, the field

targetUtilization is used to keep the ideal utilization of the heap.

• Heap: holds a reference to mspace along with some information about the heap

instance like the start address, size, allocated bytes, and the limit. mspace used

in Dalvik is a dlmalloc implementation [13]. Memory in dlmalloc is allocated

as chunks with 4-bytes overhead for each chunk in order to maintain necessary

metadata. Dalvik aligns the objects on 8-bytes basis, which causes internal frag-

mentation when the actual size is not a multiple of eight. Unallocated chunks also

store pointers to other free chunks in the usable space area.

Once the device starts, dvmStartup manages the initialization of Dalvik. The ini-

tialization will include GC, system threads, class loading and Java Native Interface (JNI)

initializations. Class-loading and initial memory operations will be executed during the first

instance of the first VM known as the zygote. The latter method calls dvmGCStartup

which is responsible for doing all the memory manager initializations. It starts by allo-

cating a contiguous region from Android shared memory. Once it succeeds in reserving

the desired amount of memory, the allocated region will be passed to create mspace to

manage the allocation/deallocation of objects through dlmalloc.
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During the initialization phase, the active heap is created in addInitialHeap which

adds a new heap instance and copy it into the heapSource-array. Figure 2.1 shows

the details of heap startup. Dalvik does not keep the GC-per-object metadata in the object

header. Instead, it keeps tables to store all the marking-status, and the addresses of live data.

There are three tables initialized from Android shared heap during the heap initialization:

1. dalvik-bitmap1: represents live-bits to identify the objects alive that should not

be collected by a collector running concurrently with the mutator.

2. dalvik-bitmap2: represents the mark-bits to keep track of the marked objects

during the mark-phase.

3. dvmMarkStack: used to keep track of the objects being marked while scanning

their object fields.

4. cardTable: represents the data structure to keep track of the dirty objects.

Figure 2.2 shows the memory-layout after the heap’s initialization is completed.

2.1.4 Memory-layout Overhead

Dalvik allocates objects with an 8-bytes alignment. This is the minimum size al-

lowed for an object. An empty object will have a reference to its class and another field

(of four bytes) to hold the object’s synchronization information. Both live-bits and mark-

bits have one bit for every possible object in the heap. During the allocation process,

dvmHeapSourceAlloc sets the live-bit of the object, while the mark-bit will be set

during the marking phase.

The following equations calculate the memory overhead given an initial maximum size

(gDvm.heapMaximumSize) of value B bytes. We can calculate the maximum number

of objects allocated in the heap by assuming that all objects are of size 8-bytes each.

This leads to the worst case scenario shown in equation 2.1.

objects = B/8 (2.1)



15

B 
by

te
s 

re
pr

es
en

tin
g 

th
e 

m
ax

im
um

Si
ze

 o
f h

ea
p

HeapSource

LiveBitmap

MarkBits

markStack

cardTable

markContext

heap0

heap1

bits

..

LiveBits

bits

...

MarkBits

GCHeap

heapSource

GCMarkContext

bitmap

GCMarkStack

CardTable

G
C

H
ea

p

G
C

M
ar

k
C

on
te

xt

GCheap

H
ea

pS
ou

rc
e

M
ar

k
Bi

ts

Figure 2.2.: Dalvik memory layout after initialization

The maximum number of objects allocated is used to derive the maximum size utilized by

the bitmaps. Each 32-bit word in a bitmap will cover 256 bytes of heap objects. This

leads to accurate calculation of the total size required for each bitmap to cover the heap.

Equation 2.2 shows this value with reference to the heap size B. Since Dalvik has two

bitmaps (live/mark), the overhead will be twice the value calculated from equation 2.2.

bitmaps = B/64 (2.2)

markStack is allocated from the shared memory and it should be capable of holding a

number of references equivalent to the the maximum number of objects. As mentioned

earlier, dlmalloc adds four bytes (32-bit architecture) for every allocated chunk (sin-
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gle object in Dalvik’s scope). The extra overhead is defined as a global variable called

HEAP_SOURCE_CHUNK_OVERHEAD.

Dalvik takes into consideration the overhead introduced by dlmalloc when it ini-

tializes the markStack. As a result of the latter assumption, the minimum object size

is 12 bits (without considering the 8-bytes alignment). Each entry in marStack holds a

reference to an object in the heap which requires four bytes as we are limited to 32 bytes

architecture for now. This leads to the value calculated by equation 2.3

objects = B/(8+4) = B/12

markStack = (ob jects∗4)/12

= B/3 (2.3)

Finally, we need to measure the cardTable size. The initial calculated size takes into

consideration the 8-bytes alignment. Adding the alignment constraint to the minimum

object size used in equation 2.3, we get minimum size of 16 bytes. Each object can be

represented by a single bit in the cardTable. Hence, one bit is required to map two

heap-bytes. Equation 2.4 calculates the value used to initialize the cardTable.

cardTable = B/128 (2.4)

Putting it all together, the total overhead is the sum of all the heap components.

cardTable+markStack+bitmaps = 0.372∗B (2.5)

In other words, a heap size of maximum size B bytes can request up to the value calculated

in equation 2.6.

heapSize+ cardTable+markStack+bitmaps = d1.372∗Be (2.6)

Assuming a heap of maximum size 64MB, Table 2.1 shows the maximum size of each

separate component in bytes. Since Dalvik is optimized for very strict memory constraints,

a single VM does not map the pages unless they are used. This will guarantee that the

memory pages allocated to each VM satisfies the physical needs and it will permit a larger

number of VMs to be initialized concurrently. For example, the bitmaps are initialized to

cover the allocated objects but not the entire heap.
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Table 2.1: Memory overhead of Dalvik heap

Memory-Type Size(Bytes)

Dalvik Heap 67,108,864

Card Table 524,288

Live Bits 1,048,576

Mark Bits 1,048,576

Mark Stack 22,369,622

Total 92,099,926

Multiple Heap Initializations

Before Dalvik calls fork for the first time, it finalizes the initialization steps by cre-

ating a new heap, then it sets the zygote-heap to be inactive. Since, all the allocation

requests have to use the active heap (only a single heap is to be active at any point), the

newly created heap will be the place from which all the objects are allocated. Dalvik copies

zygote information from heaps[0] to the next entry heaps[1] to keep the active heap

in entry zero at all times. Figure 2.3 shows the steps in details.

The advantage of using the zygote is to share the common objects/classes between

VM instances. The forked VMs simply read the objects saved in zygote-heap without

the necessary overhead required for initialization. The memory pages containing the shared

objects are copy-on-write to guarantee that any one VM does not affect initialization

of the other VMs.

Finally, Dalvik updates the zygote metadata by setting the maximum heap size to

the current actual memory space used by the allocated objects. The remaining memory

space (difference between initial maximum heap and the current heap size) will be used to

initialize the newly allocated heap.
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2.2 Garbage Collection Cycle

Dalvik defines different specifications for GC. Each specification is designed to fit an

allocation scenario as detailed below. As we mentioned earlier, by default Dalvik starts

with CMS. When CMS is disabled, Dalvik will run a stop-the-world MS collector. The GC

configurations inside Dalvik are:

• isPartial: used to decide whether the collection cycle should consider all the

heaps or not. When the value is set to true, the collector collects all the heaps ex-

cept the one having limits less than the immune objects (objects created in zygote

mode). When it is set to false, the GC will collect objects from the active heap.

• isConcurrent: defines whether the collector thread/mutator can run concurrently

without stopping the world.

• doPreserve: preserves softReferences. The flag is set to false when Dalvik

is doing an aggressive collection. Normal concurrent GC cycles will set this flag to

true.

Figure 2.4 shows the object allocation procedure. The GC triggered in each case de-

pends on the context of the execution in which the collector can act more or less aggres-

sively. Collection modes are defined as:

• GC_FOR_MALLOC: does a partial collection, excluding the immune objects.1 It is

used by the mutator when the latter fails to allocate an object. The mutator puts the

collector hat, checking whether a concurrent collection is already running and finally

it suspends all the threads.

