
Don’t Race the Memory Bus: Taming the GC Leadfoot

Ahmed Hussein† Antony L. Hosking† Mathias Payer† Christopher A. Vick‡

†Purdue University, USA ‡Qualcomm, Inc., USA
†{hussein,hosking,mpayer}@purdue.edu ‡cvick@qti.qualcomm.com

Abstract
Dynamic voltage and frequency scaling (DVFS) is ubiqui-
tous on mobile devices as a mechanism for saving energy.
Reducing the clock frequency of a processor allows a corre-
sponding reduction in power consumption, as does turning off
idle cores. Garbage collection is a canonical example of the
sort of memory-bound workload that best responds to such
scaling. Here, we explore the impact of frequency scaling for
garbage collection in a real mobile device running Android’s
Dalvik virtual machine, which uses a concurrent collector. By
controlling the frequency of the core on which the concurrent
collector thread runs we can reduce power significantly. Run-
ning established multi-threaded benchmarks shows that total
processor energy can be reduced up to 30 %, with end-to-end
performance loss of at most 10 %.

Categories and Subject Descriptors C.1.4 [Parallel Ar-
chitectures]: Mobile processors; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collec-
tion), Run-time environments; D.4.8 [Performance]: Mea-
surements

Keywords mobile, power, energy, Android, smartphones

1. Introduction
Shipped as systems-on-a-chip (SoC), mobile platforms fea-
ture heterogeneous multi-core hardware with on-die hardware
peripherals such as WiFi and GPS. The fundamental user ex-
perience on such devices is driven by device responsiveness
and battery lifetime. To increase power efficiency, vendors
often install binary-only, vendor-specific thermal engines that
manage the throttling of core frequencies through dynamic
voltage and frequency scaling (DVFS), which aim for energy
savings while maintaining reasonable performance [29, 34].
The complexity of modern mobile platforms such as Android,
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with interactions across layers from hardware up through op-
erating system and managed run-time system to application,
makes managing this tradeoff difficult and complex.

Our focus here is on understanding and controlling the
power-performance tradeoff of the garbage collector of An-
droid’s Dalvik virtual machine (DVM) running on a real
mobile device. Prior work has explored this tradeoff for
general-purpose platforms [15, 23, 40, 43], including survey-
ing energy management across the stack [32]. Nevertheless,
interactions across layers on mobile devices have not been
directly addressed, even as such devices are more sensitive
to energy and thermal conditions. Dalvik is the most widely
used mobile managed run-time system, which we treat here
essentially as an opaque black box, excepting that we observe
and correlate significant memory management events with
CPU power, performance, and responsiveness. Importantly,
the CPU consumes from 20 % to 40 % of total device power
[16], making it a significant component of power consump-
tion that is worth managing effectively.

To obtain in vivo energy consumption for Android we
modify a DragonBoard APQ8074 development kit [27] by
interposing a Hall effect current sensor between the board’s
power management unit and its quad-core SnapDragon 800
SoC [42]. Using device performance counters to measure
cycles, instructions, and elapsed time, we are able to correlate
performance profiles with SoC power.

Moreover, by pinning Dalvik’s concurrent garbage collec-
tion thread to one core and varying the frequency of just that
core, we can isolate and understand the impact of garbage col-
lection along these performance dimensions as power varies.
We quantify the degree to which garbage collection is mem-
ory bound by showing how its utilization of the processor,
measured in collector cycles per instruction (CPI), improves
as the clock speed of the collector core is throttled back. We
obtain these results using a modified GC-aware Linux power
governor that responds by capping the frequency of only the
collector core for the duration of each concurrent collection
cycle. The upshot is that garbage collection work consumes
less power, though at the cost of throughput. We show that
the GC-aware governor allows tuning this tradeoff to match
the needs of apps, to save save as much as 30 % of processor
energy for at most 10 % reduction in execution time.
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2. Approach
Tracing garbage collectors traverse heap references starting
from the mutator roots to determine all the reachable ob-
jects [30]. The collector reclaims memory occupied by non-
reachable objects. As a result, memory operations to load and
trace the references dominate collector instructions, and incur
more memory cycles per instruction than compute-bound
mutator workloads. Motivated by this specialized GC work-
load, several studies have explored offloading GC work to:
(i) dedicated slow cores [15, 43], (ii) GPUs [33], and (iii) even
specialized hardware [8–10]

Here, we explore the direct power impact of Dalvik’s
concurrent collector on the Android mobile platform. Mobile
devices use sophisticated power management strategies in
both hardware and software, with only simple communication
among the layers. The DragonBoard APQ8074 development
kit for Qualcomm’s mobile platforms deploys a proprietary
thermal engine to monitor temperature and workload which
provides feedback to Android’s Linux ondemand governor
[14] to influence DVFS decisions. Its quad-core SnapDragon
S4 processor supports asymmetric SMP with separate power
domains for each core, so that each can be brought online
and its frequency controlled independently of the other cores.
Primary core 0 is always kept online (to service the OS as
well as applications), though it may be throttled back to a
very low idle frequency based on workload and demand.

