
Portable, Mostly-Concurrent, Mostly-Copying Garbage
Collection for Multi-Processors

Antony L Hosking
Department of Computer Science

Purdue University
West Lafayette, IN 47907, USA

hosking@cs.purdue.edu

Abstract
Modern commodity platforms increasingly support thread-level
parallelism, which must be exploited by garbage collected appli-
cations. We describe the design and implementation of a portable
mostly-concurrent mostly-copying garbage collector that exhibits
scalable performance on multi-processors. We characterize its per-
formance for heap-intensive workloads on two different multi-
processor platforms, showing maximum pause times two orders
of magnitude shorter than for fully stop-the-world collection at the
cost of some total mutator throughput.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—code generation, compilers, memory man-
agement (garbage collection), run-time environments

General Terms Algorithms, measurement, performance, design,
experimentation, languages

Keywords Garbage collection, memory management, conserva-
tive, ambiguous-roots, incremental, concurrent, mostly-copying,
mostly-concurrent, portability

1. Introduction
Copying garbage collectors have several salient advantages. They
permit fast allocation by incrementing a pointer in the allocation
space, and compaction of live objects for better locality and to min-
imize fragmentation. Incremental collectors permit the interleav-
ing of mutator (i.e., application) and collector activity to improve
responsiveness for mutators by reducing pause times for interac-
tive or other (soft) real-time activities. Incrementality also trans-
lates into concurrency, since mutators can cooperate on advancing
garbage collection (GC) along with dedicated background collec-
tor threads. Mostly-copying incremental collection combines these
benefits for settings where root references are ambiguous, such as
when uncooperative compilers neglect to provide precise informa-
tion on the location of roots in thread stacks and registers, and
for situations where certain objects must be pinned for a time at
a fixed location in memory. These situations often arise in systems-
oriented programming languages such as C, C++, Modula-3, and
C#.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’06 June 10–11, 2006, Ottawa, Ontario, Canada
Copyright c© 2006 ACM 1-59593-221-6/06/0006. . . $5.00.

With thread-level parallelism via now increasingly available in
commodity hardware intended for use on the desktop (e.g., simulta-
neous multi-threading (SMT) or “hyper-threading”, multi-core pro-
cessors, and chip multi-processors (CMP)), it is increasingly impor-
tant that memory management is neither a concurrency bottleneck
nor a hindrance to exploitation of concurrency by other application
threads.

Here, we report on steps taken to retool a uniprocessor incre-
mental mostly-copying collector for efficient execution on multi-
processors, and quantify the resulting improvements in pause times
and impact on throughput, as well as its scalability for multi-
processor execution. We believe that our prototype is the first
portable collector in the class of mostly-copying collectors also
to be mostly-concurrent: having only a brief stop-the-world phase,
after which mutator threads can run concurrently. Our implemen-
tation is portable, relying only on existing system-level POSIX
thread primitives.

2. Mostly-copying GC
Copying garbage collectors operate by evacuating live objects as
they are discovered, to a new heap space; dead objects remain
behind in the old space, which can then be freed wholesale. Live
objects are those reachable by tracing the transitive closure from
program roots (e.g., registers, global variables, and thread stacks).

Mostly-copying garbage collection [8, 9, 17, 41] is a hybrid of
conservative [13] and copying [25, 15] collection. It is suitable for
use in environments lacking accurate information on the location
of references from the register, static or stack areas; objects that
appear to be referenced from these areas are treated conservatively
and not moved. Such references are called ambiguous roots, since
they have a bit pattern that coincides with the range of valid heap
references. In addition to the usual tidy language-level object refer-
ences, which always refer to object headers, ambiguous roots may
also include derived references that arise out of pointer arithmetic
introduced by compiler optimizations or explicitly by the program-
mer in languages that permit such expression. Ambiguous roots
also serve as a useful mechanism for pinning objects at fixed lo-
cations in memory for the lifetime of the ambiguous root. Mostly-
copying collectors thus permit heap references to be passed to non-
GC-aware code, so long as the reference is held in a register or
on the stack for the duration of the call, causing it to be treated as
an ambiguous root. This simplifies composition of programs from
both GC-aware and GC-oblivious code.

Mostly-copying garbage collectors do require that all pointers
stored in heap-allocated objects be tidy and can be found accu-
rately; objects accessible only from other heap objects can thus be
moved during GC. Accurately finding the source locations of heap

40

pointers requires information describing the layout of heap objects.
The compiler may generate such information directly or it may be
supplied manually by the programmer [9], though this approach
may be error-prone.

For mostly-copying collection the heap is divided into a num-
ber of fixed-size pages, which are usually some fixed multiple of
virtual memory pages. Aligning the heap pages appropriately gives
each page a unique page number formed from the common high-
order bits of the virtual addresses covered by the page. This permits
efficient mapping of heap references to per-page information. Ob-
jects larger than a single heap page are allocated as a sequence of
consecutive heap pages.

We find it convenient to use Dijkstra’s tri-color abstraction [19]
in describing mostly-copying collection. Pages in the heap (and by
implication the objects in them) are “shaded” with one of three
colors:

Black pages contain only live objects, and the references contained
in those objects do not refer to objects in white pages.

Grey pages contain only live objects, but the references in those
objects may still refer to objects in white pages.

White pages contain objects that have not yet been evacuated to a
non-white page; at the end of collection these pages are garbage
and can be reclaimed.

New objects are always allocated in black pages. When the heap
is “full” (e.g., some allocation threshold is reached) all the black
pages are shaded white. The collector then proceeds to evacuate
all reachable objects from white pages to grey pages. The pages
of each color are not necessarily contiguous and pages of each
color may be interleaved. This arrangement allows an object to
be moved by the collector from white to grey either by physically
copying it to a grey page, or simply by shading its current page
grey. The latter mechanism is called page promotion. Objects that
appear to be referenced by ambiguous roots can thus logically
be “moved” by promoting their page; retaining the same virtual
address preserves the integrity of the ambiguous reference. Large
objects are also logically “moved” via page promotion, to reduce
the copying overhead of the collector.

The mostly-copying collector, sketched in Figure 1, operates in
three phases. We assume that the color spaces are abstracted as
sets of pages. The variables p, l and r range over heap pages, heap
pointer locations and heap pointers (references), respectively. The
heap pointer stored at a given heap pointer location l is denoted l ↑.
AR denotes the set of ambiguous roots; for simplicity we assume
these are the only roots, without loss of generality. The auxiliary
procedure promote recolors a white page to grey. The procedure
trace performs iterative Cheney-style [15] copying and scanning of
the transitive closure of white objects reachable from grey pages.
We assume several additional auxiliary procedures:

page(r): returns the the heap page to which heap pointer r refers
pointer locations(p): returns an accurate set of all locations in

page p that contain non-nil heap pointers
copy(r): allocates a copy of the object referred to by r; the address

of the copy is termed r’s forwarding address, and denoted by r′

The garbage collector (gc) begins by condemning all the cur-
rent pages of the heap, flipping their color from black to white
(line 25). All white pages will be reclaimed at the end of collec-
tion, unless promoted in the interim. Thus, the collector’s job is to
evacuate all reachable objects, copying them from the condemned
white pages into grey pages. We assume a finite set of ambigu-
ous roots from the registers, stack, and static areas. To preserve
these ambiguous roots, the collector must first promote the pages
to which they refer (lines 26-28). Note that promotion may retain
(i.e., leak) unreferenced garbage objects that just happen to lie in

1 proc promote(p, color) ≡
2 white := white\{p};
3 color := color ∪ {p}.
4

5 proc trace() ≡
6 foreach p ∈ grey do
7 grey := grey\{p};
8 foreach l ∈ pointer locations(p) do
9 move(l)

10 end;
11 black := black ∪ {p}
12 end.
13

14 proc move(l) ≡
15 r := l ↑;
16 if page(r) ∈ white then
17 if r′ = nil then
18 r′ := copy(r);
19 grey := grey ∪ {page(r′)}
20 end;
21 l ↑ := r′

22 end.
23

24 proc gc() ≡
25 white := black ; grey := {}; black := {};
26 foreach r ∈ AR where page(r) ∈ white do
27 promote(page(r), grey);
28 end;
29 trace();
30 foreach p ∈ white do free(p) end.