• GC_CONCURRENT: executed by GCD . During allocation, if the allocated bytes ex-

ceeds concurrentStartBytes, the mutator signals GCD to start a collection

cycle. If the daemon times out, it trims pages from the heap and returns them back

to the system. This collection is partial, concurrent and preserves soft-references.

1objects expected to stay alive in the VM
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Figure 2.4.: Dalvik allocation flow

• GC_EXPLICIT: runs as a result of an explicit call from Java code. It is not partial,

it is concurrent and it preserves soft-references.
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• GC_BEFORE_OOM: is used before an out-of-memory exception. This scenario will

be triggered when the memory is exhausted and all the collections fail to satisfy the

size required.

2.2.1 Root Marking

The collection cycle starts by suspending all the threads to mark the roots. Roots are

defined to be the set of all reachable objects from the global VM structure (gDvm structure).

This holds the global data including:

• loadedClasses: hashed by class name, allocated in GC space.

• primitiveClasses: set of primitive types recognized by the system.

• dbgRegistry: registry of objects known to the debugger.

• jniGlobalRefTable: JNI global reference table.

• literalStrings: hash table of strings interned by the class loader.

• jniPinRefTable: JNI pinned object table (used for primitive arrays).

• outOfMemoryObj: preallocated throwable object for exception.

• internalErrorObj: preallocated throwable object for exception.

• noClassDefFoundErrorObj: preallocated throwable object for exception.

After visiting these tables, the marking thread visits all the thread stacks to identify the

local variables and the objects directly accessible from each thread. Finally, The marker

adds the internal tables (local monitor JNI threads) to the set.

2.2.2 Heap Synchronization

The heap is shared between all the threads in a single VM instance. This requires a

mechanism between threads including mutators and collector threads. Each heap has a
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lock to allow exclusive access by one single thread at a time. Any thread allocating or

freeing must have exclusive access by acquiring the heap lock first.

As shown in Figure 2.4, each thread including GCD must acquire the heapLock be-

fore accessing the heap. In the case of the GCD , it needs to keep the lock while an atomic

collection subtask is done.

A collection cycle starts from internal method dvmCollectGarbageInternal

which assumed that the heapLock is already locked. The thread acting as the collector is

of the following two types:

• mutator: when the allocation fails, the mutator acts as the collector; as a consequence,

the the mutator will observe a longer allocation time. If some other thread is running

concurrent GC, the mutator must wait until the collection cycle is completed.

• GCD : thread created for concurrent collection.

During an exclusive lock of the heap, threads cannot access the heap to allocate objects

which affects the overall performance.

2.2.3 Controlling Garbage Collection and Heap Growth

The overhead introduced by frequent collection can be overwhelming. Mutators will

be suspended frequently by the collector and they will remain suspended while their roots

are scanned. The collection cycle will be completed with another round of suspension to

finish marking the objects.

On the other hand, collecting less frequently leads to memory exhaustion. In this case,

the amount of work done by the collector is larger and the mutators will freeze as long

as the collector is still running (shifting to a stop-the-world collection). Keeping in mind

the memory constraints the system was designed for, increasing the collection window will

increase the heap size used by the VMs. This implies that the total pages requested from

the operating system increases which may cause the system to crash in case the physical

memory does not fit all these pages.
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CMS is used mainly to avoid such situations. In Dalvik running CMS, the mutator

thread will check the available free bytes in a heap after every single collection. If the free

bytes value falls below a threshold (defined to 50% of heap-size), the mutator will signal

GCD which in turn starts a collection cycle. In order to trigger a concurrent collection there

is a set of hardcoded thresholds defined as:

• HEAP_IDEAL_FREE: represents the ideal number of free bytes in the heap. It is set

to 2MB.

• HEAP_MIN_FREE: used as a threshold for the current available free bytes. If the

available bytes are below that threshold, the next collection will be stop-the-world.

Otherwise, collection will remain concurrent. The initial value for that threshold is

set to HEAP_IDEAL_FREE/4.

• CONCURRENT_START: used as a threshold to trigger a concurrent GC. Free mem-

ory below this value causes a GC signal. The default value is 128K.

• CONCURRENT_MIN_FREE: used to decide whether the next collection should be

concurrent or not. It is initialized to (CONCURRENT_START + 128K).

Figure 2.5 shows the procedure to grow the heap size. Each heap structure holds a

field called concurrentStartByte. In the case of zygote, this field will be initial-

ized to MAX_SIZE (maximum value stored by four bytes). In newly allocated heaps, the

same field is initialized to the difference between the minimum free bytes allowed and the

concurrent start (HEAP_MIN_FREE - CONCURRENT_START). In the post-allocation

phase, the mutator will check whether the total number of allocated bytes reaches the value

in concurrentStartByte. If true, the mutator will signal the GCD to start a new

collection.

After a full MS, the collecting thread (mutator/ GCD ) adjusts the heap size by call-

ing dvmHeapSourceGrowForUtilization. This updates the foot-print to match

the new target utilization ratio, then calculates the available free-bytes (freeBytes) in

mspace, and finally updates concurrentStartByte as shown in Listing 2.4.
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i f ( f r e e B y t e s < CONCURRENT MIN FREE) {

/∗ Not enough f r e e memory t o a l l o w a c o n c u r r e n t GC ∗ /

heap−>c o n c u r r e n t S t a r t B y t e s = SIZE MAX ;

} e l s e {

heap−>c o n c u r r e n t S t a r t B y t e s = f r e e B y t e s − CONCURRENT START;

}

Listing 2.4: Mark-Sweep algorithm
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Setting a hardcoded threshold inside Dalvik regardless of the VM activity causes the

GC to be triggered very frequently. We now report a common behavior on applications

running on Android. Concurrent GC was triggered very frequently in many circumstances.

When the VM compacted heap size is close to the threshold, any allocation request will

cause the GCD to be signaled. In such a scenario, GCD is collecting a small percentage of

the heap size (1-2%). Any subsequent allocation will trigger another cycle, and so on. This

behavior will continue as long as the compacted heap is equal to the collection threshold.

An ideal solution for such scenarios is to dynamically decide the threshold to trigger the

GC.

GCD waits for a signal to start a CMS cycle. The amount of time it waits is hard-

coded at five seconds, defined as HEAP_TRIM_IDLE_TIME_MS (5*1000). When

GCD times-out, it acquires the heap-lock and starts reclaiming free pages to return them

to the system. Figure 2.6 shows the steps executed in a full MS cycle. The red ar-

rows represents the control-flow executed by GCD . The collection is executed by calling

dvmCollectGarbageInternal (defined by the dotted frame in the graph). The latter

method takes the garbage specifications as arguments.

Trimming is hardcoded without any dynamic consideration of the application behavior.

Pages can be trimmed from the heap despite the fact that shortly a mutator will request

pages to allocate more objects. In that case, the work done by the trimmer thread is in vain

and the collector thread will do more work growing the heap to fit the memory utilization.
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3 METRICS AND METHODOLOGY

In chapter 2, we explained the memory layer in Dalvik. In this chapter, we define a set

of metrics to analyze application behavior while running on Dalvik. We emphasize the

methodology and the implementation adapted to generate the measurements.

3.1 Profiling Scopes

Given the nature of multithreaded programs running on embedded systems nowadays,

one must study the system from different perspectives. Providing information assuming

a single threaded or a uniprocessor environment is insufficient for comprehensive system

analysis. In order to satisfy this need, our system measures the same metric from different

scopes: thread, object type, and object age.

In all the defined scopes, we maintain the illusion of a perfectly compacted heap. This

makes the values generated from our system independent from the garbage collection spec-

ifications. In order to provide a generic analysis, the profiler ignores the overheads defined

earlier in chapter 2. The profiler defines global counters for a single VM instance. The

global counters are used to express the global status of the VM. Such status can be rep-

resented by the total allocated bytes and some other counters which will be explained in

details in the following sections.