Dalvik’s concurrent collector runs as a daemon thread
in the Dalvik virtual machine. When triggered it can be
scheduled on any available core at whatever frequency the
governor sets for that core. The default Android governor has
no special knowledge about the activity of the GC daemon;
it applies the same workload feedback mechanisms for the
GC daemon as it does for all other threads. To isolate and
control the impact of the GC daemon we make the following
modifications to Android and Dalvik:

1. Pin the Dalvik GC daemon to primary core 0 so that we
know the precise core on which it will run. Importantly,
this core is always online, so we do not affect decisions
for onlining/offlining cores for other threads. Thus, we
do not reserve a core and keep it online solely for the
GC daemon, which runs only intermittently; otherwise we
might consume power to keep a core online unnecessarily.

2. Modify the Dalvik virtual machine so that the ondemand
governor knows when the concurrent GC daemon is active,
by marking the beginning and end of each collection cycle.

3. Modify the ondemand governor to cap the frequency of
core 0, only for the duration of the concurrent GC cycle.
The governor may choose to lower the frequency below
this cap as it chooses. When the concurrent GC daemon
is not active (i.e., outside the GC cycle), the governor is
also free to adjust the frequency above the cap.

Remember that pinning is needed to prevent the GC daemon
from migrating to other cores that are not capped. Otherwise,

the daemon speed will vary depending on the core on which
it is scheduled. Pinning to core 0 is the only way to control
concurrent GC frequency while leaving other mutator threads
to run at independently governed speeds on other cores. We
pin to core 0 because it is always on; other cores can be
offlined by the governor to save power when multi-core
utilization is low.

Given the memory-bound nature of the GC daemon we
expect lower frequencies to achieve the same work (instruc-
tions executed) without significantly degrading throughput,
because at high frequencies many processor cycles (i.e., en-
ergy) will be wasted waiting for memory. Thus, one measure
of collector efficiency is cycles per instruction executed (CPI).
The SnapDragon S4 allows the sampling of per-thread hard-
ware counters, so we can directly measure CPI for the GC
daemon. Our results demonstrate how CPI improves for the
GC daemon when the frequency of its core is capped.

Of course, slowing the collector core 0 also slows down
mutator threads, both those direectlyt interleaved with the
concurrent GC daemon on core 0, and those indirectly forced
to wait for the GC daemon to finish the GC cycle if they try
to allocate. Thus, application throughput can be expected to
decrease with a slower collector core. This tradeoff between
application throughput and frequency of the collector core
is the relationship we are interested in, because there turns
out to be a sweet spot where slowing the collector core saves
power without significantly reducing application throughput.

3. Methodology
Our experimental platform comprises hardware (Dragon-
Board), software (Android, Dalvik) [3, 22], scripts for man-
aging the device automatically, and a selection of standard
benchmarks. We instrument both hardware and software to
measure the behavior of the benchmarks, which we have
ported from standard Java to Android. The instrumentation
allows us to correlate events across the layers. We measure
only hot runs of the benchmarks, to exclude the effects of
Dalvik’s dynamic “JIT” compilation. Note that early releases
of the Android Run Time (ART) VM [6], intended to replace
Dalvik as the standard VM for Android apps, have a simi-
lar memory management framework to Dalvik’s. Thus, we
expect our results to be reasonably predictive of ART’s be-
havior. Unfortunately, the DragonBoard does not currently
have support for the latest version of Android with ART.

3.1 Platform
We measure a complete Android development platform in
vivo, avoiding emulation. We use the DragonBoard™ APQ-
8074 development kit, based on Qualcomm’s Snapdragon™

S4 SoC using the quad-core 2.3 GHz Krait™ CPU, which has
4 KiB + 4 KiB direct mapped L0 cache, 16 KiB + 16 KiB 4-
way set associative L1 cache, and 2 MiB 8-way set associative
L2 cache [27]. Krait allows cores to run asymmetrically at
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Table 1. System defaults

Dalvik VM build properties Governor: ondemand
VM parameter value Governor parameter value
heapstartsize 8 MiB optimal_freq 0.96 GHz
heapgrowthlimit 96 MiB sampling_rate 50 ms
heapsize 256 MiB scaling_max_freq 2.1 GHz
heapmaxfree 8 MiB scaling_min_freq 0.3 GHz
heapminfree 2 MiB sync_freq 0.96 GHz
heaptargetutil 75 % up_threshold 90

different frequencies, or different voltages, controlled by
software.