Figure 1. Mostly-copying GC

those pages. Promoting a page means recoloring the page from
white to grey for later processing, in which the objects in the pro-
moted page are scanned in the second phase of collection. Scan-
ning of the contents of unreferenced garbage objects in promoted
pages is another potential source of leakage, since their contents
may contain references that result in retention of other garbage
objects. There are techniques for ameliorating such leaks that re-
quire mapping ambiguous roots to their corresponding tidy ref-
erence or by tagging the sub-regions of each promoted page that
are ambiguously-referenced, but they impose additional overheads.
We do not consider such techniques here, observing simply that
thread stacks are usually sufficiently volatile to mix up the ambigu-
ous root sets enough to avoid significant leakage from one round of
GC to the next. There are typically only a couple of ambiguously-
referenced pages per thread stack in any round of GC.

The second phase of collection (line 29) copies the transitive
closure of reachable white objects into grey pages. It proceeds by
scanning the pointer locations of grey pages to discover any that
refer to white objects, copying each reachable white object to a
grey page and leaving behind a forwarding address, and updating
the pointer locations to refer to the grey copies. This is an itera-
tive process that completes only when the grey set is empty (i.e.,
there are no more objects whose locations need to be scanned for
references to uncopied objects). Termination is guaranteed because
the closure of reachable objects is finite: each iteration of the trace
loop recolors a grey page black, and pages are added to the grey set
only when objects are copied to them, so eventually the grey set be-
comes empty. At the end of this second phase there are no pointers
from live (i.e., black) objects to white objects, and all white pages
can be freed (line 30).

Note that decreasing the page size to the point where each page
holds a single object, and then simply promoting all pages/objects

41

rather than copying them, causes this algorithm to degenerate to
mark-sweep collection.

Mostly-copying collectors have both generational [9] and incre-
mental [18] variations, which we now briefly describe.

2.1 Generational mostly-copying GC

Adding generational collection [46, 35, 36] is straightforward,
and relies simply on segregating older pages from newly-allocated
younger pages. Older pages can be promoted wholesale at the start
of each generational collection, so avoiding copying of their objects
in that round of GC. The promoted older pages are shaded grey if
a reference has been stored to them since the last collection, on
the assumption that the reference may be to a newly-allocated (i.e.,
young) white object. Otherwise, the page can be shaded black since
the page can hold only references to other older (now grey or black)
pages. Keeping track of updated older pages requires some sort of
write barrier to track pointer stores to older pages. One approach
is to use virtual memory page protection primitives to record page
modifications by making older pages read-only and catching the
resulting protection traps with signal handlers that record the up-
date [1, 2]. This approach can be expensive given the overhead of
fielding protection traps from the operating system via user-level
signal handlers to record updates, and imposes the coarse-grained
granularity of virtual memory pages as the unit of discourse [28].
Alternatively, the compiler can insert an explicit barrier at each
pointer store, for potentially finer control over granularity.

2.2 Incremental mostly-copying GC

To reduce intrusiveness, incremental collectors interleave tracing
work with application execution. Using the standard graph analogy,
the object heap is a directed graph, with objects as nodes and
references as edges. The collector traces the reachability of nodes
in the graph from the roots. Stop-the-world collectors assume that
the object graph remains static while the collector runs. In contrast,
incremental collectors view the application program as a mutator of
the object graph, that can arbitrarily transform the graph before the
collector has completed tracing it. As a result, the collector must
compensate for mutations that change the reachability of objects.
Generally, it is safe to ignore objects losing a reference while the
collector is tracing the graph – objects that lose their last references
will be collected at the next round of GC. More problematic is
the creation of new references from already-traced (black) objects
to white objects whose other references are overwritten by the
mutator. If the collector never sees those old references then the
object will never be traced. Thus, incremental collectors require
synchronization with the mutator.

As described earlier, tracing is the process of partitioning ob-
jects into black and white. Tracing is complete when there are
no grey nodes; nodes left white are garbage. Tracing correctness
means preventing the mutator from writing references to white ob-
jects into black objects, or from destroying paths from grey ob-
jects to such white objects, without the collector knowing about it.
There are several possible approaches to ensuring correctness for
incremental tracing [38], depending on the style of garbage col-
lector (i.e., copying, mark-sweep, etc.) being used, but for mostly-
copying collectors, where stacks may contain ambiguous untidy
references, there is essentially one feasible approach:

• Prevent the mutator from acquiring references to white objects
(so it can never store one in a black object) [6]

This approach imposes a read barrier on heap accesses by the mu-
tator. Accesses to grey pages require action to prevent acquisition
by the mutator of a reference to a white object. If the mutator knows
(i.e., via compile-time type information) that it is loading a heap
reference from a grey page then it can check to make sure that the

reference does not refer to an object on a white page, and trigger
relocation of any such white object to a grey page. If the muta-
tor cannot distinguish accesses that load references from those that
do not, then it must treat all accesses to grey pages as needing ac-
tion to shade the page from grey to black by scanning its refer-
ences. This latter strategy permits barrier approaches using virtual
memory page protection primitives: all grey pages are protected
no-access, so that any access to a grey page triggers the barrier [1].
To summarize, in either case the read barrier may trigger a small
amount of incremental collection before the mutator can proceed.

So long as barriers are used to ensure correctness, incremental
tracing can proceed independently of the mutator. One approach
piggy-backs a small amount of tracing onto each allocation request,
to ensure tracing progress is tied to mutator progress (as measured
by allocation) [6]. Alternatively, tracing can run concurrently with
the mutator in a separate thread or in parallel on a separate proces-
sor [12, 40, 23, 34, 7]. Incremental tracing minimizes intrusiveness
by reducing collector pause times, at the expense of synchroniza-
tion overheads to mediate accesses to heap meta-data (e.g., dur-
ing incremental GC and when acquiring pages for allocating new
objects). As a result, while responsiveness for interactive or other
(soft) real-time activities may improve, overall throughput will suf-
fer.

3. Implementation
Our prototype mostly-concurrent mostly-copying collector is based
on the incremental collector originally implemented for the Digital
Systems Research Center’s implementation of Modula-3 [14, 18].
We have extended the incremental collector to function with
Modula-3 threads mapped to system-level threads (rather than as
threads implemented in user-mode) that are preemptively sched-
uled on multi-processor platforms, and to make the collector
mostly-concurrent.

3.1 Modula-3

Modula3’s support for GC recognizes the high degree of safety
afforded by automatic storage reclamation, which is achievable
even in open runtime environments that allow interaction with
non-Modula-3 code. The original SRC implementation has evolved
over the years, including the derivative, briefly-commercial, Criti-
cal Mass version of Modula-3 called CM3. CM3 is now in the pub-
lic domain, with ports targeting most popular POSIX (i.e., Unix)
and Windows (i.e., Win32) platforms.