In order to provide a status for each monitored unit such thread or object type, we keep

a set of global counters used a container for all the measurements generated for a given

unit.

3.2 Metrics and Profiler Implementation

The profiling system has two main components:
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• dalvik: is the implementation on top of Dalvik responsible of gathering the defined

metrics and responsible of dumping log files to the local storage.

• script-generator: the part of the system responsible for pulling the log files from the

device to generate reports and charts. The generator comprises a set of monkeyrunner-

scripts.1 These are used to automate the interaction with the device without user

intervention.

Log file in 
binary/text 

format

Pull using Adb

graph and 
parser 

configuration

feeds

Parses 
binary/text file

profiler 
generates

1-Push the system image
2-Install app
3-deploy monkey script
4-wait for execution
5-Kill the app
6-signal to dump the data

12

3 4 5

6

Figure 3.1.: Profiler diagram

Figure 3.1 shows the profiler including its two main components. There are six main

steps to generate the information we are interested in:

1. build the image: we modify the system image and then we push the new build to the

device.

2. script: a java program that will push the new image to the device following these

steps:

(a) push libdvm/system-image using adb

(b) install the app to be profiled

1http://developer.android.com/tools/help/monkeyrunner_concepts.html

http://developer.android.com/tools/help/monkeyrunner_concepts.html
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(c) reboot the device

(d) launch the app using monkeyscripts

(e) wait until the script terminates

(f) signal app to dump the log (SIGUSR2)

(g) signal the app to exit (SIGKILL)

3. in parallel with step2: The android device receives the commands through adb and

the profiler will dump the information to local storage.

4. server archives the log file by pulling it from the Android device.

5. feed the script with an xml configuration to parse the file retrieved from the device.

The scripts generate a set of graphs based on the specification read from the config-

uration file

3.2.1 Monitoring Applications Using Android Development Kit

Dalvik Debug Monitor Server (DDMS) displays thread and heap information on An-

droid devices along with other information. DDMS provides a feature to track objects being

allocated and to see which classes and threads are triggering these allocations. The reports

generated by DDMS are very useful for a developer to evaluate his application. However,

relying on DDMS would limit our system to the interface that DDMS offers.

DDMS communicates with the desktop machine through logcat. During our imple-

mentation, we found that dumping reports to logcat does not provide a reliable way to send

all the information to the server. The reason is due to buffer overflow. Incoming messages

after overflow will be dropped randomly.

Android-API provides a set of methods used to monitor some system information

from the application level. In order to use these methods, it is necessary to change the

source code of the applications. Changing source code is not feasible for the applications.

Examples of the methods provided by the API include:
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• getAllocCount: returns the objects allocated from the active heap.

• resetAllocCount: resets the objects counter to zero.

• startAllocCounting: enables the objects allocation profiling inside the VM.

• stopAllocCounting: disables the objects allocation profiling inside the VM.

• startInstructionCounting: enables the instruction counter inside Dalvik.

• getInstructionCount: returns the number of instruction being executed in

Dalvik.

One of the advantages of building our system in Dalvik is to use system memory for storing

system information which makes the profiling independent of the entities being profiled.

3.2.2 Metrics

We define a set of metrics to be gathered. While the metrics are common between

scopes, the significance of each metric can be different for each one.

Live objects

Live-objects is defined as the number of accessible objects in the heap. Once a mutator

acquires the lock to allocate a new object, the relevant counters will be incremented. After

the object is initialized, the system will revisit in case some other counters need to be

updated. The reason behind delaying the counters’ updates is the fact that some information

will be known only after an object is initialized, such as the object’s class.

During memory collection, each collected object triggers a decrement operation to the

counters. At the point of collection, the object metadata is still known to the system and

tracking this information is still feasible. Live objects significantly reflects the allocation

activity of a given entity (an entity can be a thread, class, app, etc.).
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Life time

In the context of GCs, time at any point point is defined as the total memory allocated

to that point in execution. Based on the previous definition, object life-time is defined as

total memory allocated since the object was created until the object is freed. In order to

accurately measure this value, we need to keep track of the time each object gets created.

As described earlier, Dalvik does not store object headers. Instead, all the information is

stored in global data structures (bitmaps, card-tables). We added four bytes per

object to store the required information. The advantage of hiding such information from

the GC data structure is to avoid any conflicts with the GC work.

When an object is allocated, the total allocated bytes birth-time is stored in the header.

An object with birth-time equal to zero will be the oldest object in the system. During

the collection, the collector thread will read the birth-time stored and use it to calculate

the object life-time. Life time is an important metric to decide on the collection strategy

frequently used to compare generational and non-generational GCs [14]. If the objects can

be categorized as two different categories based on life-time, then we can create different

heap regions. The area with smaller life-time will be scanned more frequently than an area

with larger life-time. GC pause times should be reduced by scanning small heap regions in

each cycle.

On the other hand, if objects tend to have the same life-time on average, then the

generational-GC will add an unecessary overhead without gaining significant optimiza-

tions even with extra considerations such as variant nurseries [1]. We derive another metric

known as average-life-time that aggregates the life-time of all the objects belonging to a

certain entity. An entity with higher average has more long-lived objects in the system.

Cohort

Cohort is defined as a time window in the application run time. Window is predefined

statically to divide the application run time into smaller units of time. A mutator allocating

a new object will be filling the currently available cohort. The system keeps accumulating
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the objects sizes being allocated to the cohort until the cohort is full. Once a cohort is

exhausted, a new cohort will be used. Only one cohort is active at any given point of

execution. Objects can span multiple cohorts as we leave no space gaps. We keep an array

of preallocated cohorts from the system memory. Each cohort holds the metrics for entities

allocated during the cohort active time such as live-objects, live-bytes and average-life-

time. Cohorts are used to analyze application behavior with reference to time.

Objects size demographics

Dalvik allocates objects based on 8-bytes alignment. We create a histogram for

object-sizes by keeping a hash table allocated from the system-memory.

We avoided predefining any cut-offs in order to generate a histogram for all possible

objects. Similar to the metrics described earlier, we can deduce some important information

per object size. We used the histogram to study the effect of the non-moving property of

the GC implementation. When a mutator fails to allocate an object, we count the number

of times at which the object size is less than the total available memory in the heap. An

object with size less than available memory would be allocated if the heap was compacted.

When the histogram is relatively balanced, a segregated-free-list[12] can be used to

allocate the objects. When the histogram shows a dominant category, then creating a pool

of items of that category can reduce allocation overhead and the same technique can reduce

space gaps with a locality-tradeoff.

Pointer distances

This metric shows the relation between the objects allocated in the heap. Given a per-

fectly compacted heap, pointer distance is measured by the difference of date-of-birth in

bytes between the target and source object. We keep a global count of the object refer-

ences done (mutations). Then we force a full collection on the entire heap to keep the heap

perfectly compacted. Oldest object has birth time of zero while the youngest object gets a

birth time equal to the total allocations in the heap.
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O b j e c t p o s ( o b j e c t ) {

/ / g e t t h e c o h o r t

c o h o r t = c o h o r t s [ ( o b j e c t .BD/ MAX COHORT SIZE ) ]

/ / c a l c u l a t e t h e c o h o r t p o s i t i o n

f o r ( i < c o h o r t . i n d e x ) {

c o h o r t . pos += c o h o r t s [ i ] . s i z e ;

}

/ / c a l c u l a t e o f f s e t o f o b j e c t w i t h i n t h e c o h o r t

o b j e c t o f f s e t =

( o b j e c t .BD % MAX COHORT SIZE) / ( c o h o r t . s i z e / MAX COHORT SIZE ) ;

o b j e c t p o s = c o h o r t . pos + o b j e c t o f f s e t

}

Listing 3.1: Object position algorithm

When a reference field is updated, we measure the distance between the source and the

target. If the source older than the sink, the distance between objects is considered to be

in the positive direction. Otherwise, the distance is considered negative. The distance di-

rection is significant to determine the allocation methodology across different applications.