The board runs Android version 4.3 (“Jelly Bean”) with
Linux kernel version 3.4. We modified the kernel and Dalvik
to: (i) allow direct access to hardware performance counters
from Dalvik, (ii) control enabling/disabling of the cores,
and (iii) expose the Dalvik profiler to other kernel-level
events. We capture both events that enable/disable cores
(hotplugging) and frequency transitions due to DVFS using
a modified Android systrace. The default configurations
for Dalvik and the Android governor appear in Table 1, as
shipped in the APQ8074 Android distribution.

3.2 Consistent Lightweight VM Profiling
We measure the CPI of the GC daemon using hardware per-
formance counters to collect the CPU cycles and number of
instructions it executes [48, 49]. To minimize profiling over-
head we use a separate profiler daemon to gather per-thread
statistics such as heap demographics and performance coun-
ters and to correlate these values with GC events, triggering
the profiler daemon every 64 KiB of allocation. To avoid I/O
overhead and expensive synchronization with the mutator
threads, the profiler stores its data in a lock-free cyclic buffer,
which is drained only on overflow. The profiler daemon is
disabled when performing timing-sensitive measurements,
such as for execution time and energy.

3.2.1 Experimental Challenges
Measuring real apps running on an Android device has
many challenges at both system and app levels. First, the
device does not operate in single-user mode. At boot time
Android launches several device-wide services as background
processes that stay running in the background after the boot
completes. These can affect the experiments by competing for
CPU resources, so we control for these by repeating iterations
of benchmarks and averaging results.

Second, consistent evaluation of performance is difficult
on a system that has proprietary thermal and power manage-
ment (such as Qualcomm’s thermal engine and mpdecision
userspace binary) and kernel-managed DVFS. Android (via
Linux) supports a range of CPUfreq governors that imple-
ment different algorithms for setting core frequencies ac-
cording to CPU usage [14]. The APQ8074 runs by default
with the ondemand governor. This sets per-core frequencies
depending on current usage. Moreover, the thermal engine

and mpdecision proprietary components can also affect CPU
frequencies and hotplugging. To avoid perturbation by these
services we run experiments that are sensitive to time and
scheduling with the proprietary thermal engine disabled, and
instead apply external cooling to the SoC heat sink to prevent
device failure.

Third, Android apps require user interaction both to start
them running and to drive them. We initiate and control all of
our benchmark runs via simulated user interaction using the
monkeyrunner framework [35].

Finally, hardware counters are limited on mobile devices
[49]. For example, L2 memory counters are not available on
some ARM processors, including the APQ8074, and commer-
cial devices often disable access to the performance counters.
This limitation prevents importing existing analytical models
relying entirely on hardware performance counters.

3.2.2 Taming VM Controls
Every Android app runs as a separate process in its own
instance of the Dalvik VM. By default the Dalvik concurrent
collector runs as a background native daemon. The collector
is mostly-concurrent in that it periodically stops all the Java
(mutator) threads, but otherwise runs concurrently in the
background and synchronizes only occasionally (once at
the beginning and once at the end of the collector cycle).
It operates as a mark-sweep collector, tracing references from
roots, which include both thread stacks and other global
variables, marking objects reachable via those references, and
recursively through references stored in reachable objects.
When all the reachable (live) objects have been marked it
sweeps the heap to free up unmarked objects.

Heap sizing. We retain Dalvik’s default heap sizing policies
which are simple heuristics to balance the tension between
frequency of garbage collection and heap size, similar to
those described by Brecht et al. [13]. The primary parameter
controlling heap size and garbage collection is the target heap
utilization ratio (targetutil), used to resize the heap after
each GC cycle. Resizing means computing a new allocation
threshold for triggering the next collection cycle, called
softlimit.