There are several language features of Modula-3 that compli-
cate GC. One complication arises from the language definition it-
self, which permits limited explicit creation of untidy derived refer-
ences from thread stacks. Both VAR and READONLY parameter pass-
ing modes allow by-reference passing of arguments that designate
internal fields of heap objects. Compiler optimizations can also cre-
ate such references. Diwan et al.[20] describe techniques for ac-
curate location and processing of such untidy references from the
stack, even for copying GC, but their techniques require intrusive
compiler support to propagate derived pointer maps through the
compiler optimizer and back-end.

However, CM3 is implemented as a front-end to the gcc com-
piler, building standard gcc intermediate code trees that are then
processed by the unchanged optimizers and back-end of gcc. This
strategy yields a high degree of portability for CM3 but makes the
techniques of Diwan et al.much less feasible, at least from a porta-
bility and maintainability perspective since gcc is itself a compli-
cated and evolving compiler. Moreover, decoupling the compiler
from the run-time system gives flexibility in back-end implemen-
tation for CM3 – this fact has been exploited to build experimental
back-ends independent of gcc (e.g., there are both BURS [27] and

42

“quick” compiler back-ends for CM3). As a result CM3 relies on
mostly-accurate GC.

3.2 The CM3 collector

The original mostly-copying SRC garbage collector has remained
essentially the same through its evolution into the CM3 implemen-
tation. On many platforms it functions solely as a stop-the-world,
non-generational collector. However, on some platforms, genera-
tional and incremental collection are supported by barriers using
virtual memory protection primitives. This support is complicated
by the need to inter-operate with native system calls, in which vir-
tual memory protection traps cause an error return value, rather
than delivery of a signal to the application that can be handled.
This means that system calls cannot be passed references to pro-
tected pages in the heap. However, the presence of untidy derived
references enable just such expression. To get around this problem,
every port that uses virtual memory primitives to implement barri-
ers for GC must also provide system call wrappers that validate any
reference being passed to the system call by processing the refer-
ence to ensure it refers to neither older nor grey pages. Implement-
ing these wrappers is a burden for portability of the incremental and
generational collector.

A second complication for incremental and generational GC
arises from preemptive thread scheduling. Since a thread can be
preempted at any point in its execution, even inside wrappers to
system calls, the collector must ensure that all heap references held
in thread stacks remain valid for use across such calls. There are
essentially two ways to achieve this. For user-level threading, it is
straightforward to make system calls atomic by disabling thread
switching on entry to their wrappers and re-enabling switching on
exit. However, system-level threading requires an expensive lock,
so instead it is better simply to re-validate stack-held references in
the stop-the-world phase of the incremental collector, to make sure
that no thread refers to an older or grey page when it resumes.

A more difficult problem arises for incremental GC that relies
on virtual memory read barriers. When a mutator thread accesses
a grey page, the resulting access violation triggers a signal handler
that must do the GC work necessary to shade the page black before
returning. In order to do that, the page must be unprotected so
that its contents can be scanned. Yet the scanning process must
execute atomically with respect to other threads, or else they may
see inconsistent state. One way to do that is to stop the other
threads while the page is scanned. Again, this is straightforward for
user-level threading since turning off thread switching is a simple
way to ensure atomicity of a thread’s operations. However, system-
level threading requires that the threads actually be stopped. This
destroys any notion that GC is mostly-concurrent, and can have
a disastrous performance effect on multi-processors, destroying
parallel throughput.

An alternative approach is to map the same physical data from
the grey virtual page into a different virtual page with access en-
abled, leaving the original virtual page protected. The collector
thread can then scan the physical contents of the page to shade it
black, before unprotecting the original virtual page. We considered
this option, but saw the burden of supporting it on multiple target
platforms as compromising portability. Moreover, it suffers from
the forced granularity of the virtual memory page, as described
above.

Finally, the semantics of signals in multi-threaded environments
varies so much across platforms (on some systems, the trapping
thread may not be the thread that receives the resulting signal)
that we consider their use to be effectively, if not inherently, non-
portable.

3.3 Mostly-concurrent, mostly-copying GC

To address these problems of heap synchronization we instead rely
on software read and write barriers. These have the advantage of
being totally portable to all CM3 targets, since they are injected by
the CM3 compiler front end, and require no support for system call
wrappers. They also mean that mutators explicitly synchronize if
they access a grey page that is in the process of being incremen-
tally scanned by another thread, to ensure atomicity of the scan-
ning. This promotes scalability, since threads that are operating in-
dependently of that page can run freely. To promote scalability, we
also rely on thread-local heap allocation in the fast case, so threads
allocate from a private allocation page, only negotiating with the
shared heap for a new allocation page when their current one is
exhausted [26]. We now present these and other details of our col-
lector. Modula-3 provides accurate information about references in
global variables and within heap objects. Ambiguous and untidy
references occur only within the thread stacks.

3.3.1 Modula-3 threads

We have ported the CM3 thread libraries to use system-level thread-
ing based on portable POSIX threads (a Win32-based thread imple-
mentation is also supported). Every Modula-3 thread maps directly
to a native thread. These are scheduled preemptively and mapped
to processors by the operating system.

3.3.2 Thread-local allocation

We use thread-local allocation to void synchronization among mu-
tator threads on every allocation [26]. Each mutator thread allo-
cates from its own private black allocation page, by increment-
ing an allocation pointer and comparing against the page limit to
check that the page is not full. The allocation and limit pointers
are held in thread-local storage, so their manipulation requires no
synchronization. Thus, fast-path allocation is simply an increment
and a comparison plus object initialization. This fast-path alloca-
tion sequence must be atomic with respect to the stop-the-world
phase of collection, to prevent the collector from seeing a partially-
allocated/initialized object that it cannot decode safely. Although
allocation pages are zeroed wholesale, allocating certain objects
in Modula-3 (e.g., open multi-dimensional arrays) requires careful
initialization of the object meta-data that must be performed atom-
ically for the object to be decodable by other threads. Thus, any
thread executing in the fast path is considered to be uninterruptible
and cannot be stopped until it exits that fast path. Busy threads are
guaranteed eventually to transition to interruptible status either be-
cause they exit the allocation fast path or they exhaust their private
allocation page and are forced to slow-path allocation. Slow-path
allocation means requesting a new page from the heap. Thus, if the
allocation page is full, the mutator calls out to routines that lock
the heap meta-data while obtaining a free page in the heap or map-
ping a new page from the operating system. All GC work is also
performed while the heap meta-data is locked.

3.3.3 Triggering GC

Every slow-path page allocation by a mutator thread also checks
to see if the collector is falling behind the mutator. If a round of
incremental collection is already in progress, then an increment of
GC work is performed sufficient for collection work to catch up [6].
Heuristics for determining whether GC is falling behind allocation
by mutators rely on a single tune-able parameter called the GC
ratio. This parameter specifies how many grey pages should be
scanned for each new page allocated by the mutators. A GC ratio of
1.0 implies that one grey page is scanned for every page allocated.
When a round of incremental collection completes, new heuristic
parameters are computed based on the GC ratio and the number of
pages surviving that round of GC, to decide when to trigger the next

43

round of GC. All variants of our collector use the same heuristics
to start a new round of GC and to trigger an increment of work by
the mutators.

