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Abstract
We explore the ramifications of object residency assumptions and their impact on residency checking for sev-
eral subroutine dispatch scenarios: procedural, static object-oriented, and dynamic (virtual) object-oriented.
We obtain dynamic counts of the residency checks necessary for execution of several benchmark persistent
programs under each of these scenarios. The results reveal that significant reductions in the number of resi-
dency checks can be achieved through application of residency rules derived from the dispatch scenario under
which a program executes, as well as additional constraints specific to the language in which it is implemented.
Keywords: residency checks, optimization, object-orientation, static/dynamic dispatch

1 Introduction

Persistent programming languages view permanent storage as a stable extension of volatile memory, in which objects may
be dynamically allocated, but which persists from one invocation to the next. A persistent programming language and object
store together preserveobject identity: every object has a unique identifier (in essence an address, possibly abstract, in the
store), objects can refer to other objects, forming graph structures, and they can be modified, with such modifications being
visible in future accesses using the same unique object identifier. Access to persistent objects istransparent(at least from
the programmer’s perspective), without requiring explicit calls to read and write them. Rather, the language implementation
and run-time system contrive to make objects resident in memory on demand, much as non-resident pages are automatically
made resident by a paged virtual memory system.

Treating persistence as orthogonal to type [ABC+83] has important ramifications for the design of persistent programming
languages, since it encourages the view that a language can be extended to support persistence with minimal disturbance of
its existing syntax and store semantics. The notion of persistent storage as a stable extension of the dynamic allocation heap
allows a uniform and transparent treatment of both transient and persistent data, with persistence being orthogonal to the way
in which data is defined, allocated, and manipulated. This characterization of persistence allows us to identify the fundamental
mechanisms that any transparent persistent system must support. Notable among these is the need for some kind ofresidency
checkto trigger retrieval of non-resident objects.

To be widely accepted, orthogonal persistence must exhibit sufficiently good performance to justify its inclusion as an
important feature of any good programming language. We offer evidence that orthogonal persistence can be added to an
object-oriented language without compromising performance. Our focus is on avoiding residency checks on objects when
their residency can be guaranteed by the context in which their references are used. We consider several scenarios under
which residency checks can be eliminated, and characterize the execution of a suite of benchmark persistent programs for
each scenario in terms of the number of residency checks incurred by the benchmark. The scenarios represent a spectrum
of styles of execution: procedural (i.e., non-object-oriented); object-oriented with static binding of methods to call sites; and
object-oriented with dynamic method dispatch.

The remainder of the paper is organized as follows. We begin by reviewing object faulting and residency checking,
followed by a description of the execution scenarios we consider. A discussion of the experimental framework follows,
including description of the prototype persistent Smalltalk implementation used for the experiments, the benchmark programs
and metrics used for evaluation, and presentation of results. Finally, we offer brief conclusions.

�See also:http://www.cs.purdue.edu/people/hosking. This work was supported by Sun Microsystems, Inc.
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2 Object faulting and residency checking

As in traditional database systems, a persistent system caches frequently-accessed data in memory for efficient manipulation.
Because (even virtual) memory may be a relatively scarce resource, it is reasonable to suppose that there will be much more
persistent data than can be cached at once. Thus, the persistent system must arrange to make resident just those objects needed
by the program for execution. Without knowing in advance which data is needed, the system must load objects on demand,
from the persistent object store into memory. Anobject faultis an attempt to use a non-resident object. It relies onresidency
checks, which can be implemented explicitly in software, or performed implicitly in hardware and giving rise to some kind
of hardware trap for non-resident objects. A wide range of object faulting schemes have been devised,1 each having different
representations for references to persistent objects. Some approaches drive all faulting with memory protection traps and
make object faulting entirely transparent to compiled code; these have only one representation: virtual memory pointers to
apparently resident objects. However, there is evidence to suggest that such totally transparent schemes do not always offer
the best performance [HMS92, HM93a, HM93b, HBM93, Hos95, HM95]. Thus, multiple representations arise for references
to resident objects (which can be used without causing an object fault), versus references to non-resident objects, along with
explicit residency checks to distinguish them.