The value of softlimit is set to ensure that the ra-
tio of the volume of live data to softlimit is equal to
targetutil. In addition to softlimit, resizing also com-
putes the concurrent start bytes (CSB) threshold, set at a delta
of 129 KiB less than softlimit. When allocation would
cause the heap to exceed softlimit then the allocating
mutator directly performs a foreground concurrent GC cy-
cle. Otherwise, when allocation succeeds without exceeding
softlimit, but the new allocation exceeds CSB, then the
allocating mutator signals the GC daemon to start a new back-
ground GC cycle. Of course, heap sizing decisions have an
effect on energy consumption [18, 19, 25].

JIT compilation. Omitting the non-determinism intro-
duced by dynamic “JIT” compilation is widely used in exper-
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iments on general purpose Java platforms [5]. While Android
does not offer replay compilation, the Dalvik dynamic “JIT”
compiler is sufficiently simple [4] for its effects to be avoided
by running multiple iterations of each benchmark within a
single invocation of the Dalvik VM and discarding the first
cold iteration. Execution times of these hot iterations vary in
the range of 0.5 % to 1 % (for 90 % confidence intervals).

3.3 Benchmarks
Finding meaningful workloads to evaluate GC on mobile
devices is difficult. Typical mobile apps are event-based,
with behavior dependent on user actions. They also often
interface to network and other peripheral devices in the
normal course of their execution. These interactions result in
behaviors that are difficult to control and difficult to script
in a repeatable way. Android apps also typically rely heavily
on native libraries for performance of computation-intensive
functionality (such as audio and video processing), meaning
that they rely very little on Dalvik and its managed run-time
system. They are also often buggy and cannot reliably be run
in a mode that allows evaluation.

Free mobile apps often operate in modes that prevent
a repeatable workload because their memory usage varies
across different runs. Interestingly, the impact of a given
workload is not limited to its innate memory profile: Pathak
et al. [38] show that free mobile apps using third-party
services to display advertising consume considerably more
battery. For example, one app spends 75 % of its total power
consumption on advertisements. App developers may also
explicitly force components to stay awake, introducing more
power drain [39].

Meanwhile, commercial Android benchmarks such as
Quadrant lock the cores at their maximum frequency to
measure peak performance. This makes them useless for
meaningful evaluation of power-performance tradeoffs.

Moreover, both user apps and commercial benchmarks are
essentially black boxes with opaque bahaviors, and no history
of understanding and analysis in the GC literature. Many
benchmarking apps are also synthetic, measuring a single
system feature heavily, without modeling general-purpose
executions.

For these reasons, our workloads are drawn from estab-
lished Java benchmark suites that are already well understood,
at least in the desktop and server space [11, 21, 31]. They
also may exhibit behaviors (e.g., scalability and concurrency)
that existing Android apps do not (yet) display.

We have faithfully ported several standard Java bench-
marks from both the SPECjvm98 [46] and DaCapo [11, 12]
benchmark suites. We have ported all eight of the SPECjvm98
applications to Android, but for space reasons focus here on
the most “representative” [28] of those eight: javac and jack.
Because the full set of Java APIs are not all fully supported
on Android and some packages are completely omitted, our
porting of DaCapo is restricted to two multithreaded appli-

cations from the DaCapo 9.12 Bach release, lusearch and
xalan.

We run both SPECjvm98 and DaCapo apps using their
standard benchmarking harnesses to obtain elapsed execution
times. Our execution time experiments run six iterations of
each benchmark on the small workload, discarding the first
cold iteration, and taking the average of the warm iterations.
Confidence intervals for these runs are tight, in the range
0.5 % to 1 %. The number of available hardware threads is
automatically sampled by some of the benchmarks; there are
four hardware threads on the quad-core APQ8074.

3.4 Power Measurements
Carroll and Heiser [17] model the power consumption of an
n-core CPU as PCPU = Puncore + n(Pdynamic + Pstatic). Pstatic
is the workload-independent power consumed by a core
that is online but otherwise idle, varying only with core
voltage. Pdynamic is the additional workload-dependent power
consumed by an active core based on voltage/frequency:
Pdynamic = V 2 ×Ceff × f [50], where V is the core voltage,
Ceff is the effective switching capacitance of the core, and
f is the frequency of the core. The remaining CPU power
consumption, Puncore, is independent of the number of online
cores, typically contributed by last-level caches, buses, etc.