3.3.4 Stopping the world

The stop-the-world phase occurs only at the beginning of a new
round of GC. Our new collector stops all mutator threads except
the one triggering the new round. We call this mutator thread the
master; the stopped threads are the slaves. Stopping native threads
is more or less difficult depending on the platform. Some platforms,
such as Darwin (Mac OS X) and Solaris provide explicit primitives
to suspend and resume target threads and obtain their thread stack
bounds. Others, such as the new POSIX threads library for Linux
(NPTL) require a more complicated handshake to stop threads and
acquire their thread stack bounds using signals and semaphores.

Interruptible threads (see above) can be stopped immediately,
whether via primitives or signals. The master thread must explic-
itly wait for any uninterruptible threads to become interruptible.
This wait is bounded, because uninterruptible threads either exit
the fast path uninterruptible allocation code or because they are
forced to slow path allocation when their private allocation page
is exhausted. Because the master thread holds the heap meta-data
lock, threads entering the slow path will try to acquire this lock and
so can be stopped.

Having stopped all the other mutator threads, the master thread
proceeds by processing all mutator thread stacks (including its
own) for ambiguous roots. All referenced pages are promoted to
grey, as described earlier. However, because of the need to preserve
validated references on the stack that are parameters to system calls
or derived untidy references, the master thread must also scan these
grey pages and shade them black, because threads can use their
stack references without traversing a barrier, as discussed below.
Thus, the stop-the-world phase scans both the thread stacks and the
pages directly referred to from those stacks to make them black.
We now discuss how barriers enforce this invariant throughout
incremental collection.

3.3.5 Barriers

In Pirinen’s [38] terminology, not only do we preserve a black mu-
tator invariant, but we also make sure that mutators refer only to
black pages. The need for this invariant is because of the difficulty
of placing explicit barriers on accesses via untidy derived refer-
ences. In particular, an untidy reference can be created well be-
fore it is ever used. Moreover, preemption means the stop-the-world
phase can occur at any time (other than in the uninterruptible fast
path of the allocator), including after the point at which any barrier
is executed but before the point at which the reference guarded by
that barrier is used. Hence the need to preserve thread-referenced
pages as black during the stop-the-world phase.

Write barriers We place write barriers for generational collection
on every operation that explicitly stores a reference to a field of
an object in the heap, and whenever any traced substructure (i.e.,
containing some reference field) of a heap object is passed as a
VAR parameter (on the assumption that the callee will update the
field, and while we have the tidy reference to the heap object).
Every heap page has an associated dirty bit that records if that page
might contain a reference to a younger object [42]. For generational
collection older clean pages need never be scanned for references
to young objects. The write barrier dirties any older page to which
a reference is stored, in case that reference might be to a younger
object. During the stop-the-world phase, older pages are promoted
wholesale, and dirty older pages are treated as containing roots for
the GC.

Note that our software write barriers inject minimal code at
each store site, dirtying any page to which a pointer is stored (or

might be stored, for VAR parameters that contain traced references).
We could do more complicated filtering of writes to avoid dirtying
pages when the reference is not from an older to a younger page
but wanted to minimize the invasiveness of the barrier [29, 10, 11].

In addition to the page-level dirty bit we also maintain per-
object dirty bits in the object header. Every dirty page is guaranteed
to contain at least one dirty object. Conversely, no clean page
contains a dirty object. When older dirty pages are scanned, the
dirty bits in their objects are cleared. Managing separate object-
level dirty bits allows us to separate the barrier into a fast path and
a slow path. At each pointer store, the fast path simply checks the
dirty bit of the object to which the store is being made. If the object
is already dirty, then nothing further need be done. Otherwise, the
slow path of the barrier calls out to a subroutine that locks the heap
(i.e., page) meta-data and proceeds to dirty the object’s page, and
sets the object’s dirty bit. Thus, where a thread is repeatedly storing
to the same object (e.g., when iterating through an array), it need
only execute the slow path of the barrier for the first store to the
initially clean object. We recognize that locking the entire heap just
to dirty a page seems overkill. The reason we must do so is that
the dirty bits are held in page meta-data kept on the side apart from
the pages themselves. This meta-data is resized as the heap itself
grows, so it must be locked in case another thread is growing the
heap. Moreover, we need to ensure that dirtying occurs atomically
with respect to GC initiated by another thread, or else the dirtying
might be lost.

Read barriers Read barriers for incremental collection are placed
on every load of a reference from the heap or a global variable. If
the page that is the target of the loaded reference is grey then the
page is scanned to make it black. Thus the mutator can never obtain
a reference to a grey page, and so never even see references to
white pages. This approach is more eager [5] than simply making
sure that the page from which the reference is being loaded is not
grey (i.e., so that the loaded reference is not white), but permits
us to avoid the complication of placing a read barrier on loads of
references via untidy pointers (e.g., accessing a pointer field passed
as a VAR or READONLY parameter).

Since the loaded reference is guaranteed to be tidy, we can again
separate the barrier into fast and slow paths, using a grey bit in the
header of the target object to decide if the slow path is needed. Here,
the invariant is that all objects in a grey page have their grey bit set
(the bit is set in the header of an object when it is relocated from
a white page to a grey page). At each pointer load, the fast path
simply checks the grey bit of the object to which the loaded pointer
refers. If the object is not grey then nothing further need be done.
Otherwise, the slow path of the barrier calls out to a subroutine
that locks the heap (i.e., page) meta-data and proceeds to scan the
target page, shading it black. Again, because the loaded reference
is tidy, using the object-level grey bits avoids the slow path unless
absolutely necessary.

A note on multi-processor coherence Since mutator threads are
all stopped while the roots are processed, they are guaranteed to
have synchronized with the collector at the start of a round of GC, at
which point the dirty bits in older pages have all been cleared. Thus,
they are guaranteed not to see a set dirty bit unless the page really
has been dirtied. If weak memory ordering occurs such that a given
mutator thread accidentally sees a cleared dirty bit when some other
thread has already set it there is no harm done since the mutator will
take the slow path and synchronize on the heap. Similarly, since
grey bits are set only in newly copied objects (i.e., new grey pages)
that have been written to since the stop-the-world phase, mutators
can never see a cleared grey bit unless the corresponding page
really has been turned from grey to black. If a mutator accidentally
sees a set grey bit in a black page due to weak ordering there is

44

no harm done since the mutator will then take the slow path and
synchronize.

3.3.6 Background GC

There is also an optional background mode for concurrent GC,
which extends incremental mode (where mutators perform incre-
ments of collector work on slow path allocation as necessary) with
a low-priority concurrent background GC thread to move collec-
tion ahead in the absence of mutator activity [12, 40, 23, 34, 7].
The background thread is tuned to cause insignificant interruption
of mutator activities, but may therefore move the collection forward
quite slowly.

4. Experiments
Our experiments explore the space of several of our implementa-
tion decisions. First, we wish to quantify the effect of switching
from hardware barriers (i.e., using virtual memory protection prim-
itives) to software barriers. We also explore how the addition of
incremental collection impacts mutator pause times and mutator
throughput compared with stop-the-world GC. Finally, we wish
to demonstrate scalability of multi-mutator workloads on multi-
processor platforms.

4.1 Platforms

Our experiments were performed on two platforms. The first is a
Macintosh Xserve G5 running Mac OS X Server 10.4.4, with dual
PowerPC 970 processors running at 2.3GHz, and 4 GB of RAM.
Experiments using this platform were run while the system was
very lightly loaded. The second platform is a Dell multi-processor
running Linux kernel 2.6.14.4 (NPTL) with 8 Intel Pentium III
processors running at 700 MHz, and 2 GB of RAM.