Efficient implementation of residency checks is one key to implementing a high-performance persistent programming
language. The mechanism must be sufficiently lightweight as to represent only marginal overhead to frequently-executed
operations on fine-grained objects. Nevertheless, even marginal overhead will have a cumulatively significant impact on
overall performance. Thus, any opportunity should be exploited to elide residency checks where they are not strictly necessary
[HM90, HM91, MH94]. Such optimizations rely on data flow analysis and code transformations (e.g., hoisting or combining
residency checks) and the imposition of special rules about the residency of particular objects. Example rules and their
ramifications include:

Pinning: Objects once resident are guaranteed to remain resident so long as they are directly referenced from the machine
registers and activation stacks (i.e., local variables).

Thus, repeated residency checks on the same object referenced by a local variable can be merged into one check the
first time the object is accessed through the variable.

Target residency: The first argument of an object-oriented method call (i.e., the target object) will (somehow) automatically
be made resident at the time of the call and remain so throughout.

Thus, methods need not contain checks on the residency of their target object.

Coresidency: Whenever object a is resident so also must object b be resident. This constraint is written a! b.

Thus, if a contains a reference tob, thenb can be accessed directly froma (i.e., the reference froma to b can be
traversed) without a residency check. Sincea is resident as the source of the reference tob the coresidency constraint
means thatb will also be resident. For swizzling purposes, the reference froma to b is always represented as a direct
memory pointer. Note that coresidency is asymmetric:a! b 6) b! a.

Pinning can be assumed to apply in all situations, since it enables all other residency check optimizations – in its absence no
local variable can be guaranteed to refer to a resident object despite prior residency checks on that reference. The effect of
thetarget residencyandcoresidencyrules on the number of residency checks executed by a program is the topic of this paper.
We consider several rule scenarios and measure the number of residency checks required under each scenario for execution
of a suite of object-oriented persistent benchmark programs.

3 Execution scenarios

The residency rules to be applied at run-time dictate statically where residency checks are needed and where they can be
elided. Our experiments include results for the following general execution scenarios:

Procedural: Execution in a non-object-oriented procedural language proceeds through the invocation of statically deter-
mined procedures. Ignoring possibilities for optimization of residency checks based on local/global data flow analysis,
every dereference requires a residency check.

1[ACC82, BC86, KK83, Kae86, CM84, RMS88, SMR89, BBB+88, Ric89, RC90, Ric90, SCD90, WD92, HMB90, Hos91, HM93a, LLOW91, SKW92,
WK92]
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Static OO: Object-oriented programs execute through the invocation of methods on objects. A method typically accesses
the encapsulated state of its target object. Thus, applying thepinningandtarget residencyrules eliminates all residency
checks on the target object of a method. Instead, a residency check on the target must be performed at the time the
method is invoked, unless the method invocation is directed at the caller’s own target object, in which case no check
is needed. For non-virtual (i.e., statically bound) methods the method code is invoked directly so the target residency
check must be performed explicitly prior to the call.

Dynamic OO: A defining feature of object-oriented languages is their support for inclusion polymorphism through mech-
anisms such as subclassing, subtyping and inheritance. Such polymorphism means that a given call site may involve
target objects of any number of different but compatible types/classes. For virtual (i.e., dynamically dispatched) meth-
ods, the particular method code to be invoked is determined dynamically based on the type/class of the target object.
Once again, we assume bothpinning and target residency, but it is now possible to fold the target residency check
into the dynamic method dispatch mechanism. The precise approach depends on the nature of the mechanism, but in
general there is no additional overhead due to residency checking. Rather, the inherent indirection of dynamic dispatch
is subverted, so that method invocations on non-resident objects are directed first to proxy faulting routines that make
the target object resident, before forwarding the call to the appropriate resident object method. Again, no target object
residency checks are necessary in the called method.