Since the governor reacts to workload by adjusting core
speeds, dynamic energy is affected by its decisions. Hence,
power consumed by an active core is dependent on the
workload (instructions executed), i, and the core frequency
f : Pdynamic ∝

i
cycles . Furthermore, Carroll and Heiser [17]

reveal that transitioning between different core frequencies
and online/offline states (hotplugging) has significant power
impact on total energy. They measure transition costs in the
range 317 to 1926 mW for the Snapdragon™ 600 (8064T).
Thus, on-chip consumed energy depends on the cost of
the frequency transitions in addition to the explicit cost in
instructions at a given core frequency. Further, measuring
energy can only be achieved by measuring the power at the
circuit level as the product of measured current I and the
the voltage drop V across the CPU. However, measuring
total AC current to the device with a clamp ammeter is
not precise enough to measure the effects of workload on
CPU power [15]. Evenso, measuring power on the SoC level
does not account solely for workload on the cores since it
also includes power consumed by other on-chip components
(modem, GPU, sensors, etc.).

We measure overall current flow at the circuit level using
a Pololu-ACS714 Hall-effect linear current sensor [1], posi-
tioned between the CPU and the voltage regulator. We mea-
sure voltage using a National Instruments NI-6009 data ac-
quisition device [36]. From these we calculate instantaneous
power and thence energy over time. The Pololu-ACS714 has
total output error of ±1.5 % at room temperature with factory
calibration. The NI-6009 DAQ allows 48 kS/s sampling rate
with typical absolute accuracy 1.5 mV (error 0.9 %). We read
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the voltage across the voltage regulator and the sensor output
at sampling rate 2 kS/s using the differential method and we
take a simple moving average for each set of 10 points.

4. Results
The power profile of an application is dictated by the core
frequency transition and onlining/offlining DVFS events that
occur during its execution. Moreover, when we cap the GC
daemon’s core frequency it will result in different feedback
to the governor and different decisions about these events.
To understand the impact of this for each of our benchmarks
we compare the DVFS events and frequency values for the
original Dalvik system with those of the GC-aware governor,
for various values of GC core frequency caps. The profiles
appear in Fig. 1. Figure 1a plots the frequency transitions of
the apps running on the default Dalvik system.

For DaCapo benchmarks lusearch and xalan, cores 2 and
3 are often offlined between iterations, while the second core 1
is mostly offline outside the main control loop for the itera-
tions. The single threaded benchmarks (i.e., SPECjvm98) use
only two cores. Figures 1b to 1d demonstrate the difference
between the default and the GC-aware governors; each plots
the frequency transitions at a different GC core frequency cap
(0.96, 1.5 and 2.15 GHz, respectively). Notice how capping
affects not only the transitions for GC core 0, but also the
other cores servicing mutator threads. The reason for this is
that changing the GC core 0 frequency affects the latency of
stalls the mutator threads experience during stop-the-world
phases or while waiting for the GC cycle to finish so they can
allocate. This in turn changes their performance profiles that
feed into the governor in its transition decisions for the other
cores.

4.1 Energy and Throughput
The collector is a memory bound task so we measured the
per-thread CPI of the concurrent GC daemon for each GC
cycle. Figure 3 plots the cumulative average CPI (y-axis)
for the GC daemon over time (measured in bytes allocated),
for the default Dalvik and GC-aware capped governors. The
clear trend is that the lower the GC core cap, the lower the
CPI. This is the primary reason why running the GC daemon
at a slower speed can improve power efficiency without a
proportional loss of performance.

In contrast, Fig. 2 shows the overall (rather than cumu-
lative) average CPI for each benchmark while varying the
GC core cap. This varies very little across GC core frequency
caps, indicating that GC core CPI has little impact on overall
CPI, which is dominated by the workload rather than the
GC daemon. Thus, the GC daemon is a good candidate for
targeted frequency capping to improve its efficiency.

The energy impact of capping GC core frequency by the
GC-aware governor is clear. Figure 4 plots the effect on total
energy consumed (left-hand vertical axis) and execution time
(right-hand vertical axis) over a range of GC core frequency
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Figure 2. Average overall CPI

caps for each benchmark. Energy consumed with the default
Dalvik governor for one execution is shown as a dashed
horizontal line (default-energy) while the default Dalvik
execution time (default-time), is shown as a solid horizontal
line. The trend lines (trend-energy), are linear fits to the
scatter plots (recall that energy consumed is proportional
to frequency for a given fixed workload; computing more
refined statistics such as confidence intervals is not feasible
for so few data points).

For lusearch we see best energy consumption at 0.96 GHz
which is approximately 20 % lower than energy for the cap at
the highest frequency (2.15 GHz). Although both xalan and
lusearch are multithreaded apps, xalan shows less energy
savings (around 10 %) than lusearch. The differences are due
to the characteristics of the workloads. For example, xalan
is known to perform more frequent memory operations [31],
borne out by the higher overall CPI for xalan in Fig. 2.