4.2 Benchmark

In the absence of useful real multi-mutator benchmarks, we use the
synthetic GCOld benchmark devised by Printezis and Detlefs [40]
which we have faithfully translated from Java into Modula-3. This
benchmark measures the steady-state elapsed time for a mutator
that performs allocation, some amount of object reference muta-
tion, and some amount of non-allocation “work”. The GCOld ap-
plication allocates an array, each element of which points to the
root of a binary tree about a megabyte in size. These data structures
are allocated during an initialization phase, after which the pro-
gram executes some number of steps, maintaining a steady-state
heap size. Each step allocates some number of bytes of short-lived
data that will die in a young-generation collection, and some num-
ber of bytes of long-lived subtrees that replace some previously
existing subtrees, making them garbage. Each step further simu-
lates some amount of mutator computation by several iterations of
a busy-work loop. Finally, since the rate of pointer mutation and
accesses are an important factor in the performance of both gener-
ational and mostly-concurrent collection, each step modifies some
number of pointers (in a way that preserves the amount of reachable
data). Command-line parameters control the amount of live data in
the steady state, the number of units of mutator non-allocation work
per byte allocated, the ratio of short-lived bytes allocated to long-
lived bytes allocated, the number of pointer mutations per step, and
the number of steps. In our experiments we use the following pa-
rameters: live storage of 8 megabytes; work varying as 1, 10, 100,
1000; 1:32 short-lived to long-lived allocation ratio; 2 pointer mu-
tations per step; 100 steps. The fixed parameters were chosen not so
much because they are truly representative in any way, but because
they result in a moderately low survival rate, and reasonably low
mutation rate, both of which are general characteristics of many
applications. These parameters have also been fixed on by other
authors [43].

We also modify the GCOld benchmark to capture a multi-
mutator workload, by measuring the total elapsed time for some
number of concurrent mutator threads each to perform the same
amount of single-mutator work. Thus, while the threads allocate
and manipulate independent tree structures, they compete for ac-
cess to the heap to obtain private allocation pages, and cooperate
by performing concurrent incremental collection as necessary on
each slow-path allocation.

4.3 Results: hardware vs. software barriers

The first set of results reveal the relative costs of hardware and
software barriers for the user-level threads implementation running
on the XServe. In this configuration, STW collectors with hardware
read barriers will never trigger a barrier, so the difference between
the software and hardware STW collectors is solely due to the
overhead of software barriers versus the overhead of manipulating
virtual memory page protections at each STW GC. Heap locking
overheads are negligible for user-level threading since locking is
implemented as a simple increment/decrement of the variable that
disables thread switching.

Figure 2 plots single-mutator elapsed time as the GC ratio varies
for several work values. In these graphs, the hardware barrier re-
sults are presented as thicker grey lines, while the thin black lines
represent software barrier results. The graphs also record 90% con-
fidence intervals for 10 different runs for each configuration of the
benchmark. From the graphs, one sees that stop-the-world gener-
ational collection using a software write barrier (STW) has best
performance across all GC ratios and work values. However, the
hardware-synchronized write barrier (STW-vm) suffers only slight
performance degradation. At low non-allocation mutator work
rates (1/10/100 in Figures2(a-c)) the hardware-synchronized in-
cremental collector (INC-vm) is next best, whereas for work 1000
software-synchronized incremental collection (INC) is marginally
better than INC-vm at low GC ratios, but approximates STW at
higher GC ratios.

In any case, the use of software read barriers, which enable
multi-processor concurrent collection, has noticeable, expected, but
acceptable degradation of performance at GC ratio 0.5, but better
or comparable performance at less passive (i.e., more realistic) GC
ratios.

4.4 Results: elapsed time and maximum heap

The second set of results compare performance of stop-the-world
(STW) and mostly-concurrent incremental collection (INC), as
well as the impact of a low-priority concurrent collector thread
(BG), when run on the dual-processor Xserve. Again, we report
results with 90% confidence intervals for 10 runs of each configu-
ration of the collector and benchmark.

The graphs of Figure 3 plot single-mutator elapsed time (left
scale, thin black lines), as well as maximum heap size (right scale,
thicker grey lines), as the GC ratio varies for several work values.
Even as non-allocation work varies, maximum heap sizes remain
essentially the same for each collector variant and GC ratio. This is
no surprise, since non-allocation work has no impact on the heap.

Maximum heap sizes converge for both incremental variants
(INC, BG) and stop-the-world STW at GC ratio 8.0, since that
effectively forces the collector to use the smallest possible heap
for the given allocation workload. The incremental variants exhibit
essentially identical heap size footprints across the work range, and
significantly higher than for stop-the-world collection. This is not
unexpected, since incremental collection interleaves collector work
with mutator allocation, so allowing the mutator to add more pages
to the heap before the GC cycle completes and white pages can be
freed. Naturally, elapsed time increases and heap size decreases as
GC ratio increases.

45

0.1 0.5 1 2 4 8
GC ratio

1

2

3

4

5

T
im

e
(s

)
(lo

g-
sc

al
e)

STW-vm
INC-vm

0.1 0.5 1 2 4 8
GC ratio

STW
INC

(a) work=1

0.1 0.5 1 2 4 8
GC ratio

1

2

3

4

5

T
im

e
(s

)
(lo

g-
sc

al
e)

STW-vm
INC-vm

0.1 0.5 1 2 4 8
GC ratio

STW
INC

(b) work=10

0.1 0.5 1 2 4 8
GC ratio

2

3

4

5

T
im

e
(s

)
(lo

g-
sc

al
e)

STW-vm
INC-vm

0.1 0.5 1 2 4 8
GC ratio

STW
INC

(c) work=100

0.1 0.5 1 2 4 8
GC ratio

14

15

16

17

18
T

im
e

(s
)

(lo
g-

sc
al

e)
STW-vm
INC-vm

0.1 0.5 1 2 4 8
GC ratio

STW
INC

(d) work=1000

Figure 2. Hardware barriers versus software barriers

As expected, elapsed time is worse for the incremental vari-
ants except at high GC ratios, since they introduce synchronization
overheads. Note, however, that for all work levels, having a back-
ground collector thread in addition to incremental collection by the
mutator on slow path allocation (BG) results in slightly improved
performance over pure incremental collection. This is because the
background thread is able to advance collection even for mutators
like GCOld that are voracious allocators.

4.5 Results: responsiveness and throughput

To evaluate responsiveness and throughput, we adopt the minimum
mutator utilization (MMU) methodology of Cheng and Blelloch
which measures the fraction of time in which the mutator does
useful work in a given interval of time, but modified to obtain
bounded mutator utilization (BMU). BMU plots a point (w, m) on
a BMU curve if, for all intervals (windows) of length w or more
that lie entirely within the program’s execution, the mutator utiliza-
tion is at least m. Thus, BMU curves are monotonically increasing,
where the x-intercept is the maximum GC-related pause experi-
enced by the program, and the asymptotic y-value is the overall

throughput (fraction of execution time spent in the mutator). The
BMU curve plots the maximum interval for which the mutator’s
fraction requirement is not satisfied. When comparing collectors,
BMU curves that lie to the left (smaller maximum pause) and above
(higher throughput) other curves represent more desirable behavior.