Note that although optimizations [Cha92, HU94, CG94, Fer95, DGC95, GDGC95, DMM96] may convert many indirect
calls to direct calls, so increasing the number of explicit checks required, it is also likely that similarly aggressive
optimizations can discover and eliminate redundant residency checks through intra- and inter-procedural data flow
analysis.

In addition to these general scenarios regarding target object residency, a given program may benefit fromcoresidency
rules that allow further elimination of residency checks. Such rules depend on the particular execution patterns of a given
program. We consider the effect of specific coresidency rules below in the context of the prototype persistent system used in
the experiments.

4 Experiments

We have instrumented the execution of several benchmark persistent programs executing in our prototype persistent Smalltalk
system [Hos95] to obtain dynamic counts of residency checks performed under each of the above scenarios. We also consider
the effect of additional coresidency constraints arising from specific knowledge of Smalltalk’s bytecode instruction set and
execution semantics.

4.1 A prototype implementation: Persistent Smalltalk

The prototype is an implementation of Smalltalk [GR83], extended for persistence. It has two components: avirtual machine
and avirtual image.

The virtual machine implements the bytecode instruction set to which Smalltalk source code is compiled, along with
certainprimitive methodswhose functionality is built directly into the virtual machine. These typically provide low-level
access to the underlying hardware and operating system on which the virtual machine is implemented. For example, low-
level floating point and integer arithmetic, indexed access to the fields of array objects, and object allocation, are all supported
as primitives. A primitive method is invoked in exactly the same way as an ordinary method expressed as a sequence of
Smalltalk expressions, but its implementation is not a compiled method. Rather, the virtual machine performs the primitive
directly, without the need for a separate Smalltalk activation record. Since the primitives are coded by hand in the virtual
machine, we are also able to hand-optimize the primitives to remove redundant checks. The compiler in a compiled persistent
language might discover the same optimizations automatically through intra-procedural data flow analysis.

The virtual image is derived from XeroxPARC’s Smalltalk-80 image, version 2.1, with minor modifications. It implements
(in Smalltalk) all the functionality of a Smalltalk development environment, including editors, browsers, a debugger, the
bytecode compiler, class libraries, etc. – all are first-class objects in the Smalltalk sense. Bootstrapping a (non-persistent)
Smalltalk environment entails loading the entire virtual image into memory for execution by the virtual machine.

The persistent implementation of Smalltalk places the virtual image in the persistent store, and the environment is boot-
strapped by loading just that subset of the objects in the image sufficient for resumption of execution by the virtual machine.
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Figure 1: Objects, classes, inheritance, and method dispatch

We retain the original bytecode instruction set and make only minor modifications to the virtual image. Rather, our efforts
focus on the virtual machine, which is carefully augmented with residency checks to fault objects into memory as they are
needed by the executing image. The precise location of residency checks depends on the particular execution scenario.

4.1.1 Smalltalk method dispatch

A Smalltalkobject(see Figure 1) is an encapsulation of some private state and a set of operations called itsinterface. The
private state consists of a number of data fields, calledinstance variables, directly accessible only from the code implementing
the object’s operations. Every object is aninstanceof someclassobject, which implements the common behavior of all its
instances; a class object is itself an instance of itsmetaclass. Classes are arranged in a hierarchy, such that asubclasswill
inherit instance behavior from itssuperclass. Thus, an instance of the subclass will behave as an instance of the superclass,
except where the subclass overrides or extends that behavior.

Computation in Smalltalk proceeds through the sending ofmessagesto objects. A message consists of amessage selector
(e.g.,at:put:) and a number of arguments, and represents a request to an object to carry out one of its operations. The effect
of sending a message is to invoke one of themethodsof the object receiving the message (thereceiver). Invoking a method
may be thought of as a procedure call, with the receiver being the first argument to the procedure, preceding the arguments
specified in the message. The particular method to execute is determined dynamically, using the message selector and the class
of the receiver. Each class object contains a reference to amethod dictionary, associating message selectors withcompiled
methods. A compiled method consists of the virtual machine bytecode instructions that implement the method, along with a
literal frame, containing the shared variables,2 constants, and message selectors referred to by the method’s bytecodes.