Energy consumed for jack varies least. Referring back to
the frequency transition diagrams for jack in Fig. 1 we note
that the profiles for jack are similar across frequencies indi-
cating that the ondemand governor makes similar transition
decisions regardless of the GC core frequency cap.

Figure 5 summarizes the effect of dynamic GC core
frequency capping on the energy (normalized to the smallest
value per benchmark). The clear trend is that higher frequency
caps (faster collector thread and higher CPI) implies more
energy consumption.

We now explore the tradeoff between power and through-
put while varying the GC core frequency cap. We expect
that capping core frequencies may affect mutators sched-
uled on the slower GC core interleaved with the GC daemon.
Slowing the collector threads may also lead to longer collec-
tion windows during which mutators wait for the concurrent
collection cycle to finish. Figure 6 shows the performance
tradeoff with varying GC core frequency, normalized to the
execution time of the default system.

For three benchmarks (lusearch, xalan and javac), the
throughput slowdown is at worst 10 %. As noted earlier, jack

20



���

���

���

���

���

���

� �� ��� ��� ��� ��� ��� ��� ��� ���

�
�
��
��
�
��
�
�
�
�
�
�

������������������������

������
�������

������
������

������
������

������

(a) lusearch

���

���

���

���

���

���

� �� �� ��� ��� ��� ��� ��� ��� ��� ���

�
�
��
��
�
��
�
�
�
�
�
�

������������������������

������
�������

������
������

������
������

������

(b) xalan

���

���

���

���

���

���

� �� �� �� �� ��� ��� ��� ��� ��� ���

�
�
��
��
�
��
�
�
�
�
�
�

������������������������

������
�������

������
������

������
������

������
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(d) javac

Figure 3. Cumulative average GC daemon CPI
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(b) xalan
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(c) jack
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(d) javac

Figure 4. Total consumed energy and execution time
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Figure 5. Energy consumed relative to default Dalvik

is less sensitive to the value of the GC core frequency cap; it
has throughput penalty at worst 4 %.

Importantly, it is possible to obtain significant energy
savings for modest reductions in throughput. For example, at
the 1.5 GHz cap the performance penalty is only around 4 %,
yet energy savings range up to 13 %. And for a performance
penalty of 10 % energy savings are as high as 30 %!

4.2 Responsiveness
Slowing down the GC daemon also affects mutator respon-
siveness by making allocators wait for the GC cycle to finish
and to resume execution after the collector’s relatively brief
stop-the-world phases (to sample the roots and process weak
references). On mobile devices responsiveness is a primary
virtue in providing usable user interfaces. This is the main
reason for Dalvik to use a concurrent collector.

On their own, reporting worst case and average mutator
pause times don’t adequately characterize the impact of dif-
ferent collector implementations. Instead, minimum mutator
utilization (MMU) over a range of timeframes yield a bet-
ter understanding of the distribution and impact of pauses
[20, 30, 41]. Our VM profiler records the pauses experienced
by each mutator, classified into three categories: (i) GC-safe-
point pauses, when a mutator stops in response to a suspen-
sion request (e.g., for marking mutator roots), (ii) foreground
pauses, when a mutator performs a foreground GC cycle, and
(iii) concurrent pauses, when a mutator waits for a concurrent
GC cycle to finish.

Figure 7 shows the MMU results for each benchmark
with varying GC core frequency caps. MMU graphs plot the
fraction of CPU time spent in the mutator (as opposed to
performing GC work) on the y-axis, for a given time window
on the x-axis (from zero to total execution time for the
application). The y-asymptote shows total garbage collection
time as a fraction of total execution time (GC overhead),
while the x-intercept shows the maximum pause time (the
longest window for which mutator CPU utilization is zero).
When comparing GC responsivenesses, those having curves
that are higher (better utilization) and to the left (shorter
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Figure 6. Execution time slowdown relative to default Dalvik

Table 2. Scheduling statistics normalized to default Dalvik

GC core 0 Migrations Switches
frequency cap lusearch xalan lusearch xalan

0.96 GHz 1.23 1.01 0.97 0.99
2.15 GHz 0.94 0.95 0.98 0.98

pauses) can be considered to be better (with respect to mutator
utilization).

The GC-aware governor with 2.15 GHz cap has the best
MMU curve on the DaCapo benchmarks lusearch and xalan
(Fig. 7a). This can be explained by the fact that pinning
works as a hint to the scheduler to improve its scheduling
decisions. As circumstantial evidence Table 2 shows some
key scheduling statistics:

• migrations: the number of times threads migrate from one
core to another; and

• switches: the number of times cores switch from one
thread to another, including both voluntary and involun-
tary switches.

