
Impact of GC Design on Power and Performance for Android

Ahmed Hussein† Mathias Payer† Antony Hosking† Christopher A. Vick‡

†Purdue University, USA ‡Qualcomm, Inc., USA
†{hussein,mpayer,hosking}@purdue.edu ‡cvick@qti.qualcomm.com

Abstract
Small mobile devices have evolved to versatile computing
systems. Android devices run a complete software stack,
including a full Linux kernel, user land with several software
daemons and a virtual machine to run applications. On these
mobile systems energy is a scarce resource and needs to be
handled carefully. Current systems rely on governors that
adjust the frequency of individual cores depending on the
system load.

We measure energy consumption of different components
of this complex software stack, including garbage collec-
tion (GC) of the Android virtual machine. Here we propose
several extensions to the default GC configuration of An-
droid, including a generational collector, across established
dimensions of heap memory size and concurrency.

Our evaluation shows that Android’s asynchronous GC
thread consumes a significant amount of energy. Therefore,
varying the GC strategy can reduce total on-chip energy (by
20–30%) whilst slightly impacting application throughput
(by 10–40%) and increasing worst-case pause times (by
20–30%). Our work quantifies the direct impact of GC on
mobile system, enumerates the main factors and layers of
this relationship, and offers a guide for analysis of memory
behavior in understanding and tuning system performance.

Categories and Subject Descriptors C.1.4 [Parallel Archi-
tectures]: Mobile processors; C.4 [Performance Of Systems]:
Measurement techniques; D.3.4 [Programming Languages]:
Processors—Memory management (garbage collection), Run-
time environments; D.4.8 [Performance]: Measurements

General Terms Algorithms, Experimentation, Languages,
Measurement, Performance

Keywords mobile, power, energy, Android, smartphones

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SYSTOR 2015, May 26–28, 2015, Haifa, Israel.
© 2015 ACM. ISBN 978-1-4503-3607-9/15/05. . . $15.00.
DOI: http://dx.doi.org/10.1145/2757667.2757674

1. Introduction
With the number of shipped Google Android devices pro-
jected to exceed a billion in 2014 [Gar 2014] the Dalvik
virtual machine (VM) has become an ubiquitous computing
platform. Mobile applications (apps) running on this comput-
ing platform rely on features of the underlying software stack,
including automatic memory management (garbage collec-
tion, or GC). Due to their mobile nature, Android devices
most commonly run on battery power. Therefore, energy is
a scarce resource. Previous studies have established that in-
dividual components of managed language virtual machines
can have a significant impact on energy consumption [Vi-
jaykrishnan et al. 2001; Esmaeilzadeh et al. 2011; Sartor and
Eeckhout 2012; Cao et al. 2012; Pinto et al. 2014].

Mobile platforms on the other hand face a set of new chal-
lenges regarding the impact of different VM components as
they must optimize between the conflicting targets perfor-
mance, responsiveness, and power consumption when run-
ning apps. In addition, mobile platforms are more sensitive to
thermal issues (using only passive heat sinks) and are more
aggressive in the power management of sub-systems to save
power compared to laptop, desktop, or server systems. To
address power and thermal issues, the operating system (OS)
relies on dynamic voltage and frequency scaling (DVFS) in
software controlled by governors [Brodowski]. These gov-
ernors collect runtime statistics (e.g., system load and core
temperature) and then apply complex heuristics to meet opti-
mization criteria [Iyer and Marculescu 2002; Miyoshi et al.
2002; Carroll and Heiser 2014].

We measure the impact of individual adaptive VM compo-
nents like the GC across all layers of the software stack in a
live Android Dalvik VM identifying GC as a component that
will profit from further optimization. We show that evalua-
tion of GC on mobile devices must consider (and control for)
different forms of adaptive behaviors. Moreover, adaptive
layers of the system might better meet energy and perfor-
mance goals with additional knowledge of the underlying
workload, including phase changes in the workload such as
those manifested by GC, which exhibits different memory
access patterns than the app itself.

We propose and evaluate several extensions of the de-
fault memory management configuration of Android systems
that allow tunning of the performance/power consumption



tradeoff. In addition, we use performance counters to collect
counts of L1 cache misses and other memory events.

Several studies evaluated the energy consumption on mo-
bile devices by dividing the battery capacity by the total
power consumed by the device subsystems (e.g., CPU, dis-
play, GPU, or GPS) [Carroll and Heiser 2010; Pathak et al.
2012; Jindal et al. 2013; Chen et al. 2013]. This approach
is useful to understand the hardware, and the impact of the
I/O on the battery lifetime. However, understanding the VM
services design tradeoffs cannot be refined based on that ap-
proach because the VM is not linked to the I/O expenses.
Hence, the experimental environment focuses on the energy
consumed by the CPU which ranges between 20–40% of the
total device consumption [Carroll and Heiser 2010].

Our results show that GC has significant impact on energy
consumption, not only from its explicit overhead in CPU
and memory cycles, but also because of implicit scheduling
decisions by the OS with respect to CPU cores. Varying the
GC strategy can reduce total on-chip energy (by 20–30%)
with low impact on application throughput (by 10–40%) and
worst-case pause times (by 20–30%). We propose and discuss
strategies that allow power savings with minimal impact on
performance.

The contributions of this paper are:

• A proposal for a measurement methodology to capture
precise energy consumption and performance on a real
Android device in vivo.

• Discussion of alternative GC designs that extend Dalvik’s
default mostly-concurrent, mark-sweep collector with
generations, and on-the-fly scanning of thread roots.

• An evaluation of our measurement methodology for dif-
ferent GC configurations using a set of ported standard
Java benchmarks and other Android apps.

• Correlating energy consumption with GC, showing trade-
offs with other performance metrics to understand how
GC overhead affects different system layers.

2. Background and Methodology
Each Android app runs as a separate process in its own
instance of the Dalvik VM. Figure 1 illustrates the Android
software stack, consisting of the Linux kernel, native libraries,
and the Android Runtime which includes the supporting Java

Applications
Application Framework

Libraries
Android Runtime

Dalvik VM
Core Libraries

libc

Dalvik: 
Compiler
GC-daemon

Main-thread
Signal-Catcher

I/O Scheduler Governor
Linux Kernel

Figure 1. Android and the main components of Dalvik

VM (Dalvik VM [Ehringer 2010]) and core Java libraries.
Active components of Dalvik that run in separate threads
include the GC daemon, the just-in-time (JIT) compiler,
the signal catcher, main thread, and the application threads
(called mutator threads).

2.1 Dalvik Concurrent Mark-Sweep (CMS)
The garbage collector traverses all the references starting
from the root to reclaim memory occupied by non-reachable
objects [Jones et al. 2011]. This makes the GC tasks memory
bound compared to the compute-bound mutators.

Dalvik GC typically runs concurrently in its own native
Linux thread as a C-coded background daemon, with the
application-level Java mutator threads also scheduled as
native Linux threads. It operates as a mark-sweep collector:
first marking reachable objects from roots like thread stacks
and global variables and then sweeping up and freeing any
unmarked objects.