The algorithm in Listing 3.1 shows the way we calculate the object position. This is

the same techniques as used by Blackburn et al. [2]. The pointer distance can then be

calculated as we show in Listing 3.2. We added the field offset to the pointer distance to

get an accurate value. The offset field can be significant in large arrays or in large objects

spanning multiple cohorts.
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P o i n t e r d i s t a n c e ( s r c , f i e l d , d o t ) {

/ / g e t t h e p o s i t i o n o f bo th o b j e c t s

s r c p o s = O b j e c t p o s ( s r c ) ;

d s t p o s = O b j e c t p o s ( d s t ) ;

/ / c o n s i d e r t h e f i e l d o f f s e t

d i s t a n c e = s r c p o s + o f f s e t ( s r c , f i e l d ) − d s t ;

r e t u r n l o g ( d i s t a n c e ) ;

}

Listing 3.2: Pointer distance algorithm
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3.3 Scopes

3.3.1 Thread Scope

There is not enough information about how multithreading features are utilized on

smartphone apps. Our profiler, through the thread analysis, shows the total number of

threads, along with the live threads.

A high number of allocation-active threads implies that the application is utilizing the

multicore features to some extent. The reports generated from our profilers include the

system threads. It is feasible to exclude all system threads but we preferred to include them

in the reports in order to build an intuition about the whole components.

Internal Threads

All the threads are native pthreads. Internal VM threads are in the “system” thread-

group, while other threads are in “main” thread-group. The list of system threads includes:

• Main: the first thread created in Dalvik. Sometimes, it is called UI-thread (as we

will describe in section 4.2.1).

• GC: daemon thread responsible for collecting garbage objects concurrently.

• Compiler: responsible for dealing with compilation tasks.

• Signal-Catcher: handles signals in Dalvik. It is used to dump thread stacks.

• Stdio-Converter: reads data from stdout/stderr and converts them to log

messages.

• JDWP: Java Debugger Wire Protocol thread.

All internal threads are created by method dvmCreateInternalThread except Main.

All threads are visible by default to the code running in the VM (the only exception is

JDWP). Before starting a collection cycle, GCD sends a suspension request to all the
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threads. A suspension request will be checked by each thread at certain points (called

safe-points) in the main interpreter loop. As described in chapter 2, GCD only runs after

all the threads respond to the suspension request.

Suspended threads wait on a conditional variable, and are signaled en masse. This

raises a concern that objects allocated by a suspended thread are invisible elsewhere in the

VM. Such objects will be collected by the garbage collector while they are still referenced

by one of the suspended thread. To prevent these objects from being collected, each object

is automatically added to a track-list and it will be removed from the list after it becomes

visible to the root set.

Thread Profiling

Dalvik maintains a list of threads running in the VM called thread-list. Application

threads are added to the same list. In order to accurately measure memory behaviors, we

added four extra bytes in the object header to store the owner of each object (the thread

allocating an the object). Each time an object is allocated, we determine the current thread,

then we increment the counters of the thread accordingly. When a thread terminates, Dalvik

removes it from the thread-list. After a thread gets detached, GC can collect the object-

thread. To avoid the situation when we we have objects referencing a dead thread, we keep

the thread-profiling records in a separate structure in the memory system to be independent

of the actual life time of the thread. When a thread gets detached, we change the thread

status to be dead.

Marking the object by its owner thread extended the information generated by the sys-

tem to include live-objects, live-bytes, life-time, number of array objects, total allocated

space per a single thread. Since the system keeps track of any thread added to the list at

runtime, threads created during initialization phases (zygote) will be also listed in the

profile system.
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3.3.2 Class Scope

Class scope displays information by object types. Applications running on Android

have different natures based on the following observations:

• applications used by user on daily basis rely heavily on graphical packages. Such

applications are expected to allocate objects from Android packages.

• many VMs instances running on Android device are services initialized when the

system boots. Services will use more of the libraries defined in the Android core

system.

Grouping behavior by type can give pointers for potential optimizations. Optimizing a

specific class allocation can lead to significant performance gains.

Class Profiling

In order to implement the profiling successfully, the injection is deferred until the object

is initialized. A hash table is used to keep track of all the classes loaded in the VM. Once

the object is initialized, the class referenced from the new object will be used to lookup the

hash. If the class entry already exists, the counters will be updated accordingly. Otherwise,

a new entry will be added to the hash(while marking the first time an instance was created).

When the object is collected, the counters have to be updated by updating the relevant hash

entry.

At any execution point, there will be a record for all the loaded classes. Some of these

classes could be loaded before the application starts execution. This is due to the fact that

the profiling system counts all the classes once the new heap is created (see chapter 2). The

class record holds live-objects, current-bytes, total-bytes, total-instances and the average

life time of class instances. We mark the time in which the first instance of that class was

allocated. This can help in sorting the classes based on the time they were loaded in the

application which by turn helps in excluding some events (i.e events triggered prior the

application startup).
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The class profiling can be extended further to aggregate metrics by class packages. The

aggregation can show the metrics based on functionality such as graphical packages.

Extending Class-profiling

Blackburn et al. [2] built a benchmark “DaCapo” based on real Java applications. Built

on top of real Java applications, DaCapo possesses object oriented characteristics relevant

to real world systems. Code complexity and Level of inheritance are examples of the metrics

used to evaluate the VM.

The same measurements can be generated from our system. It is also feasible to com-

bine the profiling described in this section and section 3.3.1 to construct a relation between

threads and the loaded classes during run time. Finally, mapping between threads and

classes can identifies threads functionalities.
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4 APPLICATIONS AND BENCHMARKS

In this chapter we show the set of the applications used to run the experiments. Our tar-

get is to run common Android applications available on Google Play
TM

. In addition to

applications available for android users, we ported a set of Java benchmark applications.

4.1 Android Benchmarks

There are many popular Android benchmarks available on Google Play store. The

following list includes some of the most popular benchmarks excluding Quadrant1 which

will be described in details in this chapter:

• Sunspider tests the JavaScript language.

• Linpack tests how fast a computer solves a dense system of linear equations. The

results of the score are displayed in millions of floating point operations per second

(MFLOPS).

• Antutu Benchmark includes many tests like memory performance, CPU Integer Per-

formance, CPU Floating Point Performance, 2D 3D Graphics Performance, SD card

read-write speed, and Database IO performance testing. There is also “Antutu-

3Drating-Benchmark” which focuses on 3D part of graphics processing unit (GPU)

in Android devices.

• CF-Bench is a CPU and memory benchmark tool designed to handle multi-core de-

vices. It tests both native as well as managed code performance.

1http://www.aurorasoftworks.com/products/quadrant

http://www.aurorasoftworks.com/products/quadrant
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• Smartbench is a multi-core friendly benchmark application that measures the overall

performance of the device. It is suitable for both productivity users and 3D gaming

users.

As we have shown in the comparison between Jelly Bean and ICS, the software layer has

a significant rule on the overall experience. The benchmarks provide a way to compare

different devices. However, they do not provide a feedback on the software behavior re-

gardless of the host. The user should be aware that the scores reported by the benchmarks

are not sufficient to prove device superiority. All of the benchmarks described in the pre-

vious list are not available publicly. It is not feasible to validate the tests running on the

benchmarks and to evaluate how relevant they are to the user applications. For example, a

benchmark like Linpack2 was mainly designed for performing numerical linear algebra on

digital computers. Smartphone users may find that the significance of such benchmarks is

not relevant to their daily use.

4.2 Porting Java Benchmarks

Since Dalvik is running applications originally written in Java language, we can run

Java applications on Android to compare the behaviors with the same application running

on Dalvik. This comparison has some limitations due to many reasons. Among these

reasons is the huge difference in both scale and scope between the embedded devices and

desktops.