Determining which method to execute in response to the sending of a message proceeds as follows. If the method
dictionary of the receiver’s class contains the message selector, then its associated method is invoked. Otherwise, the search
continues in the superclass of the object, and so on, up the class hierarchy. If there is no matching selector in any of the
method dictionaries in the hierarchy then a run-time error occurs.

2A shared variable is an object that encapsulates a reference to another object. If the contents of the variable are changed, then the change is visible to all
other compiled methods holding references to that shared variable.
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As described so far, the method lookup process is very expensive, especially since a given message may be implemented
by a method in a class that is high up in the superclass hierarchy, far removed from the class of the receiver. Amethod lookup
cachereduces this lookup cost significantly. A valid entry in the cache contains object references for a selector, a class, and a
compiled method. Message sends first consult the method lookup cache, by hashing the object references of the selector and
the receiver’s class to index an entry in the cache. If the selector and class of the cache entry match those of the message, then
the cached compiled method is invoked directly. Otherwise, the full method lookup locates the compiled method and loads
the cache entry with the selector, class and method, before invoking the method.

4.1.2 The bytecode instruction set

We retain the standard Smalltalk-80 bytecode instruction set [GR83], which is partitioned by functionality as follows:

Stack bytecodes move object references between the evaluation stack of the current activation and:

1. the named instance variables of the receiver for that activation

2. the temporary variables local to that activation

3. the shared variables of the literal frame of the active method

Jump bytecodes change the instruction pointer of the current activation

Send bytecodes invoke compiled or primitive methods

Return bytecodes terminate execution of the current activation, and return control to the calling activation

4.2 Benchmarks

The performance evaluation draws on the OO1 object operations benchmarks [CS92] to compare the alternative execution
scenarios. The operations are retrieval-oriented and operate on substantial data structures, although the benchmarks them-
selves are simple, and so easily understood. Their execution patterns include phases of intensive computation so that memory
residence is important.

4.2.1 Benchmark database

The OO1 benchmark database consists of a collection of 20,000part objects, indexed by part numbers in the range 1 through
20,000, with exactly threeconnectionsfrom each part to other parts. The connections are randomly selected to produce some
locality of reference: 90% of the connections are to the “closest” 1% of parts, with the remainder being made to any randomly
chosen part. Closeness is defined as parts with the numerically closest part numbers. We implement the part database and the
benchmarks entirely in Smalltalk, including the B-tree used to index the parts.

The part objects are 68 bytes in size (including the object header). The three outgoing connections are stored directly
in the part objects. The string fields associated with each part and connection are represented by references to separate
Smalltalk objects of 24 bytes each. Similarly, a part’s incoming connections are represented as a separate SmalltalkArray
object containing references to the parts that are the source of each incoming connection. The B-tree index for the 20,000
parts consumes around 165KB.

4.2.2 Benchmark operations

The OO1 benchmarks comprise three separate operations:

Lookup fetches 1,000 randomly chosen parts from the database. A null procedure is invoked for each part, taking as its
arguments thex, y, andtypefields of the part (to ensure the part is actually made resident).

Traversal fetches all parts connected to a randomly chosen part, or to any part connected to it, up to seven hops (for a total
of 3,280 parts, with possible duplicates). Similar to the Lookup benchmark, a null procedure is invoked for each part,
taking as its arguments thex, y, andtypefields of the part. OO1 also specifies areverseTraversal operation, Reverse,
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which swaps “from” and “to” directions. Reverse is of minimal practical use because the random nature of connections
means that the number of “from” connections varies among the parts – while every part has threeoutgoingconnections,
the number ofincomingconnections varies randomly. Thus, different iterations of the Reverse vary randomly in the
number of objects they traverse, and so the amount of work they perform.

Insert allocates 100 new parts in the database, each with three connections to randomly selected parts as described in Sec-
tion 4.2.1 (i.e., applying the same rules for locality of reference). The index structure must be updated, and the entire
set of changes committed to disk.