We refer to the default Dalvik collector as the concurrent
mark-sweep (CMS) collector. This collector suspends all the
mutator threads at the beginning of each collection cycle,
scans their stacks for heap roots, and then restarts them all
before continuing to mark reachable objects concurrently.
Concurrent marking is supported by a write barrier that
records dirty objects that have been modified by any mutator
thread during the mark phase. When concurrent marking is
finished, the collector once more suspends all the mutator
threads, marks any remaining unmarked objects that are
reachable from the dirty objects, and then restarts the mutator
threads. It then safely (and concurrently) sweeps up and frees
the remaining unmarked objects as garbage.

CMS uses simple heuristics to balance the tension between
frequency of GC and heap size, similar to those described in
by Brecht et al. [Brecht et al. 2001]. The primary parameter
controlling heap size is the target heap utilization (targetUtil)
ratio, used to resize the heap after each GC cycle. The
threshold softLimit is set such that the ratio of the volume
of live data (live) to the softLimit is equal to the targetUtil.
Thus, the bigger the targetUtil, the tighter the heap allocated
to the app. The available space (room) is constrained to the
range 2–8MiB. The threshold concurrentStartBytes (CSB)
is set at some delta (δ = 128KiB) below the softLimit. The
relationship among these parameters, at time t, is given by
the following:

room(t) = (1− targetUtil)× live(t)

softLimit(t) = live(t)+min(max(room(t),2MiB), 8MiB)

CSB = softLimit(t)−δ

(1)

Dalvik GC is triggered for several different reasons:

GC-CONC: When the allocation exceeds the CSB threshold,
then the mutator signals the GC daemon to start a new
background GC cycle, if it is not already active.

GC-ALLOC: When allocation exceeds the softLimit threshold,
or when allocation fails, then the mutator boosts its



priority and performs a foreground GC cycle, so long
as the GC daemon is not already active in which case it
waits for it to finish. If an allocation fails then the mutator
retries the allocation after the GC cycle ends.

GC-EXPLICIT: The mutator performs a foreground collection
cycle so long as the GC daemon is not already active, in
response to an explicit call to System.gc(). The mutator
does not boost its priority.

In the absence of mutator signals, the GC daemon does not
remain idle forever. The time it waits for a mutator signal is
limited to five seconds, after which it performs a spontaneous
concurrent collection cycle; this also trims excess virtual
pages from the heap, returning them to the operating system.

2.2 Device Steady State
We can only measure precise numbers for VM components
if the system under measurement is in a steady state (i.e.,
there is no noise from concurrent processes). During the
boot sequence resources like CPU and memory are highly
utilized for different tasks, leading to noise and imprecision.
We disable any unneeded services to further reduce jitter.

In addition to the hard out-of-memory (OOM) killer,
Android also introduces a low-memory-killer (LMK) that
terminates apps that are no longer in the foreground. We must
ensure that an app is not evaluated while the memory utilized
by that app (or other concurrent apps) causes the system to
hit a pre-defined LMK or OOM threshold.

Figure 2 shows an example of lowmemory regions in
MB. When the free memory (RAM) in a system is less than
120MB, the LMK starts killing empty apps in the background.
The app in Exp.1 runs in a stable steady state while the app
in Exp.2 causes the free memory to drop below 120MB,
triggering the LMK which will start killing background tasks.
Finally, the app in Exp.3 executes in a stressed environment
with low memory, causing side effects from potentially both
the LMK and the OOM.

2.3 Benchmarks
Mobile apps often operate in modes that prevent a repeatable
workload because their memory usage varies across different
runs (e.g., due to ads). Furthermore, many benchmarking
apps are synthetic, measuring a single system feature heavily.

FOREGROUND
APP

VISIBLE
APP

480

SECONDARY
SERVER

HIDDEN
APP CONTENT

PROVIDER

EMPTY
APP 

60 72 84 96 120
total 
RAM

Exp.1
Exp.2Exp.3

available RAM (MiB)
steady 
state

killing
precedence

Figure 2. Low memory configurations

While benchmarking on desktop and server platforms is
standardized [Dieckmann and Hölzle 1999; Dufour et al.
2003; Kalibera et al. 2012], standard mobile benchmarks
have yet to emerge given the young age of mobile platforms.
To address this constraint, we have faithfully ported all eight
SPECjvm98 applications [Standard Performance Evaluation
Corporation]. Due to API incompatibilities between Android
and Java (Android apps are written in Java but use different
standard libraries) we have restricted the port of DaCapo
9.12 benchmarks [Blackburn et al. 2006, 2008] to the multi-
threaded lusearch and xalan benchmarks. For space reasons
we only report on javac and jack of the SPECjvm98 bench-
marks.

We run both SPECjvm98 and DaCapo apps using the
standard benchmarking harness to obtain execution times
using five iterations on the small workload, discarding the first
iteration, and averaging all remaining iterations. In addition,
we measure two Android benchmarks: (i) Quadrant version
2.1 Professional Edition is an industry-standard benchmark,
and (ii) Pandora version 5.4 is the popular internet radio app
for discovering and recommending music based on the Music
Genome Project.

We invoke the benchmarks directly from the Android
Runtime, which spawns each Dalvik VM instance from the
pre-initialized zygote VM using the monkeyrunner framework
[monkeyrunner] (as opposed to spawning a new Dalvik VM
process from the command line).

Table 1 summarizes the collected execution characteristics
of these benchmarks. We obtain the GC events and overhead
columns when running the default CMS collector. The al-
location statistics (Heap, Objects, Threads) are obtained by
running the CMS collector in a mode where it performs GC
at very frequent fine-grained intervals (every 64KiB of allo-
cation) to obtain tight estimates of their value. The Heap and
Objects results for the ported Java benchmarks are similar to
those reported by others using different VMs [Dieckmann and
Hölzle 1999; Blackburn et al. 2006]. Similarly, the lifetime

column reports the percentage of objects collected within
the corresponding nursery size. Thus, it is a rough estimate
of the extent to which the benchmark follows the generat-
ional hypothesis. The Heap-Contentions shows the number
of times a thread fails to acquire the heap lock. This helps as
an indication of the intensity of concurrent activities on the
heap (allocation and collection).