Figures 4 and 5 plot single-mutator BMU curves at several work
levels for GC ratios of 0.5 and 1.0 respectively, both of which trade
off reasonable GC overhead for space consumed (as illustrated ear-
lier in Figure 3). These plots aggregate the mutator and collector
activity from all 10 runs of the benchmark for each collector con-
figuration. These results expose the allocation-intensiveness of the
GCOld benchmark, at least for work values less than 1000. As re-
vealed by these graphs, maximum pause times are reduced by 2
orders of magnitude from around 350 ms for STW to less than 10
ms for INC and BG. Mutator throughput for STW is always better
than for the incremental variants, though throughput converges as
non-allocation mutator work increases. Across all work values, the
BMU curve for BG lies mostly outside of that for STW, once more
showing that the low-priority background thread advances collec-
tion more quickly.

46

0.1 0.5 1 2 4 8
GC ratio

1

2

3

4

5

6

T
im

e
(s

)
(lo

g-
sc

al
e)

STW
INC
BG

0.1 0.5 1 2 4 8
GC ratio

10

20

30

40

50

60

70

80

90

100

110

120

130

140

M
ax

. h
ea

p
(M

B
)

STW
INC
BG

(a) work=1

0.1 0.5 1 2 4 8
GC ratio

1

2

3

4

5

6

T
im

e
(s

)
(lo

g-
sc

al
e)

STW
INC
BG

0.1 0.5 1 2 4 8
GC ratio

10

20

30

40

50

60

70

80

90

100

110

120

130

140

M
ax

. h
ea

p
(M

B
)

STW
INC
BG

(b) work=10

0.1 0.5 1 2 4 8
GC ratio

2

3

4

5

6

T
im

e
(s

)
(lo

g-
sc

al
e)

STW
INC
BG

0.1 0.5 1 2 4 8
GC ratio

10

20

30

40

50

60

70

80

90

100

110

120

130

140

M
ax

. h
ea

p
(M

B
)

STW
INC
BG

(c) work=100

0.1 0.5 1 2 4 8
GC ratio

15

16

17

18

T
im

e
(s

)
(lo

g-
sc

al
e)

STW
INC
BG

0.1 0.5 1 2 4 8
GC ratio

10

20

30

40

50

60

70

80

90

100

110

120

130

140

M
ax

. h
ea

p
(M

B
)

STW
INC
BG

(d) work=1000

Figure 3. Elapsed time (solid) and maximum heap size (dashed)

4.6 Results: multi-processor scalability

Our final set of results reveal scalability for multi-mutator runs on
the 8-way Intel multi-processor, showing both elapsed time (lines)
and heap size (points: circles=STW and crosses=INC) for STW
and INC, as the number of concurrent mutator threads varies, and
for both 0.5 and 1.0 GC ratios. Both elapsed time and maximum
heap size are reported per thread, so as to provide a means of
comparison as the number of threads grows. Per-thread throughput
is essentially flat at work values of 1 and 10. Contention for heap
meta-data and incremental GC is so high at these work rates that
concurrency is severely curtailed. At work value 100, we begin to
see improvement up to 8 threads, after which throughput declines
(note that the log-scale masks the true improvement). However,
for work of 1000, throughput scales nicely up to 8 threads before
flattening off.

5. Related work
Incremental and concurrent garbage collection has been the subject
of many prior works. Early concurrent mark-sweep (non-copying)

collectors include those of Steele [44, 45] and Dijkstra et al.[19].
Baker’s algorithm is the first incremental copying collector to use
a read barrier to enforce an incremental invariant similar to ours
[6]. Replicating collectors [37, 16, 31] use write barriers to record
object mutations so that mutators can manipulate white objects
even while they have been forwarded, with the mutation records
used to update the copies. The “train” incremental algorithm [30]
uses a write barrier to track references among different heap areas
that are collected independently. Fully-concurrent (i.e., having no
stop-the-world phase) on-the-fly mark-sweep collectors are unable
to move objects [22, 21, 24, 23, 3]. Similarly for concurrent [18]
and on-the-fly [4, 34] reference counting collectors, which are also
unable to collect cycles.

Several works focus on mostly-concurrent collection. Detlefs
[17] described an early effort to implement a concurrent mostly-
copying collector for C++ based on the techniques of Appel et
al.[1] and Bartlett [8, 9], but his collector was neither generational
nor portable, relying on Mach’s virtual memory primitives for
thread synchronization. Detlefs did not precisely characterize the
impact on mutator utilization of his collector.

47

1 10 10e2 10e3 10e4 10e5 10e6
Pause (ms) (log-scale)

0.0

0.1

0.2
B

M
U

STW
INC
BG

(a) work=1

1 10 10e2 10e3 10e4 10e5 10e6
Pause (ms) (log-scale)

0.0

0.1

0.2

B
M

U

STW
INC
BG

(b) work=10

1 10 10e2 10e3 10e4 10e5 10e6
Pause (ms) (log-scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
M

U

STW
INC
BG

(c) work=100

1 10 10e2 10e3 10e4 10e5 10e6
Pause (ms) (log-scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
M

U

STW
INC
BG

(d) work=1000

Figure 4. Aggregate BMU; GC ratio=0.5

1 10 10e2 10e3 10e4 10e5 10e6
Pause (ms) (log-scale)

0.0

0.1

0.2

B
M

U

STW
INC
BG

(a) work=1

1 10 10e2 10e3 10e4 10e5 10e6
Pause (ms) (log-scale)

0.0

0.1

0.2

B
M

U

STW
INC
BG

(b) work=10

1 10 10e2 10e3 10e4 10e5 10e6
Pause (ms) (log-scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
M

U

STW
INC
BG

(c) work=100

1 10 10e2 10e3 10e4 10e5 10e6
Pause (ms) (log-scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
M

U

STW
INC
BG

(d) work=1000

Figure 5. Aggregate BMU; GC ratio=1.0

48

1 2 3 4 5 6 7 8 12 16
Threads

2

3

4

5

T
im

e
(s

)
/ t

hr
ea

ds
 (

lo
g-

sc
al

e)

STW
INC

1 2 3 4 5 6 7 8 12 16
Threads

0

10

20

30

40

50

60

M
ax

. h
ea

p
(M

B
)

/ t
hr

ea
ds

STW
INC

(a) work=1

1 2 3 4 5 6 7 8 12 16
Threads

2

3

4

5

T
im

e
(s

)
/ t

hr
ea

ds
 (

lo
g-

sc
al

e)

STW
INC

1 2 3 4 5 6 7 8 12 16
Threads

0

10

20

30

40

50

60

M
ax

. h
ea

p
(M

B
)

/ t
hr

ea
ds

STW
INC

(b) work=10

1 2 3 4 5 6 7 8 12 16
Threads

2

3

4

5

6

T
im

e
(s

)
/ t

hr
ea

ds
 (

lo
g-

sc
al

e)

STW
INC

1 2 3 4 5 6 7 8 12 16
Threads

0

10

20

30

40

50

60

M
ax

. h
ea

p
(M

B
)

/ t
hr

ea
ds

STW
INC

(c) work=100

1 2 3 4 5 6 7 8 12 16
Threads

5

10

20

30

T
im

e
(s

)
/ t

hr
ea

ds
 (

lo
g-

sc
al

e)

STW
INC

1 2 3 4 5 6 7 8 12 16
Threads

0

10

20

30

40

50

60

M
ax

. h
ea

p
(M

B
)