The GC-aware governor at 2.15 GHz reduces the number
of task migrations on lusearch and xalan by 6 and 5 %,
respectively.

One might consider MMU for jack to be quite unintuitive
as 0.96 GHz has both smallest maximum pauses and best
overall utilization. However, note that applying the GC-aware
governor with a GC core cap of 0.96 GHz, the ondemand
governor responds by keeping core 1 on high frequency for a
larger portion of execution time than the default governor, as
illustrated in Fig. 1 (bottom). For javac (single threaded), the
mutator spends more time waiting for collecting a relatively
large heap (maximum heap size 14 MiB). On the other hand,
the GC-aware governor has a better overall utilization than
the default Dalvik.

Overall, the GC-aware governor doesn’t markedly degrade
maximum pause times, and generally improves overall uti-
lization.
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(a) DaCapo: lusearch (top); xalan (bottom)
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(b) SPECjvm98: jack (top); javac (bottom)

Figure 7. Minimum mutator utilization

Table 3. Total heap volume over time relative to default

GC core 0 frequency cap (GHz)
0.96 1.26 1.50 1.73 2.15

app total heap volume (% of default)

lusearch 0.06 −0.57 −0.06 0.12 −0.15
xalan 0.04 0.12 0.13 0.14 −0.13
javac −0.28 −0.92 −0.10 0.30 1.45
jack 0.92 1.00 −0.14 −0.80 −0.06

4.3 Impact on Heap Volume
Slowing down the core of the GC daemon affects mutator
thread scheduling, and so also the timing of collector cycles
with respect to mutator execution. The Dalvik concurrent col-
lector does not permit threads to allocate beyond softlimit;
any thread attempting to do so during the collector cycle will
be forced to wait. As a result we do not expect to see sig-
nificant variation in heap size over time. To demonstrate
that the speed of the GC daemon has little impact on total
heap volume Table 3 reports the integral (i.e., sum) for the
softlimit as it varies over time (measured in bytes allo-
cated): space(t) =

∫ t
0 softlimitt dt, relative to the default

collector. It is clear that heap volume is unaffected by pinning
and slowing down the concurrent collector.

5. Discussion
Two items in our evaluation bear further discussion: use of
CPI as a leading indicator for energy needs and the impact of
heap size on CPI, and the recent arrival of the new Android
Run Time (ART).

5.1 Choice of CPI to Characterize Workload
Our study relies on CPI as an indicator for CPU energy re-
quirements. The reported results do not explore CPI as a
function of hardware architecture, which would be interest-
ing for further study. Also, the number of instructions to run
a fixed amount of work varies between different executions
due to concurrency in the mutator threads. Taking into con-
sideration that CPI does not measure I/O, OS interruptions,
or GPU executions, our results show that app performance
and energy consumption still correlate well with CPI, at least
for GC in our benchmarks.

Moreover, heap size can affect frequency scaling decisions
and resulting energy effects and app throughput. Indeed,
many GC studies treat heap size as the most important
parameter to vary since it can have a significant impact on
throughput and responsiveness. The Dalvik parameter that
controls the mix of collector work versus mutator work is
the target heap utilization (targetutil), which affects heap
sizing decisions.

As described earlier, Dalvik uses dynamic heap sizing
heuristics, which size the heap at some factor of the live set
resulting from the most recent (full) heap GC. Thus, both
the benchmark and the targetutil affect the GC workload,
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Figure 8. Average overall CPI varying targetutil
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Figure 9. Average GC daemon CPI varying targetutil

in the number of instructions executed, in the mix of those
instructions, and in the scheduling of the collector. Figure 8
shows the average CPI over a range of targetutil values.
The clear trend is that the total CPI does not vary significantly
with heap utilization as long as the mutator workload is
consistent. However, the average CPI of the GC daemon
does vary somewhat since the amount of work done by the
collector in each collection is different as illustrated in Figs. 9
and 10. But the variation is not nearly as large as that obtained
by capping the GC core frequency, which dominates the effect
of different target heap utilization.

5.2 Android Run Time (ART)
Recently, Google announced ART, a next-generation run-
time system for Android 4.4 “Kitkat” that relies on somewhat
aggressive ahead-of-time compilation of apps [6], and which
will is to replace Dalvik. We regard exploring ART’s behav-
ior as an important continuation of our study. Given that our
analysis methodology requires covering a large set of metrics
and configurations across system layers, we preferred not to
include conclusions based on the subset of our experiments
generated with ART before we fully cover all possible con-

figurations. ART also implements several run-time system
improvements that will affect our results:

• just one stop-the-world phase, for marking the roots (no
longer stop-the-world for weak references);

• a pseudo-generational sticky collector to deal with short-
lived objects;

• a separate heap for large objects; and
• parallel processing during marking of mutator roots.