The Max-Pause time is measured as the worst-case pause
time experienced by any of the mutator threads when respond-
ing to GC-safepoint suspension requests or when performing
a foreground GC. The CPU overhead of GC records the
percentage of CPU cycles over the execution of the bench-
mark that are spent performing GC, measured using the hard-
ware CPU performance counters. Finally, the last columns
show the following statistics about the code and the compiler:
loaded classes, declared, methods, fields, count of compiled



Table 1. Benchmark characteristics for Dalvik CMS (ignoring activity of the zygote process)

Heap (MiB) Objects (M) Lifetime (%) Threads GC events GC overhead Code Compilations

Be
nc

hm
ar

k

A
llo

c

L
iv

e

A
llo

c

L
iv

e

12
8

K
iB

25
6

K
iB

51
2

K
iB

To
ta

l

H
ea

p
C

on
te

nt
io

ns

C
O
N
C

A
L
L
O
C

E
X
P
L
I
C
I
T

tr
im

s

M
ax

.P
au

se
(m

s)

G
C

C
PU

(%
)

C
la

ss
es

M
et

ho
ds

St
at

ic
Fi

el
ds

In
st

.F
ie

ld
s

C
ou

nt

Si
ze

(K
iB

)

Android
Quadrant 28.71 8.23 0.46 0.22 9.50 20.5 40.7 16 448 6 4 42 3 30.5 2.8 1,721 11,891 895 2,582 3,961 41.8
Pandora 48.91 18.76 0.28 0.06 13.0 24.9 46.0 77 829 7 18 0 4 33.1 6.2 1,596 14,419 4,402 3,701 6,302 97.1
SPECjvm98
javac 217.47 10.19 6.15 0.27 7.60 15.8 32.7 7 276 55 42 6 1 99.0 19.7 227 1,464 674 320 5,308 68.9
jack 180.22 0.87 5.52 0.02 11.7 23.8 48.2 8 4,133 105 0 2 1 24.0 8.0 131 717 275 199 2,018 41.8
DaCapo
lusearch 686.75 1.22 11.65 0.01 10.3 22.5 47.2 26 2.63e6 356 0 5 1 35.0 5.4 326 3,016 615 781 3,473 56.2
xalan 395.06 2.26 4.14 0.02 9.46 19.3 39.0 26 4.38e5 199 1 5 1 37.2 3.5 489 5,287 915 1,029 5,449 67.6

Table 2. System defaults

Dalvik build properties Governor: ondemand
VM parameter value parameter value
heapstartsize 8 MiB optimal_freq 0.96 GHz
heapgrowthlimit 96 MiB sampling_rate 50 ms
heapsize 256 MiB scaling_max_freq 2.1 GHz
heapmaxfree 8 MiB scaling_min_freq 0.3 GHz
heapminfree 2 MiB sync_freq 0.96 GHz
heaptargetutil 75 % up_threshold 90

unit in the code cache (count), and the size of the compiled
code (in KiB).

2.4 Platform
We measure a complete Android platform in vivo using the
APQ8074 DragonBoard™ Development Kit based on Qual-
comm’s Snapdragon™ S4 SoC running the quad-core 2.3GHz
Krait™ CPU [Intrinsync]. Importantly, Krait allows cores
to run asymmetrically at different frequencies, or different
voltages. Software governors can adjust the frequency/voltage
of each core individually depending on the workload.

The board runs on Android version 4.3 (“Jelly Bean”) with
Linux kernel version 3.4. We have instrumented the Dalvik
VM and the kernel to record statistics on demand. In addition,
we allow direct access to hardware performance counters
from the VM, to control hotplugging (onlining/offlining) of
the cores, and to expose the VM profiler to other kernel-level
events. The default Dalvik VM configuration for our board
leverages the build properties shown in Table 2.

2.4.1 Dalvik VM Profiling
We run a VM profiler as a daemon thread (implemented in
C) inside Dalvik. Profiling is only enabled to gather exe-
cution statistics, never when capturing measurements that
are sensitive to timing or scheduling such as total execution
time or OS context switching The profiling daemon is sig-
nalled after every 64KiB of allocation to gather per-mutator
statistics, without synchronization to avoid perturbing them.
Large-volume traces (such as lifetime statistics) are buffered
to avoid imposing I/O costs at every sample point, and peri-
odically dumped to Flash RAM. Overall we record data that
allows us to correlate: (i) systrace data, (ii) performance coun-

ters, and (iii) internal GC events, resulting in a fine-grained
and detailed picture of internal VM behavior, including app
and GC characteristics.

By default APQ8074 runs Android with the ondemand
Linux CPUfreq governor. This governor sets per-core frequen-
cies depending on current workload. Moreover, the thermal-
engine and mpdecision (proprietary component) can also
affect CPU frequencies and hotplugging. To avoid perturba-
tion by these services we run experiments that are sensitive
to time and scheduling with the thermal-engine disabled, and
apply external cooling to the SoC heat sink to prevent failure.
We measure steady state execution time by allowing the ap-
plication to run multiple iterations to warm-up. This reduces
the non-deterministic impact of the JIT and avoids any GC
overhead during the startup phases. We report the average
execution of hot runs with 95% confidence intervals.

2.4.2 Responsiveness
The responsiveness of embedded systems was thoroughly
studied and evaluated by estimating the Worst-Case Execution
Time (WCET) of individual tasks leading to the existence of
several commercial tools and research prototypes [Wilhelm
et al. 2008]. However, worst case and average mutator pause
times do not adequately characterize the impact of GC on
responsiveness because of the complexity of the system
stacks.

GC pauses can prevent threads that service user interface
tasks from giving timely responses to user input events.
Humans typically perceive interaction pauses greater than
50ms [Efron 1973], so any greater pause is likely to be
noticed by users. Thus, we use minimum mutator utilization
(MinMU) [Cheng and Blelloch 2001; Printezis 2006; Jones
et al. 2011] over a range of time intervals yield a better
understanding of the distribution and impact of pauses.

We divide mutator pauses into three different categories:
(i) safepoint pauses, when a mutator stops in response to a
suspension request (e.g., for marking mutator roots), (ii) fore-
ground pauses, when a mutator performs a foreground GC
cycle, and (iii) concurrent pauses, when a mutator waits for
a concurrent GC cycle to finish. To compute MinMU for
a multithreaded app having a total execution time T and



M mutators m1, . . . ,mM , each experiencing pi GC pauses
δ1, . . . ,δpi , we define MinMU for a window of length w as
the MinMU (for all mutators) over all time slices of length
w in the execution. Our profiler records the values δ1, . . . ,δpi

for each mutator, with time stamps. To compute MinMU for
a given window size w, we take the worst-case MinMU for
each mutator in each window of size w sliding over the entire
execution T . Only pauses that overlap the window contribute
to that mutator’s utilization for that window.

2.4.3 Power Measurements
We build our analysis of GC impact on an app running
on n cores for total execution time T based on the CPU
energy model (ECPU) defined by [Carroll and Heiser 2014].
Measuring energy can only be achieved by measuring the
power at the circuit level as the product of measured current
I and the voltage drop V across the CPU. Similar to [Cao
et al. 2012], we measure current flow at the circuit level as
shown in Fig. 3, using a Pololu-ACS714 Hall-effect linear
current sensor between the Krait application microprocessors
and the voltage regulator. We use the data acquisition device
[National Instruments] with 48kS/s sampling rate and typical
absolute accuracy 1.5mV (error 0.9%). We filter the analog
noise using two bias resistors 50kΩ to satisfy the bias current
path requirement of the instrumentation to the ground.

As an example, Fig. 4a plots power measurements ob-
tained during the execution of five full iterations of lusearch.
Figure 4b plots the frequency of each core over time. Between
iterations the governor offlines unused cores and lowers the
frequency of the remaining online cores in order to reduce
power consumption. Together, the plots show how power
impulses correlate with frequency transitions. Note that the
time axes are offset because they are measured differently:
we measure power against real elapsed time and frequencies
against CPU cycles recorded using performance counters and
converted to time.