/ t
hr

ea
ds

STW
INC

(d) work=1000

Figure 6. Scalability; GC ratio=0.5

1 2 3 4 5 6 7 8 12 16
Threads

3

4

5

T
im

e
(s

)
/ t

hr
ea

ds
 (

lo
g-

sc
al

e)

STW
INC

1 2 3 4 5 6 7 8 12 16
Threads

0

10

20

30

40

M
ax

. h
ea

p
(M

B
)

/ t
hr

ea
ds

STW
INC

(a) work=1

1 2 3 4 5 6 7 8 12 16
Threads

3

4

5

T
im

e
(s

)
/ t

hr
ea

ds
 (

lo
g-

sc
al

e)
STW
INC

1 2 3 4 5 6 7 8 12 16
Threads

0

10

20

30

40

M
ax

. h
ea

p
(M

B
)

/ t
hr

ea
ds

STW
INC

(b) work=10

1 2 3 4 5 6 7 8 12 16
Threads

4

5

6

7

T
im

e
(s

)
/ t

hr
ea

ds
 (

lo
g-

sc
al

e)

STW
INC

1 2 3 4 5 6 7 8 12 16
Threads

0

10

20

30

40

M
ax

. h
ea

p
(M

B
)

/ t
hr

ea
ds

STW
INC

(c) work=100

1 2 3 4 5 6 7 8 12 16
Threads

6

7

8

9
10

20

30

T
im

e
(s

)
/ t

hr
ea

ds
 (

lo
g-

sc
al

e)

STW
INC

1 2 3 4 5 6 7 8 12 16
Threads

0

10

20

30

40

M
ax

. h
ea

p
(M

B
)

/ t
hr

ea
ds

STW
INC

(d) work=1000

Figure 7. Scalability; GC ratio=1.0

49

The mostly-concurrent conservative mark-sweep collector of
Boehm et al.[12] uses a write barrier to keep the collector in-
formed of mutator updates that create fresh grey pages needing
to be scanned. Printezis and Detlefs [40] have extended this ap-
proach for generational collection. Barabash et al.[7] report expe-
riences extending a similar parallel mark-sweep collector, focusing
on techniques for parallelizing collector work. Mark-sweep collec-
tors must rely on some separate, typically expensive, compaction
phase to obtain better locality, minimize fragmentation, and im-
prove heap utilization. In contrast, our collector is mostly-copying
so no compaction phase is necessary.

6. Future work
There are several avenues of future work. First, our experiments
have not explored the impact of page granularity on performance.
Since we are now free of the constraint of virtual memory page
granularity for heap pages, we can expect to benefit from the ability
to adjust heap page granularities to match the application.

We are also interested in the impact of fast path barrier opti-
mizations. We note that our fast path read and write barriers still
need to check an object header bit on each access to a reference
field. Testing this bit more than once is redundant, since the black
to-space invariant for stack references preserves their validity. Any
intervening GC between traversal of a given barrier and its guarded
access will preserve the validity of the access. By communicating
the invariant nature of barrier tests to the compiler we can expect
such redundant checks to be removed by the gcc’s existing redun-
dancy elimination optimizations.

7. Conclusions
We have described the design and implementation of what we be-
lieve to be the first portable mostly-concurrent mostly-copying
garbage collector, and characterized its performance for heap-
intensive workloads. Our implementation is portable, relying only
on existing system-level thread libraries including both POSIX
threads and Win32. Our results report maximum pause times for
the mostly-concurrent collector that are 1/100th the maximum
pause time for fully stop-the-world collection. We also demon-
strate good multi-processor scalability for applications that are not
so allocation-intensive as to cause a bottleneck in slow-path alloca-
tion.

Acknowledgments
We thank the anonymous referees for their suggestions and im-
provements to this paper. This work is supported by the Na-
tional Science Foundation under grants Nos. CCR-0085792, CNS-
0509377, CCF-0540866, and CNS-0551658, and by IBM and Mi-
crosoft. Any opinions, findings and conclusions expressed herein
are the authors and do not necessarily reflect those of the sponsors.

References
[1] APPEL, A. W., ELLIS, J. R., AND LI, K. Realtime concurrent

collection on stock multiprocessors. In Proceedings of the ACM
Conference on Programming Language Design and Implementation
(Atlanta, Georgia, June). ACM SIGPLAN Notices 23, 7 (July 1988),
pp. 11–20.

[2] APPEL, A. W., AND LI, K. Virtual memory primitives for user
programs. In Proceedings of the ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (Santa Clara, California, Apr.). ACM SIGPLAN Notices 26,
4 (Apr. 1991), pp. 96–107.

[3] AZATCHI, H., LEVANONI, Y., PAZ, H., AND PETRANK, E. An
on-the-fly mark and sweep garbage collector based on sliding

views. In Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (Anaheim,
California, Nov.). ACM SIGPLAN Notices 38, 11 (Nov. 2003),
pp. 269–281.

[4] BACON, D. F., ATTANASIO, C. R., LEE, H., RAJAN, V. T.,
AND SMITH, S. Java without the coffee breaks: A nonintrusive
multiprocessor garbage collector. In PLDI’01 [39], pp. 92–103.

[5] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time garbage
collector with low overhead and consistent utilization. In Conference
Record of the ACM Symposium on Principles of Programming
Languages (New Orleans, Lousiana, Jan.). ACM SIGPLAN Notices
38, 1 (Jan. 2003), pp. 285–298.

[6] BAKER, H. G. List processing in real time on a serial computer.
Commun. ACM 21, 4 (Apr. 1978), 280–294.

[7] BARABASH, K., BEN-YITZHAK, O., GOFT, I., KOLODNER, E. K.,
LEIKEHMAN, V., OSSIA, Y., OWSHANKO, A., AND PETRANK,
E. A parallel, incremental, mostly concurrent garbage collector
for servers. ACM Trans. Program. Lang. Syst. 27, 6 (Nov. 2005),
1097–1146.

[8] BARTLETT, J. F. Compacting garbage collection with ambiguous
roots. Research Report 88/2, Western Research Laboratory, Digital
Equipment Corporation, Feb. 1988.

[9] BARTLETT, J. F. Mostly-copying garbage collection picks up
generations and C++. Technical Note TN-12, Western Research
Laboratory, Digital Equipment Corporation, Oct. 1989.

[10] BLACKBURN, S., AND MCKINLEY, K. S. In or out?: Putting write
barriers in their place. In Proceedings of the ACM International
Symposium on Memory Management (Berlin, Germany, Jun., 2002),
D. Detlefs, Ed. ACM SIGPLAN Notices 38, 2 (Feb. 2003), pp. 281–
290.

[11] BLACKBURN, S. M., AND HOSKING, A. L. Barriers: Friend or foe?
In Proceedings of the ACM International Symposium on Memory
Management (Vancouver, Canada, Oct., 2004), D. F. Bacon and
A. Diwan, Eds. ACM, 2004, pp. 143–151.

[12] BOEHM, H.-J., DEMERS, A. J., AND SHENKER, S. Mostly parallel
garbage collection. In Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications
(Phoenix, Arizona, Oct.). ACM SIGPLAN Notices 26, 11 (Nov. 1991),
pp. 157–164.

[13] BOEHM, H.-J., AND WEISER, M. Garbage collection in an
uncooperative environment. Software—Practice and Experience
18, 9 (Sept. 1988), 807–820.