4.2.1 Java Standard Libraries

Android supports many packages from Java 6.0 API.3. Some Java libraries are not

fully supported on android and some others packages are completely left out. Android sup-

ports the higher level concurrent library java.util.concurrent which makes port-

2http://www.netlib.org/linpack/
3http://docs.oracle.com/javase/6/docs/api/ To the current time, Java 7.0 features were not
applicable on Android platform

http://www.netlib.org/linpack/
http://docs.oracle.com/javase/6/docs/api/
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ing multithreaded Java programs to Android platform a feasible process. Data structures

defined in the same package are supported by definition. Android also supports some of the

commonly used Apache third-party4 libraries such as apache httpwhich represents the

core interface and classes of the HTTP components.5 Android has its own system-calls to

do the graphics. java awt, javax swings, javax print and javax imageio

are not supported on android. Although, Android supports javax.xml.parsers pack-

age, it does not support the rest of the javax.xml package. There are many other libraries

not supported on Android such as javax.rmi and java.applet.

4.2.2 Dependencies

In order to port Java programs, there are some few considerations that should be veri-

fied. Some of the steps can be automatically verified while some others need to be manually

verified by the developer. Checking dependencies is the first step to port a Java program

(excluding interface package like swings and awt).

If the java app has a set of dependencies (jar files), then all these jar files have to be

successfully ported to Android. This step can be straightforward as long as all the libraries

are supported as described in Section 4.2.1. Class file can be directly translated to Android

executable file using dx tool which is available in android-SDK.

If any the libraries is not supported, then the code has to be modified to avoid importing

unsupported libraries. In some circumstances, some libraries could be imported in the Java

programs to provide a feature that does not fit with the embedded platform (i.e remote

method interfaces). Removing the out-of-context classes can get rid of the unsupported

dependencies.

4http://apache.org/
5http://developer.android.com/reference/org/apache/http/package-summary.
html

http://apache.org/
http://developer.android.com/reference/org/apache/http/package-summary.html
http://developer.android.com/reference/org/apache/http/package-summary.html
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4.2.3 User Interface

Java UI calls have to be replaced by Android APIs. Such step can be very tricky if the

Java app is not built in a Model-View-Controller (MVC) separating the representation of

information from the user’s interaction. Among many issues that should be considered in

this step, is the memory optimizations. GUI structure can affect the memory performance

on Android device. The main reason causing memory leaks is the fact that views have a

reference to the entire activity and therefore to anything the activity is referencing. Some

practices are recommended to be used while redesigning the application to run on android

in order to avoid memory leaks. Examples of good practices in Android GUI are:

• Recycling views instances

• Usage of weak references for static inner classes

• Avoiding long-lived references to activities

4.2.4 Threads

There are some considerations when dealing with threads especially the UI thread.

The first thread created in the VM is called “Main”. The latter is the thread using which

the application interacts with Android UI toolkit6 and through which all drawing events are

done. This qualifies the Main thread to be called UI-thread.

Android UI is not thread safe. In order to guarantee correct execution, it is necessary

that any access to UI goes through the UI thread. Any other worker thread should only be

used for doing computation and logic tasks.

4.2.5 File Manipulation

Android provides several options to store persistent data. Each application can have

two different areas to store files:
6android.widget and android.view packages
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• Internal: files stored in that area are private to the app and they are always available

as long as the app is installed on the device.

• External: SD cards are used to store app files. The external storage may be removed

at any time. Files stored on external storage can be shared between apps. Any app

writing to external storage has to be configured to do so in the manifest7 file.

When porting a Java program, the developer should decide whether the data is private

or shared with other apps. Configurations and properties files (static files) are stored in

Android-Raw folder. Accessing files from Android-Raw is done by android-API.

Using Android-API to access files can be sufficient to make the application ready to run

on Android device. Finally, an I/O wrapper can be used to replace system.out and

system.err by redirecting log messages and exceptions to Android-log.

4.3 DaCapo

As mentioned earlier, Blackburn et al. [2] built a benchmark based on real-world Java

applications.8 Many DaCapo applications like fop, sunflow and batik have non-supported

dependencies on Android platform. DaCapo defines a set of workloads to control the

benchmarkworkload:

• large is defined for heavy loads

• default is used as lower workload

• small is used in some applications with heavy duties.

We ported two applications described in details in the following two sections.

7http://developer.android.com/guide/topics/manifest/manifest-intro.html
89.12-bach is the last DaCapo release published in 2009. There is an ongoing effort on mercurial repository
that is not released yet.

http://developer.android.com/guide/topics/manifest/manifest-intro.html
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4.3.1 Lusearch

Lusearch is a java application that uses lucene
TM 9 to do a text search of keywords

over a corpus of data comprising the works of Shakespeare and the King James Bible. For

Lusearch, the large workload runs 128 queries with thread limit equal to 128. The default

workload runs 64 queries with 64 thread limit. We excluded both workloads as we found

that the number of threads and the queries is not relevant to Android apps.

Table 4.1: Lusearch characteristics on Dalvik

Characteristic Value

Total-Allocation 135MB

Maximum-Live 800KB

Live Objects 8,000

Loaded Classes 551

Array Classes 68

small workload runs eight queries and limits the threads to eight. Table 4.1 shows

Lusearch characteristics on Android with “small” configuration. The total allocation is

135MB with a maximum of 800KB during the run time. During the process of porting

Lusearch, we substituted lucene2.4 by lucene3.6. The lucene2.4 byte code is

relatively old to be translated by dx tool. In addition to dx incompatibility, lucene2.4

had a class implementation apache.lucene.search.RemoteSearchable which

depends on unsupportedJava-RMI package. Substituting the lucene core library re-

lease used in DaCapo required some changes in the benchmark code since the API is dif-

ferent in both releases.
9Apache Lucene is a high-performance, full-featured text search engine library written entirely in Java. It is
a technology suitable for nearly any application that requires full-text search, especially cross-platform.
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4.3.2 Luindex

Similar to Lusearch, Luindex uses lucene to index a set of documents; the works

of Shakespeare and the King James Bible. The work done to port this application is the

same as described in Section 4.3.1. After a run is complete, DaCapo uses the size of the

generated index files to validate the correctness.

4.4 SPECjvm98

SPECjvm98 is a benchmark suite that measures performance for Java VM (JVM)

client platforms [5]. It contains eight different tests, five of which are real applications or

are derived from real applications. Seven tests are used for computing performance metrics.

One test validates some of the features of Java, such as testing for loop bounds. It is retired

since the release of SPECjvm2008.

4.4.1 Compress

Compress is a simple Java compression utility. It is used for performance evalua-

tion. In order to port Compress, it was important to remove all the user interface classes

(JFrames) and to build a new interface for the Android device.

Table 4.2: SPECjvm98-Compress characteristics on Dalvik

Characteristic Value

Total-Allocation 105MB

Maximum-Live 9MB

Live Objects 4,700

Loaded Classes 354

Array Classes 41
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Table 4.2 shows the characteristics running on Dalvik with 105MB total allocation and

9MB maximum heap size. It was found that the majority of objects being allocated dur-

ing the runtime are of type arrays. The object-oriented characteristics we measured on

Compress matches the same results evaluated by Blackburn et al. [2].

4.5 Quadrant

Quadrant benchmark10 tool is available on Google-Play. There are two versions that

provide overall of twenty one tests covering the processor, memory, input, output, 2D

graphics and 3D graphics performance. We used Quadrant Professional which include

all the above tests.

Table 4.3: Quadrant characteristics on Dalvik

Characteristic Value

Total-Allocation 22MB

Maximum-Live 6MB

Live Objects 225,000

Loaded Classes 1,401

Array Classes 87

Table 4.3 shows characteristics of running Quadrant Professional on Android. The

runtime will trigger 22MB of total memory and maximum heap size of 6MB approximately.