U2
PM8841

5
V_

+

ACS714
VIOUT

GND
VCC

IP+

IP-
Filter

0.1uF 1.0nF

APQ8074

VR
EG

_K
RA

IT

NI 
USB-6009

C1+

C1-

L20

L22

L26

L24

IP- C2-

IP+ C2+

C1: read current (VIOUT)
C2: read voltage (IP+)

Server

cores

replaced 
new wiring
diconnected
existing board
added components

Figure 3. Circuit-level power measurement on the APQ8074

3. GC Extensions
We consider both generational and on-the-fly variants of the
default Dalvik CMS collector. These allow us to compare
tradeoffs among different GC variants for mobile devices.

3.1 Generational CMS
We implemented a generational variant of the CMS collector
(GenCMS) to study its effect on app performance. Genera-
tional collectors [Lieberman and Hewitt 1983; Ungar 1984]
assume that recently allocated objects have a lower probabil-
ity of surviving collections, splitting the heap into a young
and a mature space. Minor collections only propagate sur-
viving young objects to the mature space, major collections
collect both spaces. Our extension reuses the dirty object
information already maintained for the CMS collector to find
references from survivor objects (those that are live after a
GC cycle) to new objects allocated since the previous cycle.
This approach treats all surviving objects as old and newly-
allocated objects as young.

The mark phase of a minor generational GC ignores old
objects, marking only the reachable young objects. At the
end of marking, the mark bits record the objects that survived
the current GC cycle, which we merge into a survivor bitmap
to record old objects. The survivor bitmap is cleared before
each major (whole-heap) GC, but otherwise accumulates the
survivors through each successive minor GC.

GenCMS uses complementary heap sizing heuristics to
those of CMS, performing minor collections so long as the
accumulated survivors do not exceed the softLimit computed
at the most recent major collection. The size of the young
generation is set to the room in the heap at the last major
collection (i.e., the difference between the volume of the last
major collection’s survivors and the softLimit). As a result,
GenCMS will use more space than CMS (up to the softLimit

���

���

���

���

���

� � �� �� �� �� �� �� �� �� ��

�
�
�
�
��
��
�
�

��������

�����

(a) CPU power

���

���

���

���

���

���

���

���

���

� � �� �� �� �� �� �� �� �� ��

�
�
��
��
��
�
�
�
�
�
�

��������

����� ����� ����� �����

(b) Core frequencies

Figure 4. Power and frequency over time for lusearch



plus the room). Trimming collections always perform a major
GC. Trigger policies for the generational collector aim to
reduce mutator pauses (by having mutators never directly
perform major GCs), while also respecting the heap heuristics
employed by the CMS collector:

GC-CONC: as for CMS, except that the GC daemon may
perform a minor or major GC depending on the heuristics
described above;

GC-ALLOC: as for CMS, but the mutator performs a minor GC,
noting that the next GC-CONC should be major;

GC-EXPLICIT: as for CMS, but the mutator performs a minor
GC, noting that the next GC-CONC should be major.

3.2 On-the-fly
The CMS collector has brief stop-the-world phases in which
all Java are stopped: (i) while marking the thread stack
roots, and (ii) while re-scanning dirty objects to terminate
marking. Each thread is notified to execute until it reaches a
GC-safepoint, whereupon it notifies the collector that it has
stopped. Ideally, stop-the-world phases should be shortened
or eliminated to improve application scalability and minimize
mutator pauses. On-the-fly collectors [Domani et al. 2000;
Dijkstra et al. 1978] avoid the stop-the-world phase during
the marking phase.

We have extended the CMS collector to address the first of
these pauses, dubbed “CMSFly”. The second kind of pauses
remains future work. Once a mutator thread has had its stack
roots marked we immediately signal it to resume execution.
Moreover, we process threads in the order in which they arrive
at their GC-safepoint, so early responders receive service
before later responders.

3.3 Concurrency Policies
We consider variations regarding the presence, requests to,
and core placement of the background GC daemon threads,
as follows:

background (bg): Mutators yield all GC triggers to the
GC daemon, without foreground GC. When allocation
exceeds the softLimit or fails then the mutator instead
forces allocation, and signals the GC daemon to start a
background GC cycle, before continuing. GC-EXPLICIT
triggers simply signal the GC daemon.

foreground (fg): There is no GC-CONC trigger (the GC dae-
mon is disabled). Mutators perform all GC-ALLOC work
in foreground, concurrently to other mutators at boosted
priority. GC-EXPLICIT remains the same.

4. Evaluation
We evaluate our methodology along a range of metrics:
scheduler preemptions, responsiveness, and power versus
both heap size and collector variant, and performance counter
statistics. The default heap growth follows Eq. (1) using

targetUtil of 75% (Table 2); recall that larger targetUtil means
tighter heap.

4.1 Energy and Throughput
There are a number of ways in which the GC workload can
affect power consumption, not the least of which is its effect
on hotplugging and DVFS decisions.

4.1.1 Effect of Heap Size
As described earlier, Dalvik uses dynamic heap sizing heuris-
tics, which size the heap at some factor of the live set resulting
from the most recent (full) heap GC. Thus, both the bench-
mark and the targetUtil affect the GC workload, in the num-
ber of instructions executed, in the mix of those instructions,
and in the scheduling of GC. More frequent GC iterations and
a smaller heap typically result in more GC work as a fraction
of total work, though the smaller heap can have second order
effects on app locality. Figure 5 (bottom) shows the total CPU
cycles executed by all app threads (normalized to CMS per
benchmark) as targetUtil varies. The trend is that the total
app workload increases significantly with targetUtil, except
for Quadrant because of the large number of GC-EXPLICIT
events.

Higher targetUtil (smaller heaps but more frequent GC
iterations) implies more frequency transitions, since GC work-
load characteristics are different from the app. Hotplugging
and DVFS decisions respond to these differences. The app
workload also affects the frequency of GC, so the number
of transitions is quite different for each benchmark. Fig-
ure 5 (top) illustrates how targetUtil affects the number of fre-
quency transitions (normalized to CMS numbers per bench-
mark) imposed on the cores.

We now explore the tradeoff between power and through-
put, versus heap size. Tighter heap imposes more frequent
and higher total GC overhead. One expects app throughput
to decrease (i.e., total execution time to increase) and the
app energy to increase as GC overhead increases with targe-
tUtil. Figure 6 shows both execution time and total energy
consumed for each benchmark versus targetUtil with the
Dalvik CMS collector. As expected, all four of the bench-
marks shown have longer execution times in tighter heaps.
But lusearch, unlike the other benchmarks, consumes much
less energy in tighter heaps.

COROLLARY 1. Increased throughput (larger heap) does not
always correspond to better energy consumption.