[14] CARDELLI, L., DONAHUE, J., GLASSMAN, L., JORDAN, M.,
KALSOW, B., AND NELSON, G. Modula-3 language definition. In
Systems Programming with Modula-3, G. Nelson, Ed. Prentice Hall,
1991, ch. 2, pp. 11–66.

[15] CHENEY, C. J. A nonrecursive list compacting algorithm. Commun.
ACM 13, 11 (Nov. 1970), 677–678.

[16] CHENG, P., AND BLELLOCH, G. A parallel, real-time garbage
collector. In PLDI’01 [39], pp. 125–136.

[17] DETLEFS, D. L. Concurrent garbage collection in C++. Tech. Rep.
CMU-CS-90-119, Carnegie Mellon University, Mar. 1990.

[18] DETREVILLE, J. Experience with concurrent garbage collectors
for Modula-2+. Tech. Rep. 64, Systems Research Center, Digital
Equipment Corporation, Palo Alto, CA, Aug. 1990.

[19] DIJKSTRA, E., LAMPORT, L., MARTIN, A., SCHOLTEN, C.,
AND STEFENS, E. On-the-fly garbage collection: An exercise in
cooperation. Commun. ACM 21, 11 (Nov. 1978), 966–975.

[20] DIWAN, A., MOSS, J. E. B., AND HUDSON, R. L. Compiler support
for garbage collection in a statically typed language. In Proceedings
of the ACM Conference on Programming Language Design and
Implementation (San Francisco, California, June). ACM SIGPLAN
Notices 27, 7 (July 1992), pp. 273–282.

[21] DOLIGEZ, D., AND GONTHIER, G. Portable, unobtrusive garbage

50

collection for multiprocessor systems. In Conference Record of
the ACM Symposium on Principles of Programming Languages
(Portland, Oregon, Jan.). 1994, pp. 70–83.

[22] DOLIGEZ, D., AND LEROY, X. A concurrent, generational garbage
collector for a multithreaded implementation of ML. In Conference
Record of the ACM Symposium on Principles of Programming
Languages (Charleston, South Carolina, Jan.). 1993, pp. 113–123.

[23] DOMANI, T., KOLODNER, E. K., LEWIS, E., SALANT, E. E.,
BARABASH, K., LAHAN, I., LEVANONI, Y., PETRANK, E., AND
YANOVER, I. Implementing an on-the-fly garbage collector for Java.
In ISMM’00 [32], pp. 155–166.

[24] DOMANI, T., KOLODNER, E. K., AND PETRANK, E. A generational
on-the-fly garbage collector for Java. In Proceedings of the ACM
Conference on Programming Language Design and Implementation
(Vancouver, Canada, June). ACM SIGPLAN Notices 35, 6 (June
2000), pp. 274–284.

[25] FENICHEL, R. R., AND YOCHELSON, J. C. A LISP garbage-
collector for virtual-memory computer systems. Commun. ACM 12,
11 (Nov. 1969), 611–612.

[26] FLOOD, C. H., DETLEFS, D., SHAVIT, N., AND ZHANG, X.
Parallel garbage collection for shared memory multiprocessors. In
Proceedings of the Java Virtual Machine Research and Technology
Symposium (Monterey, California, Apr.). USENIX, 2001.

[27] FRASER, C. W., HANSON, D. R., AND PROEBSTING, T. A.
Engineering a simple, efficient code generator generator. ACM
Letters on Programming Languages and Systems 1, 3 (Sept. 1992),
213–226.

[28] HOSKING, A. L., AND MOSS, J. E. B. Protection traps and
alternatives for memory management of an object-oriented language.
In Proceedings of the ACM Symposium on Operating Systems
Principles (Asheville, North Carolina, Dec.). ACM Operating Systems
Review 27, 5 (Dec. 1993), pp. 106–119.

[29] HOSKING, A. L., MOSS, J. E. B., AND STEFANOVIĆ, D. A com-
parative performance evaluation of write barrier implementations. In
Proceedings of the ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (Vancouver, Canada,
Oct.). ACM SIGPLAN Notices 27, 10 (Oct. 1992), pp. 92–109.

[30] HUDSON, R. L., AND MOSS, J. E. B. Incremental collection
of mature objects. In Proceedings of the International Workshop
on Memory Management (Saint-Malo, France, Sept.), Y. Bekkers
and J. Cohen, Eds. vol. 637 of Lecture Notes in Computer Science.
Springer-Verlag, 1992, pp. 388–403.

[31] HUDSON, R. L., AND MOSS, J. E. B. Sapphire: copying
garbage collection without stopping the world. Concurrency and
Computation—Practice and Experience 15, 3 (March 2003), 223–
261.

[32] Proceedings of the ACM International Symposium on Memory
Management (Minneapolis, Minnesota, Oct., 2000). ACM SIGPLAN
Notices 36, 1 (Jan. 2001).

[33] Proceedings of the ACM International Symposium on Memory
Management (Vancouver, Canada, Oct., 1998). ACM SIGPLAN
Notices 34, 3 (Mar. 1999).

[34] LEVANONI, Y., AND PETRANK, E. An on-the-fly reference counting
garbage collector for Java. In Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications
(Tampa, Florida, Oct.). ACM SIGPLAN Notices 36, 11 (Nov. 2001),
pp. 367–380.

[35] LIEBERMAN, H., AND HEWITT, C. A real-time garbage collector
based on the lifetimes of objects. Commun. ACM 26, 6 (June 1983),
419–429.

[36] MOON, D. Garbage collection in a large Lisp system. In Proceedings
of the ACM Conference on Lisp and Functional Programming
(Austin, Texas, Aug.). 1984, pp. 235–246.

[37] NETTLES, S., AND O’TOOLE, J. Real-time replication garbage
collection. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (Albuquerque, New Mexico,
June). ACM SIGPLAN Notices 28, 6 (June 1993), pp. 217–226.

[38] PIRINEN, P. P. Barrier techniques for incremental tracing. In
ISMM’98 [33], pp. 20–25.

[39] Proceedings of the ACM Conference on Programming Language
Design and Implementation (Snowbird, Utah, June). ACM SIGPLAN
Notices 36, 5 (May 2001).

[40] PRINTEZIS, T., AND DETLEFS, D. A generational mostly-concurrent
garbage collector. In ISMM’00 [32], pp. 143–154.

[41] SMITH, F., AND MORRISETT, G. Comparing mostly-copying and
mark-sweep conservative collection. In ISMM’98 [33], pp. 68–78.

[42] SOBALVARRO, P. G. A lifetime-based garbage collector for LISP
systems on general-purpose computers, 1988. B.S. Thesis, Dept. of
EECS, Massachusetts Institute of Technology, Cambridge.

[43] SPOONHOWER, D., BLELLOCH, G., AND HARPER, R. Using
page residency to balance tradeoffs in tracing garbage collection. In
Proceedings of the ACM/USENIX Conference on Virtual Execution
Environments (Chicago, Illinois, June). ACM, 2005, pp. 57–67.

[44] STEELE, JR., G. L. Multiprocessing compactifying garbage
collection. Commun. ACM 18, 9 (Sept. 1975), 495–508.

[45] STEELE, JR., G. L. Corrigendum: Multiprocessing compactifying
garbage collection. Commun. ACM 19, 6 (June 1976), 354.

[46] UNGAR, D. Generation scavenging: A non-disruptive high perfor-
mance storage reclamation algorithm. In Proceedings of the ACM
Symposium on Practical Software Development Environments (Pitts-
burgh, Pennsylvania, Apr.). 1984, pp. 157–167.

51

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