10http://www.aurorasoftworks.com/
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5 MEASUREMENTS

In this chapter, we show results from running our profiling system on a set of selected

applications. The chapter starts by a detailed description of the environment used in the

experiments.

5.1 Android Powered Device

We avoided using android-emulator1 because of its functional limitations. For instance,

running multithreaded applications on an emulator may not reflect the same behavior on

powered devices.

Despite the fact that Android is available as an open-source project, changing the soft-

ware layer of commercial smartphones is not feasible. The root branch allows a generic

build which does not work on the device as the system image will be missing the necessary

libraries to interface with the hardware components. Building Android from root repository

is generic and the image built does not work on commercial smartphones.

In our experiments, we used DragonBoard
TM

Snapdragon
TM

S4 Plus APQ8060A Mo-

bile Development Board (DB). DB has dual-core CPUs, Android 4.0 operating system,

WLAN/Bluetooth/FM (WCN3660), GPS (WGR7640), 1GB SDRAM, 16GB eMMC,

microSD, micro HDMI, mini-USB.

We pushed a modified image to DB using Android Debug Bridge (ADB)2. The step

of running the modified system is considered a sanity check for the profiling system. A

broken implementation will cause a failure during the system startup.

1available on android developer web site
2ADB is a versatile command line tool that allows communication with a connected Android-powered device

WLAN/Bluetooth/FM
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Operating System

The Operating system used in our experiments is Android 4.0, also known as Ice Cream

Sandwich (ICS). Google
TM

released Jelly Bean
TM

which was not supported by the time we

develop our system.

Generally speaking, users report that Jelly Bean is faster on average in most of oper-

ations. This is due to some enhancements done in graphics layers. The graphic’s tuning

reflects faster execution time on Jelly Bean compared to ICS. Application running on An-

droid rely heavily on graphical layer and small optimizations done in this layer will do a

huge impact on the overall system. Even simple operation such as opening and closing

apps on the device is affected by the graphics.

We compared the VM implementation in both release (Jelly-Bean and ICS) to verify

whether the memory-management in Dalvik is the same or not. We concluded that there is

no difference concerning the latter scope.

Beside graphics enhancements there are some other features added to Jelly Bean such

as Google Assistant and voicemail enhancements which are not in the scope of this thesis.

5.2 Quadrant Results

In this section we show charts generated from our profiling system on Quadrant Profes-

sional. As we described in chapter 2, VM initialization is done by zygote which implies

that some of the values are generated during the initialization phase.

Once Android system boots and Zygote finishes initialization, Quadrant will inherit

some of the objects loaded by the parent process. In order to successfully monitor all the

objects, the profiling has to start even before the app starts executing.

Any objects allocated or freed from the active heap (non-zygote heap) will be profiled

by our instrumentation. We set the default maximum heap size to 64MB and we force a

perfectly compacted heap by collecting every 64KB of allocation.
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5.2.1 Heap Composition

In this section, we show the heap composition in Dalvik while running the full tests

on Quadrant app. Each graph plots heap composition in lines of constant allocation as a

function of time, measured in allocations. We set the cohort size to 256KB (four times the

size of GC window). The count of cohorts depends on the total allocations done by the app.

The top line corresponds to the youngest cohort representing the total volume of live

objects in the heap. The bottom line represents the oldest cohort. Usually, the oldest cohort

is filled during the creating of the new heap before the app starts.
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Figure 5.1.: Heap volume

Figure 5.1 shows the heap volume on y-axis, measured in bytes, as a function of time

on x-axis, measured in total allocations. Y-axis indicates the maximum amount of memory

allocated at any time, while the x-axis shows the total allocations. The gaps between each

of the lines reflects the size in each cohort which implies that a gab should never exceed the

maximum cohort size. When objects of a certain cohort are collected, adjacent lines move

closer together till they merge when the cohort is fully collected.
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It is noticeable that older cohorts tend to live longer than young cohorts. The older

cohorts are also characterized by the constant size as they keep their size fixed during

execution. This is due to the fact that cohorts allocated at the beginning of execution include

classes, exception objects and objects used by Android activity once it starts. These objects

tend to stay alive for the entire program execution.

On the other hand, young cohorts are filled by app objects. The cohorts endorsing

these objects live as long as the objects are accessible. The latter cohorts shrink after each

collection cycle which leads to the shape in Figure 5.1.

As we mentioned earlier, the cohorts can be used to analyze the app behavior over time.

In the time frame 13.5-21.5MB, Quadrant switches to a another test phase (2D and 3D

graph) during which it allocates objects that are characterized to have bigger size and an

average life-time equal to the test runtime. This leads to the “stair” shape as shown in the

figure.
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Figure 5.2.: Live objects per cohort
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Figure 5.2 shows the number of live objects per cohort. The gab between each line is

the number of live objects belonging to the upper line. Line will get closer to each other

until they merge when all the cohort objects are collected.

The top line represents the total live objects in the heap at any point of execution. An

object can span multiple cohorts but we count it only once, with the oldest cohort the object

is spanning. This explains why some cohorts exist in heap volume Figure 5.1 while they

do not in the live objects plot.

The maximum number of objects a cohort can have is calculated in equation 5.1:

max objects per cohort = max cohort size/8 (5.1)

The minimum number of objects is zero since an object can actually span multiple cohorts.

An example of such case can be highlighted by looking to both Figures 5.1 and 5.2 at

execution times 7.9 and 12.5 on the x-axis.
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Figure 5.4.: Live arrays per cohort

Figures 5.3 and 5.4 show the live size and the live count including only array objects

respectively. Similar to the live objects plots and the heap volume figures described earlier,

we show the same metrics only when the object is an an instance of a class.

The data is displayed by cohort to reflect the array allocations behavior as a function of

the execution time. A cohort that does not enclose arrays will not be represented in these

plots. The gabs between lines represent the count or the size of the live arrays belonging to

the cohort.

Figure 5.3 shows the total size allocated by arrays. By referring to the previous figures,

we can see that execution time between 7.9-9 on the x-axis, the arrays use 60% of total

heap size and at point 21 arrays use 25% of the total 6MB heap size. Figure 5.4 shows the

number of live array instances.

The latter two figures show the significance of array optimizations on Dalvik’s perfor-

mance taking into consideration the time spent during arrays’ collections and the impact

of the pause times on the user experience. JIT optimizations can significantly speed up the

execution time considering array operations. Optimizing the collection of large arrays can
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lead to significant performance gains. Example of these techniques is to combine arraylets

and semi-space collection to reduce the pause time introduced by the collector [16].
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Figure 5.5.: Average life time per cohort

In Figures 5.5 and 5.6, we show the average life time of the instances for both objects

and arrays respectively stacked by cohort.

The average life time can give insights on the collection rates since the average life time

is updated only when objects get collected. Comparing both figures we can see that they

have almost the same shape except the fact that Figure 5.4 is a subset of Figure 5.5.

5.2.2 Object Size Demographics

This section shows the object size demographics in Quadrant. As we mentioned earlier,

we exclude the allocation metadata overhead. The results show that the demographics vary

frequently with time.

Figures 5.7 and 5.8 show the object size demographics histograms. The histogram plots

the percentage of objects on the y-axis versus the actual size on x-axis. The percentage is
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Figure 5.6.: Average life time for arrays per cohort
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calculated based on the total of all object sizes. Each bar is stacked based on the count

allocated by a single cohort. Displaying the stack by cohort shows the contribution of each

cohort in allocating the object of the specified size (objects can belong to different classes)

which Such information gives insight on the app behavior from the object size point of

view.