The explanation for this seemingly anomalous behavior is
that lusearch benefits from the system making more effective
frequency transition decisions than the other benchmarks.
Recall that GC work is memory-bound and therefore limited
by the memory access speed. Thus, choosing a higher CPU
frequency to perform the work (commonly called race to idle)
does not necessarily improve throughput; a lower frequency
can get the same work done in the same amount of time
at lower energy. Figure 7 shows the distribution of core



���

���

�

��

��

��

���

���

��
�
�
�
�
�
�
�
��
��
�
�
���
�
�
�
��
� ��������

�����
�����
����

��������

���

���

�

��

��

��

�� �� �� �� �� �� �� �� ��

�
�
�
��
�
�
��
�
��
�
�

���������������������������

Figure 5. Effect of targetUtil on CPU cycles (bottom) &
frequency transitions (top) normalized to default CMS

���

���

�

��

��

��

��

�
�
�
�
�
���
�
��
��
�
��
�
�

�������� ����� ����� ����

���

���

���

���

�

��

��

�� �� �� �� �� �� �� �� ��

�
�
�
�
�
�
�
�
��
�
�
��
�
��
�
�

���������������������������

Figure 6. Effect of targetUtil on energy (bottom) &
throughput (top) normalized to default CMS

��

���

���

���

���

��
�
�
���
�
��
��
���

�
��
�
�

������������ ������������ ������������

��

���

���

���

���

� ���� ���� ���� ���� ��� ���� ����

��
�
�
���
�
��
��
���

�
��
�
�

��������������������

������������ ������������ ������������

Figure 7. xalan (top), lusearch (bottom): Core frequency
distribution (as fraction of time)

frequency as a percentage of total execution time for lusearch
and xalan, for targetUtil values of 10, 50 and 90%. For
lusearch, running with a tight heap (90%) causes the cores
to spend a fraction of the execution time on a range of lower
frequencies (more efficient), and offlined, more than for
looser heaps. In contrast, xalan has more of its execution
time spent at higher frequencies (less efficient) with tighter
heaps.

COROLLARY 2. GC events have significant impact on DVFS
decisions.

4.1.2 Effect of Design Choices
Figure 8 shows the effect of the heap footprint on total energy
consumption when running under the default CMS, CMSFly,
fg, bg, and GenCMS, each of which is normalized to the
default CMS value per benchmark).

On single threaded benchmarks, having all GC performed
in foreground by mutators (fg) results in better throughput

Table 3. Schedule statistics normalized to Dalvik CMS

Migrations Delayed Time

GC
Variant

lu
se

ar
ch

xa
la

n

ja
v a

c

ja
ck

g.
m

ea
n

lu
se

ar
ch

xa
la

n

ja
v a

c

ja
ck

g.
m

ea
n

bg 0.97 1.02 1.36 1.00 1.05 1.14 1.06 0.90 1.09 1.04
fg 0.44 0.79 0.71 0.38 0.55 0.63 0.90 1.93 1.20 1.05

than for collectors that use a background GC daemon. The
reason is that fg boosts the collector priority and holds the
heap locks for the duration of the GC cycle. As a result,
the app threads suffer less preemptions on fg compared
to the configurations. For multithreaded applications, the
throughput depends on the tradeoff between the workload and
the number of cores (i.e., lusearch versus xalan). The generat-
ional variant does not perform better than its non generat-
ional counterparts on any benchmark. This behavior could
have different reasons: (i) micro-architectural differences
to desktop CPU could favor full collections (i.e., due to
different memory timings), (ii) the changes between Dalvik
and Java VMs, or (iii) our extension of the default collector
to a generational collector is not optimized enough.

When the GC daemon performs all work in the back-
ground, the energy consumption increases. This is due to
heap synchronization (i.e., context switches) and trimming
operations triggered when the heap is under utilized. On the
other hand, a mutator performing a foreground GC boosts
its priority while keeping the heap locked. Table 3 shows the
scheduler stats for the Java benchmarks running under the
bg and fg variants normalized to the default CMS. The left
column Migrations shows the number of the events during
which a thread is is resumed to a new core. Higher numbers
imply that a collector imposes more overhead on the sched-
uler (more cache misses) [David et al. 2007; Park et al. 2007;
Gautham et al. 2012]. The column Delayed-Time shows the



���

���

��

���

���

���

���

���

���

�
�
�
�
�
�
�
�
��
�
�
��
�
��
�
� ��� �� �� ������ ������

���

��

���

���

���

�
�
�
�
�
�
�
�
��
�
�
��
�
��
�
� ��� �� �� ������ ������

���

���

���

���

��

���

���

���

���

�� �� �� �� �� �� �� �� ��

�
�
�
�
�
�
�
�
��
�
�
��
�
��
�
�

���������������������������

��� �� �� ������ ������

(a) DaCapo: xalan (top), lusearch (bottom)

���

���

���

���

��

���

���

���

���

�� �� �� �� �� �� �� �� ��

�
�
�
�
�
�
�
�
��
�
�
��
�
��
�
�

���������������������������

��� �� �� ������ ������

(b) SPECjvm98: jack (top), javac (bottom)

Figure 8. Energy vs. targetUtil with GC variants normalized to default CMS

total delay that tasks saw; time from the point a task got on
the runqueue to the point it actually executes the first instruc-
tion. These numbers show that the bg variant causes more
delays to the scheduler.

COROLLARY 3. Having all GC performed in background
(bg) consumes more energy.

4.2 Responsiveness: MinMU
MinMU graphs plot the fraction of CPU time spent in the
mutator (as opposed to performing GC work) on the y-axis,
for a given time window on the x-axis (from zero to total
execution time for the application). The y-asymptote shows
total garbage collection time as a fraction of total execution
time (GC overhead), while the x-intercept shows the maxi-
mum pause time (the longest window for which mutator CPU
utilization is zero). When comparing GC implementations,
those having curves that are higher (better utilization) and to
the left (shorter pauses) can be considered to be better (with
respect to mutator utilization).

4.2.1 Effect of Design Choices
Figure 9 shows the MinMU results for each benchmark
under a range of GC variants. The fg configuration shows
the best MinMU on lusearch and xalan, with both smallest
maximum pauses and best overall utilization. Recall that a
mutator performing a foreground GC boosts its priority for
the duration of the GC cycle. Also, the GC daemon increases
the synchronization overhead. As a result, the fg causes
mutators to have less scheduler preemptions for lusearch
and xalan compared to the bg variant (because lusearch and
xalan have a high memory allocation rate, triggering frequent
GC pauses). Conversely, fg performs worst for Pandora,
which has few GC events, allocates very little (so allocations
need not wait for GC so often), yet has many mutator threads.
Live heap size is relatively large for Pandora, Quadrant, and

javac, which also experience a large number of foreground
GC-ALLOC events, so GC cycle times are longer. Thus, CMS
and fg both suffer poor utilization as mutators must wait
for the longer GC cycles (whether by the GC daemon or
in foreground) to complete. Similarly, pushing whole heap
collections to background (bg) results in much better MinMU
on these benchmarks.

Only javac has maximum GC pauses in the observable
range (beyond 50ms). Again, bg offers best overall utilization
for javac. The latter shows the worst MinMU for the default
CMS, because the high number of GC-ALLOC events (Table 1)
causes the mutator either to wait for the GC daemon to finish
the current GC cycle, or to perform a full foreground GC.

COROLLARY 4. For multithreaded apps, while foreground
GC often improves MinMU, concurrent collectors (back-
ground & generational) are better for large heaps.

4.2.2 Effect of Heap Size
The relation between responsiveness and heap size is not
always clear as it depends on how often mutators perform
foreground collections. This varies due to the synchroniza-
tion between mutators and GC daemon. Small heaps have
better throughput for small window sizes (worst pause times)
compared to large heaps. However, the latter increases the
utilization for larger time windows.