Although this operation is a reasonable measure of update overhead, it is hampered by a lack of control over the number and
distribution of the locations modified, and its mixing of updates to parts and the index. A more easily controlled benchmark
is the following:

Update [WD92] operates in the same way as the Traversal measure, but instead of calling a null procedure it performs a
simple update to each part object encountered, with some fixed probability. The update consists of incrementing thex
andy scalar integer fields of the part. All changes must be reflected back to the persistent store. Here, the probability
of update can vary from one run to the next to change the frequency and density of updates.

These benchmarks are intended to be representative of the data operations in many engineering applications. The Lookup
benchmark emphasizes selective retrieval of objects based on their attributes, while the Traversal benchmark illuminates
the cost of raw pointer traversal. The Update variant measures the costs of modifying objects and making those changes
permanent. Additionally, the Insert benchmark measures both update overhead and the cost of creating new persistent objects.

4.3 Metrics

We obtain dynamic counts of the number of residency checks necessary for the execution of the benchmark operations using
an instrumented version of the Smalltalk virtual machine. A benchmarkrun consists of ten iterations of the benchmark
operation. Because each successive iteration accesses adifferentset of random parts, we characterize each benchmark in
terms of the mean number of residency checks for the 10 iterations of the run, and calculate 90% confidence intervals to
bound the variation among random iterations. Using different counters for each possible scenario enables the results for all
scenarios to be gathered with just one run of each benchmark. Thus, each scenario sees the same run of random iterations.

4.4 Results

The initial statement of results ignores residency check counts attributable to Smalltalk’s idiosyncratic treatment of classes,
activation records, compiled methods, and process stacks as (orthogonally persistent) objects in their own right. Thus, the
counts do not reflect residency checks needed when ascending the class hierarchy during method lookup for dynamic method
dispatch, nor residency checks on processes and stacks during process management, and checks on activation records during
returns. We do this so as to obtain the closest possible analogy to more traditional languages such as C, C++ and Modula-3, in
which dynamic method dispatch is implemented as an indirect call through a method table associated with the target object,
and which do not treat processes, activations, and classes/types as first-class objects. The intricacies of residency checks for
such complications are discussed later.

The results appear in Table 1, with columns for each of the execution scenarios, and rows for each benchmark. The
number of residency checks required for execution of the benchmark under each execution scenario appears along with the
fraction of checks that can be elided in light of the scenario’s residency rules. We also indicate the percentage of method
invocations that result in primitive method executions. Recall that primitive methods are hand-optimized to minimize the
number of residency checks necessary for their execution based on the access patterns of the primitive. Also, only primitives
can directly access objects other than the target object; non-primitives must instead invoke a method on non-target objects.
Thus,target residencyoptimizations are likely to be more effective when the ratio of primitives to non-primitives is low, since
fewer non-target accesses will occur.

It is clear that thetarget residencyrule significantly reduces the number of checks necessary under the object-oriented
execution scenarios. The statically dispatched scenario, for which method invocations on objects other than the caller’s target
require a check, is able to eliminate 24–75% of checks, depending on the benchmark. The remaining checks are necessary
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Execution scenario Primitives
Benchmark Procedural Static OO Dynamic OO versus

Checks elided Checks elided Checks elided non-primitives

Lookup 44661� 29 0% 22330� 15 50% 1002� 0 97% 83%
Traversal 13158� 0 0% 3275� 8 75% 1� 0 99% 0%
Reverse 28106�8238 0% 13234�3884 52% 5880�1725 79% 33%
Update

0% 12855� 0 0% 9738� 8 24% 1694� 0 86% 56%
5% 13481� 77 0% 9738� 8 27% 1694� 0 87% 56%

10% 14104� 101 0% 9738� 8 30% 1694� 0 87% 56%
15% 14753� 114 0% 9738� 8 33% 1694� 0 88% 56%
20% 15437� 110 0% 9738� 8 36% 1694� 0 89% 56%
50% 19311� 96 0% 9738� 8 49% 1694� 0 91% 56%

100% 25975� 0 0% 9738� 8 52% 1694� 0 93% 56%
Insert 30557� 423 0% 20026� 393 34% 2203� 122 92% 82%

(interval confidence is 90%)

Table 1: Residency checks by execution scenario and benchmark

because of invocations on objects other than the caller’s target, and primitive accesses to objects other than the primitive
callee’s target.