Figure 5.7 shows the total allocated objects of each size over the entire runtime. The

highest percentage of allocation is recorded by objects of size 24B. By splitting the graph

vertically, the graph shows that the highest allocation scores are recorded by objects of

sizes less than 256B.
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Figure 5.8.: Live objects histogram percentage

Similar to the total allocated objects, figure 5.8 shows only the live objects reported

during the entire execution. The histogram shows that majority of small object sizes were

allocated by the same cohort. This indicates that Quadrant has a phase in which it allocates

many objects of sizes 16 and 24 respectively (including alignments).
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Figure 5.9.: Live objects by histogram

Figures 5.10 and 5.9 plot heap composition in lines of object sizes as a function of

time, measured in allocations. These graphs show the heap composition based on object

size demographics.

Live objects are grouped based on their size and each group is represented by a single

line. The bottom line represents the objects of size 8B while the top line represents the

largest objects allocated in the heap. The gaps between each of the lines reflects the amount

in each object size. When objects die and the number of live objects in the same object size

is getting less, the lines get closer until they merge (when the live objects is zero).

Figure 5.9 shows the number of live objects during the runtime. The largest gaps in the

plot shows that the majority of live objects are 16 and 24 bytes respectively as we pointed

earlier from pervious graph. Since the x-axis shows the time, measured in allocations, we

can see the change of Quadrant’s behavior over time switching between test phases.

Finally, figure 5.10 shows the total memory occupied by a single group at any point of

execution time. One single group can occupy space bigger than the sum of all the other
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Figure 5.10.: Live size by histogram

objects. For example, on the x-axis, the period between 7.5-9MB shows that the one

single group occupies half of the heap size. The latter group has one single array.

5.2.3 Threads

The applications running on Dalvik are multithreaded. In this section, we show the

metrics clustered by threads. The x-axis in the graphs represent time, measured in total

allocations.

Figure 5.11 plots the contribution of each thread in the heap volume. Each line repre-

sents an active thread allocating from the VM heap. The gab between the lines represent

the total size of heap occupied by that thread. The thread lines are sorted by the time,

measured in total allocations, the threads are attached to the thread list inside Dalvik.

When a thread dies, the line representing will stay as long as the objects allocated are

still alive. The lines merge only if all the objects allocated by a given thread.
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Figure 5.11.: Heap volume by thread
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Figure 5.12.: Live objects per thread
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We can see that there is one mutator doing aggressive allocation at a time. The other

mutators tend to maintain their portion of the heap. The latter observation implies that

Quadrant relies on one mutator We conclude that the graph tests done in Quadrant rely

heavily on one single mutator doing all the memory allocations.

Figure 5.12 plots the number of live objects clustered by the owner thread. The figure

reflects the frequency of the allocation rather than the heap volume used by the thread. The

chart suggests that there is one dominant mutator with frequent allocation requests.

Referring to the synchronization mechanism used inside Dalvik (see Section 2.2.2), the

exclusive access incurs unnecessary overhead on the app execution since the mutators allo-

cate in a mutual exclusive fashion. The execution phase on x-axis framed 13.5-21.5MB

of allocations sets an example for such behavior. Each time, the mutator allocates an object,

it has to lock the heap. The overhead of the heap could be reduced if the mutator has its

own private heap.
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Figure 5.13.: Arrays total volume per thread

Figures 5.13 and 5.14 show the live size and the live count of arrays allocated by each

thread.
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Figure 5.14.: Live arrays per thread
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Figure 5.15.: Average life time per thread
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Figure 5.16.: Average life time for arrays per thread

Figures 5.15 and 5.16 show the average life time of objects and arrays per allocator

thread. The number of lines displayed in these figures is different from the previous plots.

This is due to the fact that the average life time metric takes into consideration all the objects

being collected. Since, we start profiling once the new heap is created, many threads were

attached to the thread list during the parent life time (the ancestor processes representing the

path from zygote to the current app). All objects allocated during that path will influence

the average life time.

5.2.4 Object-oriented Analysis

This section shows the metrics clustered by object types during Quadrant’s life time. As

soon as the new heap is created we start profiling the classes of the objects being allocated

in the new heap.
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As mentioned in chapter 3, the information is deferred until the object gets initialized.

Before the initialization, the memory manager only knows the memory required, including

the alignment, by the object.
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Figure 5.17.: Heap volume by class

Figure 5.17 shows the space occupied by each object class. The lines are sorted by class

name. The lines merge when the objects are collected from the heap.

Figure 5.18 shows the number of live objects per class while Figure 5.19 shows the

average life time of objects allocated for each class.

To summarize the information in previous plots, the tables from 5.1 to 5.3 show the

total loaded classes and the classes of type arrays. The plots show the classes loaded since

zygote created the app VM.

Tables 5.1 through 5.3 list the top records of class names sorted by live objects and

show the percentage of total live objects. Each table shows the live, total objects and the

total volume used by the given entry.

Table 5.3 only lists the classes of the objects being allocated after the app starts execu-

tion. In the latter table, the live objects and the total objects are in same ranges compared to
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Figure 5.18.: Live objects per class
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Figure 5.19.: Average life time per class
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Figure 5.20.: Total classes
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Table 5.1: Class statistics

Class Name Live Total Size

Val %

EM 4,532,891 31.83 8,518,737 103.9MB

java/lang/Short 4,498,389 31.58 7,029,736 68.8MB

Ff 2,266,325 15.91 4,359,615 34.6MB

java/lang/String 377,336 2.65 7,854,947 8.8MB

[C 354,643 2.49 9,039,962 19.4MB

java/lang/Class 352,896 2.48 353,082 57.9MB

java/util/HashMap$HashMapEntry 125,798 0.88 565,892 2.9MB

[Ljava/lang/Object; 118,449 0.83 2,174,394 55.2MB

java/util/ArrayList 92,651 0.65 1,791,794 2.1MB

java/lang/ref/FinalizerReference 66,468 0.47 381,121 2.6MB

nG 56,883 0.4 158,012 1.3MB

hI 48,611 0.34 62,646 1.1MB

java/lang/ref/WeakReference 47,861 0.34 110,936 1.1MB

[I 40,651 0.29 793,001 2.7MB

android/graphics/Rect 33,975 0.24 93,279 808.8KB

yk 32,626 0.23 35,781 775.5KB

rJ 32,042 0.22 33,139 758.1KB

org/apache/harmony/luni/lang/

reflect/ListOfTypes

30,945 0.22 688,077 493.4KB

java/util/LinkedHashMap$LinkedEntry 26,533 0.19 158,049 841.2KB

java/util/HashMap 25,689 0.18 258,355 1.2MB

[Ljava/lang/reflect/Type; 25,669 0.18 261,068 498.6KB

mT 23,775 0.17 23,775 375.1KB

java/lang/reflect/Field 23,646 0.17 921,851 929.1KB

xN 23,533 0.17 29,574 560.1KB

[Ljava/lang/Class; 20,308 0.14 2,310,210 395.3KB

iC 18,308 0.13 18,308 429.1KB

EM
java/lang/Short
Ff
java/lang/String
[C
java/lang/Class
java/util/HashMap$HashMapEntry
[Ljava/lang/Object;
java/util/ArrayList
java/lang/ref/FinalizerReference
nG
hI
java/lang/ref/WeakReference
[I
android/graphics/Rect
yk
rJ
org/apache/harmony/luni/lang/reflect/ListOfTypes
org/apache/harmony/luni/lang/reflect/ListOfTypes
java/util/LinkedHashMap$LinkedEntry
java/util/HashMap
[Ljava/lang/reflect/Type;
mT
java/lang/reflect/Field
xN
[Ljava/lang/Class;
iC
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the first table. Table 5.3 finally lists the same information by aggregating the measurements

based on the package to which the object class belongs to. The table shows the frequency

of allocation libraries during the runtime. This represents useful information to see the

heavy dependencies of an app running on Android.

5.2.5 Pointer Distances

In this section we show the pointer distance between the source and sink objects with

reference to the ages of the objects. Relatively large object distances will influence MS per-

formance. The trace algorithms incur an overhead as the locality and cache are invalidated

by accessing objects from different memory pages.