5. Related Work
Several studies addressed the GC requirements when de-
ployed in restricted environments. [Griffin et al. 2005] imple-
mented a hybrid scheme between the standard Mark-Sweep
Compact collector and reference counter.[Chen et al. 2002b,a]
proposed an adaptive GC strategy to optimize the power con-
sumption by shutting down memory banks that hold only
garbage objects.



��

���

���

���

���

����

����� ���� �� ���

�
��
�
�
��
�
�

���
������

��
��

������
��

���

���

���

���

����

����� ���� �� ���

���
������

��
��

������

��

���

���

���

���

����

����� ���� �� ���

���
������

��
��

������

��

���

���

���

���

����

����� ���� �� ��� ����

�
��
�
�
��
�
�

��������

���
������

��
��

������

(a) Quadrant (top); Pandora (bottom)

��

���

���

���

���

����

����� ���� �� ���

��������

���
������

��
��

������

(b) lusearch (top); xalan (bottom)

��

���

���

���

���

����

����� ���� �� ���

��������

���
������

��
��

������

(c) jack (top); javac (bottom)

Figure 9. Minimum mutator utilization

Analyzing the concurrency tradeoffs of multithreading in
managed runtime systems on desktop [Vijaykrishnan et al.
2001; Pinto et al. 2014; Cao et al. 2012] prove the impact
of the GC on the JVM energy requirements. Occasionally,
the GC was evaluated as an asymmetric activity that can be
isolated on a separated core [Sartor and Eeckhout 2012; Cao
et al. 2012]. This approach is not practical for mobile devices
due to the high cost of keeping a core online.

For mobile devices, several power studies involve software
and hardware layers leading to fine-grained tools to profile
the system level to detect power bugs and to determine the
app blocks that leak large amounts of energy [Pathak et al.
2011, 2012]. [Hao et al. 2013] suggested a program analysis
and per-instruction modeling to estimate energy consumption
of an Android app at the code level.

Here, we evaluate GC across non-adjacent system layers.
We demonstrate that the GC requirement is not solely depen-
dent on memory size. Instead, it is necessary to define GC
requirements as a function of system mechanisms such as the
governor and scheduling policies. [Kambadur and Kim 2014]
similarly show that energy evaluation on server platforms
has more significance when it considers the full system stack.
Our results differ from the work done by [Hao et al. 2013]
in fitting the runtime performance within the whole system
stack (i.e., hardware, kernel and power management). Thus,
the results generated in this paper reflect real execution in-
volving synchronization overhead, induced by spin-locks and
context-switching [Park et al. 2007; Gautham et al. 2012].

6. Discussion
We show the degree by which system performance (power,
time, and response) is affected by GC design strategies and

enumerate the main impacting factors. This work is a first
step to better understand mobile GC behavior and interactions
between power and performance on mobile systems. Further
tuning of all GC parameters is left for future work.

Suggestions for the community. GC on mobile platforms
has novel challenges due to the adaptive nature, the work-
load size, and the environmental restrictions of the programs.
Thus, GC evaluations must consider management mecha-
nisms across the stacks in order to get precise and relevant
conclusions regarding the GC impact on user experience.
Controlling GC strategies induces a large variation of the
total on-chip energy consumed by the app, and worst-case
pause times. This shows that GC has significant impact on
battery life and app responsiveness; GC directly affects the
user experience.

Researchers and industry should develop a common plat-
form with transparent access to different system layers. This
approach allows researchers to evaluate the side effects of
their implementation on all other system components. We
also encourage the creation of standard benchmarks in order
to refine evaluation methodologies on mobile platforms and
provide a first step towards this goal by porting existing Java
benchmarks to the Android platform.

Writing power-aware source code is not a feasible option
due to widely heterogeneous hardware and software. Our
results show that code optimizations are specific to the de-
fault system configurations (i.e., heap size, and concurrency).
This leads us to believe that energy optimizations can be
achieved by simple modifications to both runtime and sys-
tem layers. For example, extending the VM to dynamically
enable/disable the GC daemon to balance between synchro-
nization overhead and the mutator utilization can lead to a



adaptively tuned performance. Similarly, heap growth poli-
cies need to be integrated with DVFS decisions to achieve
better energy consumption than heuristics based only on mem-
ory footprint.

6.1 Methodology Restrictions
Evaluation methodology on general purpose computing de-
vices is a well-studied problem [Georges et al. 2007; Kalibera
and Jones 2013; Blackburn et al. 2008]. Unfortunately, profil-
ing the mobile platform in real time context has not yet been
studied as vigorously.

Coarse-grained profiling. Ideally, we would like to mea-
sure the fraction of GC time, work, and power to assess the
maximum impact of GC (and to report how close we get to
this theoretical limit in practice for each of the metrics). This
is surprisingly hard due to interferences and dependencies
between concurrent components in the software stack. We
argue that considering the overall system performance is the
best way to evaluate the GC. Figure 6 showed that the in-
creased throughput and reduced GC work for lusearch do not
correspond to lower energy consumption. Hence, breaking
down the attribution of the GC in each metric alone does not
reflect the actual GC overhead.

Profile tools. Hardware counters are limited on mobile de-
vices. For example, L2 memory counters are not available
on many ARM processors [Weaver et al. 2013]. This pre-
vents porting analytical methodologies which are relying on
hardware performance counters. Commercial devices disable
access to performance counters and power rails.

Taming non-determinism. While techniques such as re-
play compilation are widely used to omit the level of non-
determinism caused by JIT optimizations [Arnold et al. 2000],
Android does not offer similar features. Instead, we run our
measurements within 95% of confidence interval by calculat-
ing the average of several iterations after excluding the cold
ones.

6.2 Android Run Time (ART)
Recently, Google announced ART, an ahead-of-time compiler
framework for Android 4.4 [ART and Dalvik] which will
soon replace Dalvik. Our GC extensions for Dalvik mirror
many of the new features of ART including generational, and
on-the-fly collection. We regard exploring ART’s behavior as
an important continuation of our study.

7. Conclusion
Our results show that different Dalvik GC strategies have
highly varying energy requirements that do not always cor-
relate with app throughput. Varying policies, such as heap
growth or concurrency can significantly reduce the energy
consumed or can reduce the worst-case pause time, but not at
the same time. Moreover, app throughput is not necessarily
correlated with power. GC work is inherently memory-bound

but current governor heuristics focus on system load and do
not incorporate the execution profile into their decisions. Our
results imply that existing DVFS policies should be informed
of GC events by the VM to make more informed hotplugging
and frequency scaling decisions. Similarly, app developers
need a range of GC strategies to choose from, so they can
tune for responsiveness, utilization, and power consumption.

This paper is a first step to analyze the GC within the
system scope to serve as a guide of how to evaluate the
coordination between design decisions across all the layers
of the system stacks (software and hardware).

Acknowledgments
This work has been supported by Qualcomm and the National
Science Foundation under grants nos. CNS-1161237 and
CCF-1408896.

References
M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.