The dynamic scenario eliminates the need for all checks on method invocation since target residency checking is folded
into the indirect, dynamic method dispatch. As a result, this scenario requires 86–99% fewer residency checks than for
procedural execution. The remaining checks are necessary as a result of primitive access to objects other than the target. In
fact, it turns out that for these benchmarks the remaining checks are solely on arguments to primitives. The variation in the
ratio of primitive to non-primitive checks illustrates this directly – where the primitive fraction is low (as in Traversal), a
higher fraction of the checks are elided.3

4.5 Smalltalk complications

As mentioned earlier, there are additional complications for a persistent Smalltalk implementation, arising out of Smalltalk’s
treatment of control objects such as processes, activation stacks, and classes as first-class objects that can themselves persist.
We addcoresidencyrules to eliminate checks on these objects as follows:

Class coresidency:An object’s class is always coresident with each of its instances. Thus, the send bytecodes need not
perform a residency check on the target object’s class when probing the method lookup cache.

Sender coresidency:For any stack frame object, the stack frame representing its sender (i.e., calling) activation is always
coresident. Applying this rule transitively results in all activations in a process stack being coresident – when an active
stack frame is made resident (usually because its process is being resumed), its caller, its caller’s caller, and so on up
the process stack, are made resident along with it. Since the return bytecodes directly manipulate the active stack frame
and the (calling) activation to which control is being returned, sender coresidency eliminates the need for a residency
check on the caller in the return bytecodes.

Method coresidency: Methods are always coresident with their activation’s stack frame, since an activation can only execute
if its corresponding compiled method is resident. Thus, return bytecodes need not check the residency of the method in
which execution resumes.

Literal coresidency: Literals are always coresident with the methods that refer to them. They include the selectors, constants
and shared variables directly manipulated by the bytecodes of the method. Send bytecodes directly access literal selec-
tors and certain stack bytecodes directly access shared variables. Thus, these bytecodes need not check the residency
of the literals they manipulate.

3Multi-methods, as in Cecil [Cha95], in which method dispatch occurs on more than one argument of the method, would submit to folding of residency
checks on all qualified arguments into the indirection of dispatch.
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These special coresidency rules for Smalltalk force preloading of objects critical to the forward progress of computation,
so thatall bytecode instructions of the persistent virtual machine execute without residency checks. The persistent virtual
machine must still check the residency of objects whose residency is not guaranteed by these rules. For example, full method
lookup requires checks as it ascends the class hierarchy, to ensure that the superclasses and their method dictionaries are
resident. Similarly, primitive methods must perform residency checks on objects they access directly (excluding the receiver,
guaranteed resident by thetarget residencyrule).

5 Conclusions

We examined the impact of several execution scenarios on the residency checks necessary for execution of several instru-
mented benchmark programs. The results indicate that the object-oriented execution paradigm enables a significant reduction
in residency checks through the simple application of the target object residency rule. In addition, coresidency constraints
specific to the persistent Smalltalk prototype allow a further reduction in the number of checks required, so that the bytecode
instructions of the persistent Smalltalk virtual machine are able to execute without any residency checks at all. It would be
interesting to consider the application of similar techniques for persistence to other dynamic object-oriented languages, such
as Java [GJS96, LY96].

A particularly promising avenue of further research is how optimization can both hinder (e.g., through aggressive elimi-
nation of dynamic method dispatch) and promote (e.g., through exploitation of coresidency rules specific to the application
program, as well as discovery of residency invariants through data flow analysis) the elimination of residency checks.
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