Figure 5.22 shows the relative distances between the sources and targets of pointers

mutations in the heap. As we described earlier, the positive distances represent the old to

young object references, while negative values are pointers from young to old objects. We

consider zero distances a negative references.

We group the distances by power of two buckets and the latter figure shows the percent-

age of mutations in a given bucket, normalized to the total number of mutations in the time

period. The x-axis is time measured by total mutations.

The mutations are more common in the negative direction. An object is created first

then it is used by some other younger objects. At some given point, we can see that the

mutations in negative directions are 99% of the total mutations. We found that the majority

of positive mutations have value less than or equal to eight bytes.

Figure 5.23 shows the relative distances between the sources and targets of pointers

mutations in the heap by taking a snapshot of the heap. The shape of the curve is different

from the curve we showed earlier in figure 5.22 because the latter only shows the distances

incurred by field mutations while the latter graph shows all the distances between objects

in the heap including non-mutable references. The main characteristic of the snapshot the

graph is that the positive direction is dominant.
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Figure 5.22.: Pointer mutations distance
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Table 5.2: Classes loaded from Quadrant app

Class Name Live Total Size

Val %

com/aurorasoftworks/quadrant/core/J 2,804 10.02 5,313 43.8KB

com/aurorasoftworks/quadrant/core/ay 2,402 8.58 2,402 76.4KB

com/aurorasoftworks/quadrant/api/

device/DefaultDeviceScore

2,096 7.49 2,096 81.9KB

[Lcom/aurorasoftworks/quadrant/core/

h;

1,087 3.88 1,681 35.8KB

com/aurorasoftworks/quadrant/core/as 1,076 3.85 2,041 16.8KB

com/aurorasoftworks/quadrant/core/g 1,076 3.85 1,076 50.4KB

com/aurorasoftworks/common/android/

ui/b

1,006 3.6 1,006 23.6KB

com/aurorasoftworks/quadrant/core/aA 730 2.61 743 11.4KB

org/codeaurora/Performance 447 1.6 738 7KB

com/aurorasoftworks/quadrant/core/p 343 1.23 343 5.4KB

com/aurorasoftworks/quadrant/ui/

professional/

QuadrantProfessionalApplication

277 0.99 277 19.5KB

com/aurorasoftworks/quadrant/core/aq 264 0.94 264 6.2KB

com/aurorasoftworks/quadrant/api/

xml/ConfiguredXStream

262 0.94 262 22.5KB

com/aurorasoftworks/quadrant/api/

xml/ConfiguredXStream$$anon$1

262 0.94 262 4.1KB

com/aurorasoftworks/quadrant/api/

xml/SimpleResultConverter

261 0.93 261 2KB

com/aurorasoftworks/quadrant/api/

xml/AndroidBenchmarkScoreRQConverter

260 0.93 260 2KB

com/aurorasoftworks/quadrant/api/

xml/

DefaultAndroidDeviceInfoConverter

260 0.93 260 2KB

com/aurorasoftworks/quadrant/core/Z 241 0.86 241 3.8KB

com/aurorasoftworks/quadrant/core/aa 241 0.86 241 3.8KB

com/aurorasoftworks/quadrant/core/at 241 0.86 241 3.8KB

com/aurorasoftworks/quadrant/core/J
com/aurorasoftworks/quadrant/core/ay
com/aurorasoftworks/quadrant/api/device/DefaultDeviceScore
com/aurorasoftworks/quadrant/api/device/DefaultDeviceScore
[Lcom/aurorasoftworks/quadrant/core/h;
[Lcom/aurorasoftworks/quadrant/core/h;
com/aurorasoftworks/quadrant/core/as
com/aurorasoftworks/quadrant/core/g
com/aurorasoftworks/common/android/ui/b
com/aurorasoftworks/common/android/ui/b
com/aurorasoftworks/quadrant/core/aA
org/codeaurora/Performance
com/aurorasoftworks/quadrant/core/p
com/aurorasoftworks/quadrant/ui/professional/QuadrantProfessionalApplication
com/aurorasoftworks/quadrant/ui/professional/QuadrantProfessionalApplication
com/aurorasoftworks/quadrant/ui/professional/QuadrantProfessionalApplication
com/aurorasoftworks/quadrant/core/aq
com/aurorasoftworks/quadrant/api/xml/ConfiguredXStream
com/aurorasoftworks/quadrant/api/xml/ConfiguredXStream
com/aurorasoftworks/quadrant/api/xml/ConfiguredXStream$$anon$1
com/aurorasoftworks/quadrant/api/xml/ConfiguredXStream$$anon$1
com/aurorasoftworks/quadrant/api/xml/SimpleResultConverter
com/aurorasoftworks/quadrant/api/xml/SimpleResultConverter
com/aurorasoftworks/quadrant/api/xml/AndroidBenchmarkScoreRQConverter
com/aurorasoftworks/quadrant/api/xml/AndroidBenchmarkScoreRQConverter
com/aurorasoftworks/quadrant/api/xml/DefaultAndroidDeviceInfoConverter
com/aurorasoftworks/quadrant/api/xml/DefaultAndroidDeviceInfoConverter
com/aurorasoftworks/quadrant/api/xml/DefaultAndroidDeviceInfoConverter
com/aurorasoftworks/quadrant/core/Z
com/aurorasoftworks/quadrant/core/aa
com/aurorasoftworks/quadrant/core/at
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Table 5.3: Packages allocated in Quadrant

Package Name Live Total Size

Val %

java/lang 5,589,671 86.52 27,460,461 198MB

java/util 399,084 6.18 4,256,702 12.3MB

android/ 339,096 5.25 1,467,524 22.8MB

apache/ 47,870 0.74 1,449,564 978.2KB

aurorasoftworks/ 27,534 0.43 52,780 1.2MB

java/nio 24,629 0.38 547,882 916KB

thoughtworks/ 13,775 0.21 56,292 249.5KB

java/io 8,422 0.13 98,551 277.8KB

java/text 5,361 0.08 11,793 95.6KB

java/math 2,760 0.04 2,760 75.5KB

dalvik/ 1,385 0.02 1,939 32.5KB

codeaurora/ 447 0.01 738 7KB

libcore/ 413 0.01 112,195 16.2KB

javax/microedition/ 208 0 949 212.9KB

jfree/ 74 0 83 3.3KB

kxml2/ 0 0 200 0

java/lang
java/util
android/
apache/
aurorasoftworks/
java/nio
thoughtworks/
java/io
java/text
java/math
dalvik/
codeaurora/
libcore/
javax/microedition/
jfree/
kxml2/
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6 SUMMARY

Android became an important computing platform. Understanding the behavior of applica-

tions is very important to build a comprehensive analysis of the runtime behavior. Hence,

identify the potential optimizations that can lead to effective system improvements. Ana-

lyzing such systems is indeed more complicated since it includes many factors such as user

interaction, power dissipation, the software and the hardware components.

Deciding on what could significantly influence the system performance needs a set of

benchmark tools that can be used to generate profiling information critical to the system

usage. We implemented a profiling system on top of Dalvik to generate measurements for

a set of metrics commonly used in literature in order to evaluate the memory behaviors of

applications running on Android systems.

We used the profiler to generate measurements from a set of applications. The latter set

includes two common Java benchmarks: DaCapo and SPECjvm98. Based on the profiles

we generated, we found that Dalvik is tuned to use less space. The latter restriction leads

to unnecessary overheads by frequently triggering a collection. Synchronization between

VM threads introduces a significant overhead as we find that the there is one single mutator

allocating from the heap. The atomic operations could be reduced by having a private

allocator per thread.

The memory manager has an influence on the app response time. Long collection cycle

causes the app to freeze which by turn negatively affects the user experience. Some UI

events are more sensitive to pause times such as “scrolling”. The memory manager influ-

ences the power consumption on Android considering the number of times the collector in

each app. Finally, Dalvik does not dynamically adapt to memory consumption and it tends

to keep the same threshold no matter how the allocation behavior is.
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