Adaptive optimization in the jalapeño JVM. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 47–65, Minneapolis,
Minnesota, Oct. 2000. doi: 10.1145/353171.353175.

ART and Dalvik. URL https://source.android.com/
devices/tech/dalvik/art.html.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 169–190, Portland, Oregon,
Oct. 2006. doi: 10.1145/1167473.1167488.

S. M. Blackburn, R. Garner, C. Hoffman, A. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, S. Z. Guyer, A. Hosking,
M. Jump, J. E. B. Moss, D. Stefanovic, T. VanDrunen, D. von
Dincklage, and B. Widerman. Wake up and smell the coffee:
Evaluation methodology for the 21st century. Commun. ACM, 51
(8):83–89, Aug. 2008. doi: 10.1145/1378704.1378723.

T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling garbage
collection and heap growth to reduce the execution time of Java
applications. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
353–366, Tampa, Florida, Nov. 2001.
doi: 10.1145/504282.504308.

D. Brodowski. CPU frequency and voltage scaling code in the
Linux kernel. URL https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt.

T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The yin and
yang of power and performance for asymmetric hardware and
managed software. In International Symposium on Computer
Architecture, pages 225–236, Portland, Oregon, June 2012.
doi: 10.1109/ISCA.2012.6237020.

A. Carroll and G. Heiser. An analysis of power consumption in a
smartphone. In USENIX Annual Technical Conference, pages

http://dx.doi.org/10.1145/353171.353175
https://source.android.com/devices/tech/dalvik/art.html
https://source.android.com/devices/tech/dalvik/art.html
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1378704.1378723
http://dx.doi.org/10.1145/504282.504308
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://dx.doi.org/10.1109/ISCA.2012.6237020


271–284, Boston, Massachusetts, June 2010. URL
https://www.usenix.org/legacy/event/atc10/tech/
full_papers/Carroll.pdf.

A. Carroll and G. Heiser. Unifying DVFS and offlining in mobile
multicores. In IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 287–296, Berlin, Germany, Apr.
2014. doi: 10.1109/RTAS.2014.6926010.

G. Chen, M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and
M. Wolczko. Adaptive garbage collection for battery-operated
environments. In USENIX Java Virtual Machine Research and
Technology Symposium, pages 1–12, San Francisco, California,
Aug. 2002a. URL https:
//www.usenix.org/legacy/event/jvm02/chen_g.html.

G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
and M. Wolczko. Tuning garbage collection for reducing
memory system energy in an embedded Java environment. ACM
Transactions on Embedded Computing Systems, 1(1):27–55, Nov.
2002b. doi: 10.1145/581888.581892.

X. Chen, A. Jindal, and Y. C. Hu. How much energy can we save
from prefetching ads?: Energy drain analysis of top 100 apps. In
ACM Workshop on Power-Aware Computing and Systems,
HotPower, pages 3:1–3:5, Farmington, Pennsylvania, 2013.
doi: 10.1145/2525526.2525848.

P. Cheng and G. E. Blelloch. A parallel, real-time garbage collector.
In ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pages 125–136,
Snowbird, Utah, June 2001. doi: 10.1145/378795.378823.

F. M. David, J. C. Carlyle, and R. H. Campbell. Context switch
overheads for Linux on ARM platforms. In Workshop on
Experimental Computer Science, San Diego, California, 2007.
ACM. doi: 10.1145/1281700.1281703.

S. Dieckmann and U. Hölzle. A study of the allocation behavior of
the SPECjvm98 Java benchmarks. In European Conference on
Object-Oriented Programming, Lecture Notes in Computer
Science, pages 92–115, Lisbon, Portugal, July 1999.
doi: 10.1007/3-540-48743-3_5.

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: An exercise in
cooperation. Commun. ACM, 21(11):966–975, Nov. 1978.
doi: 10.1145/359642.359655.

T. Domani, E. K. Kolodner, E. Lewis, E. E. Salant, K. Barabash,
I. Lahan, Y. Levanoni, E. Petrank, and I. Yanorer. Implementing
an on-the-fly garbage collector for Java. In ACM SIGPLAN
International Symposium on Memory Management, pages
155–166, Minneapolis, Minnesota, Oct. 2000.
doi: 10.1145/362422.362484.

B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic
metrics for Java. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 149–168, Anaheim, California, Oct. 2003.
doi: 10.1145/949305.949320.

R. Efron. Conservation of temporal information by perceptual
systems. Perception & Psychophysics, 14(3):518–530, Oct. 1973.
doi: 10.3758/BF03211193.

D. Ehringer. The Dalvik Virtual Machine Architecture, Mar. 2010.
URL http://davidehringer.com/software/android/
The_Dalvik_Virtual_Machine.pdf.

H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S.
McKinley. Looking back on the language and hardware
revolutions: Measured power, performance, and scaling. In ACM
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 319–332, Newport
Beach, California, Mar. 2011.
doi: 10.1145/1950365.1950402.

Market Share: Ultramobiles by Region, OS and Form Factor, 4Q13
and 2013. Gartner, Feb. 2014. URL
https://www.gartner.com/doc/2672716/
market-share-ultramobiles-region-os.

A. Gautham, K. Korgaonkar, P. Slpsk, S. Balachandran, and
K. Veezhinathan. The implications of shared data
synchronization techniques on multi-core energy efficiency. In
USENIX Conference on Power-Aware Computing and Systems,
HotPower, Hollywood, California, Oct. 2012. URL
https://www.usenix.org/system/files/conference/
hotpower12/hotpower12-final40.pdf.

A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous
Java performance evaluation. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 57–76, Montréal, Canada, Oct. 2007.
doi: 10.1145/1297027.1297033.

P. Griffin, W. Srisa-an, and J. M. Chang. An energy efficient
garbage collector for Java embedded devices. In ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems, pages 230–238, Chicago, Illinois,
June 2005. doi: 10.1145/1065910.1065943.

S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating
mobile application energy consumption using program analysis.
In International Conference on Software Engineering, pages
92–101, San Francisco, California, May 2013. IEEE Press.
doi: 10.1109/ICSE.2013.6606555.

Intrinsync. DragonBoard development board based on the
Qualcomm Snapdragon 800 processor (APQ8074). URL
http://mydragonboard.org/db8074.

A. Iyer and D. Marculescu. Power efficiency of voltage scaling in
multiple clock, multiple voltage cores. In IEEE/ACM
International Conference on Computer-Aided Design, pages
379–386, San Jose, California, Nov. 2002.
doi: 10.1145/774572.774629.

A. Jindal, A. Pathak, Y. C. Hu, and S. Midkiff. Hypnos:
Understanding and treating sleep conflicts in smartphones. In
ACM European Conference on Computer Systems, EuroSys,
pages 253–266, Prague, Czech Republic, 2013. ISBN
978-1-4503-1994-2. doi: 10.1145/2465351.2465377.

R. Jones, A. Hosking, and E. Moss. The Garbage Collection
Handbook: The Art of Automatic Memory Management.
Chapman & Hall/CRC Press, 2011.