We do not expect the CPI of the GC daemon to change signif-
icantly as its work is dependent on mutator heap data struc-
tures rather than the mutator code generated by the ahead-
of-time compiler (and the daemon is implemented natively).
Thus, the merit of controlling the frequency scaling decisions
to reduce GC daemon CPI still holds. Moreover, improved
concurrency will reduce mutator pauses due to waiting for
the collector. Thus, we are confident in advocating integration
of governor decisions with GC activity as an effective mecha-
nism to tune system performance for other systems including
ART. Our future work will port the frequency governor to
ART and study its impact.

6. Related Work
Several studies have addressed GC requirements when de-
ployed in restricted environments. Chen et al. [18, 19] tune
the collector to enable shutting down memory banks that hold
only garbage objects. Griffin et al. [25] implement a hybrid
mark-sweep/reference-counting collector to reduce power
consumption. Sartor and Eeckhout [43] explored tradeoffs
with separating JVM threads (e.g., garbage collector) and its
effect on performance for a multi-socket server environment
(8-core Intel Nehalem). For managed run-time systems on
general purpose platforms, there is much recent interest in
fine-grained power and to understand the energy needs of VM
components [15, 47]. Occasionally, GC has been evaluated as
an asymmetric activity that can be isolated on a separate core
[15, 43]. However, their methodology relies on dedicated
hardware which is impractical for modern mobile devices.

For mobile devices, several power studies involve software
and hardware layers leading to fine-grained tools to profile
the system level to detect power bugs and to determine the
application blocks that leak large amounts of energy [38, 39].
Hao et al. [26] presented an approach for power estimation
based on offline program analysis. The responsiveness of
embedded systems was throughly studied and evaluated by
estimating the Worst-Case Execution Time (WCET) of indi-
vidual tasks leading to the existence of several commercial
tools and research prototypes [51]. However, the relation be-
tween the WCET analysis and power consumption is less
understood, because of the challenge in assuming a direct
correlation between execution bounds that involve different
components such as compiler, scheduler, and hardware speci-
fications [2, 7, 51].
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(a) DaCapo: lusearch (top); xalan (bottom)
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(b) SPECjvm98: jack (top); javac (bottom)

Figure 10. Cumulative average GC daemon CPI varying targetutil

In this paper, we demonstrate that it is necessary to define
GC requirements as a function of system mechanisms such as
the governor and scheduling policies. While Schwarzer et al.
[44] suggest methods to estimate performance requirements
of software tasks using simulation, our approach is based
on the observation made by Sherwood et al. [45] that a
program’s execution changes over time in phases. Our work
characterizes the GC workload, which is common between
all apps, as having a lower CPI compared to the average
mutator workload. Taking advantage of DVFS [29], we
cap the speed of the collector thread in order to reduce
the power consumption within each collection cycle. Our
study is characterized by its unique contribution in evaluating
the GC design and configurations as an integrated system
component on mobile devices, in the spirit of Kambadur and
Kim [32]. We show that energy for GC can be reduced by
simple integration across system layers (i.e., managed run-
time system and governor). Our results differ from the work
of Hao et al. [26] in fitting the run-time performance within
the whole system stack (i.e., hardware, kernel, and power
management). The results generated in this paper reflect real
executions involving synchronization overhead, induced by
spin-locks and context-switching as noted by others [24, 37].

7. Conclusions
On mobile devices, GC has significant impact on energy con-
sumption, not only from its explicit overhead in CPU and
memory cycles, but also because of implicit scheduling deci-
sions by the OS with respect to CPU cores. Motivated by the
fact that the kernel has the power to change core frequencies

to adapt the system to changing workloads, we presented a
new GC-aware governor that caps the frequency of the core
while the concurrent collector thread is active. The new gov-
ernor is evaluated in vivo showing that it reduces total on-chip
energy (up to 30%) for comparably low throughput tradeoff
(of at most 10%) on our workloads. The GC-aware governor
has no negative impact on benchmarks experiencing optimum
frequency scaling decisions by the default unmodified sys-
tem. Our work is the first to analyze memory management
on mobile devices across non-adjacent system layers (app,
kernel and hardware).
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