T. Kalibera and R. Jones. Rigorous benchmarking in reasonable
time. In The International Symposium on Memory Management,
pages 63–74, Seattle, Washington, June 2013.
doi: 10.1145/2464157.2464160.

T. Kalibera, M. Mole, R. Jones, and J. Vitek. A black-box approach
to understanding concurrency in DaCapo. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,

https://www.usenix.org/legacy/event/atc10/tech/full_papers/Carroll.pdf
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Carroll.pdf
http://dx.doi.org/10.1109/RTAS.2014.6926010
https://www.usenix.org/legacy/event/jvm02/chen_g.html
https://www.usenix.org/legacy/event/jvm02/chen_g.html
http://dx.doi.org/10.1145/581888.581892
http://dx.doi.org/10.1145/2525526.2525848
http://dx.doi.org/10.1145/378795.378823
http://dx.doi.org/10.1145/1281700.1281703
http://dx.doi.org/10.1007/3-540-48743-3_5
http://dx.doi.org/10.1145/359642.359655
http://dx.doi.org/10.1145/362422.362484
http://dx.doi.org/10.1145/949305.949320
http://dx.doi.org/10.3758/BF03211193
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://dx.doi.org/10.1145/1950365.1950402
https://www.gartner.com/doc/2672716/market-share-ultramobiles-region-os
https://www.gartner.com/doc/2672716/market-share-ultramobiles-region-os
https://www.usenix.org/system/files/conference/hotpower12/hotpower12-final40.pdf
https://www.usenix.org/system/files/conference/hotpower12/hotpower12-final40.pdf
http://dx.doi.org/10.1145/1297027.1297033
http://dx.doi.org/10.1145/1065910.1065943
http://dx.doi.org/10.1109/ICSE.2013.6606555
http://mydragonboard.org/db8074
http://dx.doi.org/10.1145/774572.774629
http://dx.doi.org/10.1145/2465351.2465377
http://dx.doi.org/10.1145/2464157.2464160


Languages, and Applications, pages 335–354, Tucson, Arizona,
Oct. 2012. doi: 10.1145/2384616.2384641.

M. Kambadur and M. A. Kim. An experimental survey of energy
management across the stack. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 329–344, Portland, Oregon, Oct. 2014.
doi: 10.1145/2660193.2660196.

H. Lieberman and C. E. Hewitt. A real-time garbage collector
based on the lifetimes of objects. Commun. ACM, 26(6):
419–429, June 1983. doi: 10.1145/358141.358147.

A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and
R. Rajkumar. Critical power slope: Understanding the runtime
effects of frequency scaling. In International Conference on
Supercomputing, pages 35–44, New York, New York, June 2002.
ACM. doi: 10.1145/514191.514200.

monkeyrunner. URL http://developer.android.com/
tools/help/monkeyrunner_concepts.html.

National Instruments. NI USB-6008/6009 user guide and
specifications: Bus-powered multifunction DAQ USB device, Feb.
2012. URL
http://www.ni.com/pdf/manuals/371303m.pdf.

S. Park, W. Jiang, Y. Zhou, and S. Adve. Managing
energy-performance tradeoffs for multithreaded applications on
multiprocessor architectures. In ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, pages 169–180, San Diego, California, June
2007. doi: 10.1145/1254882.1254902.

A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang.
Fine-grained power modeling for smartphones using system call
tracing. In ACM European Conference on Computer Systems,
pages 153–168, Salzburg, Austria, Apr. 2011.
doi: 10.1145/1966445.1966460.

A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent
inside my app?: Fine grained energy accounting on smartphones
with eprof. In ACM European Conference on Computer Systems,
pages 29–42, Bern, Switzerland, Apr. 2012.
doi: 10.1145/2168836.2168841.

G. Pinto, F. Castor, and Y. D. Liu. Understanding energy behaviors
of thread management constructs. In ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and
Applications, pages 345–360, Portland, Oregon, Oct. 2014.
doi: 10.1145/2660193.2660235.

T. Printezis. On measuring garbage collection responsiveness.
Science of Computer Programming, 62(2):164–183, Oct. 2006.
doi: 10.1016/j.scico.2006.02.004.

J. B. Sartor and L. Eeckhout. Exploring multi-threaded Java
application performance on multicore hardware. In ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 281–296, Tucson,
Arizona, Oct. 2012. doi: 10.1145/2384616.2384638.

Standard Performance Evaluation Corporation. SPECjvm98
Benchmarks, release 1.03 edition, Mar. 1999. URL
http://www.spec.org/jvm98.

D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages 157–167,
Pittsburgh, Pennsylvania, Apr. 1984.
doi: 10.1145/800020.808261.

N. Vijaykrishnan, M. Kandemir, S. Kim, S. Tomar,
A. Sivasubramaniam, and M. J. Irwin. Energy behavior of Java
applications from the memory perspective. In USENIX Java
Virtual Machine Research and Technology Symposium,
Monterey, California, Apr. 2001. URL
https://www.usenix.org/legacy/events/jvm01/full_
papers/vijaykrishnan/vijaykrishnan.pdf.

V. M. Weaver, D. Terpstra, and S. Moore. Non-determinism and
overcount on modern hardware performance counter
implementations. IEEE International Symposium on
Performance Analysis of Systems and Software, pages 215–224,
Apr. 2013. doi: 10.1109/ISPASS.2013.6557172.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström.
The worst-case execution-time problem — overview of methods
and survey of tools. ACM Transactions on Embedded Computing
Systems, 7(3):36:1–36:53, May 2008.
doi: 10.1145/1347375.1347389.

http://dx.doi.org/10.1145/2384616.2384641
http://dx.doi.org/10.1145/2660193.2660196
http://dx.doi.org/10.1145/358141.358147
http://dx.doi.org/10.1145/514191.514200
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://www.ni.com/pdf/manuals/371303m.pdf
http://dx.doi.org/10.1145/1254882.1254902
http://dx.doi.org/10.1145/1966445.1966460
http://dx.doi.org/10.1145/2168836.2168841
http://dx.doi.org/10.1145/2660193.2660235
http://dx.doi.org/10.1016/j.scico.2006.02.004
http://dx.doi.org/10.1145/2384616.2384638
http://www.spec.org/jvm98
http://dx.doi.org/10.1145/800020.808261
https://www.usenix.org/legacy/events/jvm01/full_papers/vijaykrishnan/vijaykrishnan.pdf
https://www.usenix.org/legacy/events/jvm01/full_papers/vijaykrishnan/vijaykrishnan.pdf
http://dx.doi.org/10.1109/ISPASS.2013.6557172
http://dx.doi.org/10.1145/1347375.1347389

	Introduction
	Background and Methodology
	Dalvik Concurrent Mark-Sweep (CMS)
	Device Steady State
	Benchmarks
	Platform
	Dalvik VM Profiling
	Responsiveness
	Power Measurements


	GC Extensions
	Generational CMS
	On-the-fly
	Concurrency Policies

	Evaluation
	Energy and Throughput
	Effect of Heap Size
	Effect of Design Choices

	Responsiveness: MinMU
	Effect of Design Choices
	Effect of Heap Size


	Related Work
	Discussion
	Methodology Restrictions
	Android Run Time (ART)

	Conclusion

