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Abstract
Persistent programming languages manage volatile memory as a cache for stable storage, imposing aread
barrier on operations that access the cache, and awrite barrier on updates to the cache. The read barrier
checks the cache residency of the target object while the write barrier marks the target as dirty in the cache
to support a write-back policy that defers updates to stable storage until eviction or stabilization. These
barriers may also subsume additional functionality, such as negotiation of locks on shared objects to support
concurrency control. Compilers for persistent programming languages generate barrier code to protect all
accesses to possibly persistent objects. Orthogonal persistence imposes this cost on every object access, since
all objects are potentially persistent, at significant overhead to execution. We have designed a new suite of
compiler optimizations, focusing on partial redundancy elimination of pointer-based access expressions, that
significantly reduce this impact. These are implemented in an analysis and optimization framework for Java
bytecodes, in support of orthogonal persistence for Java. In experiments with the traversal portions of the OO7
benchmark suite our optimizations reduce the number of read and write barriers executed by an average of
83% and 25%, respectively.
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1 Introduction

A persistent system[Atkinson and Morrison 1995] treats permanent storage as a stable extension of volatile memory, in
which objects may be dynamically allocated, but which persists from one program invocation to the next. A persistent
programming language and object store together preserveobject identity: every object has a unique identifier (in essence an
address, possibly abstract, in the store), objects can refer to other objects, forming graph structures, and they can be modified,
with such modifications visible in future accesses using the same unique object identifier.

The language principles oftransparencyand orthogonalityhave been repeatedly articulated [Atkinson and Morrison
1995; Moss and Hosking 1996] as important in the design of persistent programming languages, enabling the full power of
the persistence abstraction. Transparency means that from the programmer’s perspective access to persistent objects does
not require writing explicit code to transfer them between stable store and main memory. Thus, a program that manipulates
persistent (or potentially persistent) objects looks similar to a program concerned only with transient objects. Instead, the
language’s compiler and/or run-time system contrive automatically to cache persistent objects in volatile memory on demand
for manipulation by the program. This is somewhat reminiscent of virtual memory: cache misses in a persistent system are
calledobject faultsand trigger retrieval of the missing object from stable storage into volatile memory.

Treating persistence asorthogonalto type encourages the view that a language can be extended to support persistence
with minimal disturbance of its existing syntax and store semantics. Thus, programmers need add little to their understanding
of the language in order to begin writing persistent programs. A common way to achieve orthogonal persistence is by treating
persistent storage as a stable extension of the dynamic allocation heap. This allows a uniform and transparent treatment of
both transient and persistent data; persistence is orthogonal to the way in which objects are defined (i.e., their types), allocated,
and manipulated in the heap.

While there are a number of techniques for object faulting based on hardware support for memory mapping that are
transparent to the compiler [Lamb et al. 1991; Singhal et al. 1992; Wilson and Kakkad 1992; White and DeWitt 1994], the
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restrictions and performance degradation that such approaches impose are often unacceptable, resulting in a lack of control
over explicit buffer management, location independence and true object identity [Kemper and Kossman 1995]. In the absence
of such hardware support for object faulting, compilers for persistent programming languages must generate explicit code
before each operation that may access a persistent object to check that it is resident in memory, and to fault it in if not.
Similarly, to support efficient migration of updates back to stable storage, compilers must generate code along with every
operation that updates a persistent object to signal that it eventually must be copied back to stable storage, either when
replaced in the cache or during stabilization of the persistent store. These checks are generically termed the persistenceread
barrier andwrite barrier, respectively. In general they can subsume additional functionality, such as negotiation of locks
on shared objects to control for concurrent access. As such, read and write barriers represent significant overhead to the
execution of any persistent program.

The performance penalty is exacerbated for languages that provide orthogonal persistence, since they unify the persistent
and transient object address spaces such thatanygiven reference may refer to either a persistent or transient object. Since
every access (read or write) might be to a persistent object, they must all be protected by an appropriate barrier. Optimizations
to remove redundant barriers have been postulated in the past but have never been fully specified and evaluated [Richardson
1990; Hosking and Moss 1990; 1991; Moss and Hosking 1995; Hosking 1995; 1997].

This paper presents a complete framework for such optimizations based on partial redundancy elimination over pointer
expressions, describes its implementation for orthogonal persistence in Java, and provides experimental evidence of its effec-
tiveness for the elimination of redundant read and write barriers.

2 Analysis and optimization

Our analysis and optimization framework revolves around partial redundancy elimination over pointer expressions that access
persistent objects. We adopt standard terminology and notations used in the specification of the Java programming language
to specify the analysis and optimization problem.

2.1 Terminology and notation

The following definitions paraphrase the Java specification [Gosling et al. 1996]. Anobjectin Java is either aclass instance
or an array. Reference values in Java are eitherpointersto these objects or the null reference. Both objects and arrays are
created by expressions that allocate and initialize storage for them. The operators on references to objects are field access,
method invocation, casts, type comparison (instanceof), equality operators and the conditional operator. There may be
many references to the same object. Objects have mutable state, stored in the variable fields of class instances or the variable
elements of arrays. Two variables may refer to the same object: the state of the object can be modified through the reference
stored in one variable and then the altered state observed through the other.Access expressionsrefer to the variables that
comprise an object’s state. Afield access expressionrefers to a field of some class instance, while anarray access expression
refers to a component of an array. Table 1 summarizes the two kinds of access expressions in Java. We adopt the termaccess

Table 1: Access expressions

Notation Name Variable accessed

p:f Field access Fieldf of class instance referred to byp
p[i] Array access Component with subscripti of array referred to byp

path [Larus and Hilfinger 1988; Diwan et al. 1998] to mean a non-empty sequence of accesses, as specified by some access
expression in the source program. For example, the Java access expressiona:b[i]:c is an access path. Also, without loss of
generality, our notation will assume that distinct fields within an object have different names.

A variable is a storage location and has an associated type, sometimes called itscompile-timetype. Given an access path
p, then the compile-time type ofp, written Type(p), is simply the compile-time type of the variable it accesses. A variable
always contains a value that isassignment compatiblewith its type. A value of compile-time class typeS is assignment
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compatible with class typeT if SandT are the same class orS is a subclass ofT. A similar rule holds for array variables: a
value of compile-time array typeS[] is assignment compatible with array typeT[] if type S is assignable to typeT. Interface
types also yield rules on assignability: an interface typeSis assignable to an interface typeT only if T is the same interface as
Sor a superinterface ofS; a class typeS is assignable to an interface typeT if S implementsT. Finally, array types, interface
types and class types are all assignable to class typeObject.

For our purposes we say that a typeS is asubtypeof a typeT if S is assignable toT.1 We writeSubtypes(T) to denote all
subtypes of typeT; i.e.,Subtypes(T) is the set of all types assignment compatible withT. Thus, an access pathp can legally
access objects of typeSubtypes(Type(p)). Alias analysis refines the type of variables to which an access path may refer. If
two distinct access paths refer to variables of the same type then they may be aliases for the same variable.

2.2 Read and write barriers

In an orthogonally persistent implementation of Java access expressions may refer to both persistent and transient objects.
Thus, every field or array access must be protected by an appropriate barrier applied to the class instance or array being
accessed. For example, in the absence of optimizations, the access patha:b[i]:c would require read barriers on the class
instance referred to bya, the array referred to byb and the object referred to by theith component ofb. If the expression
appears as the target of an assignment, then the object referred to bya:b[i] would also require a write barrier.

Our goal is to avoid applying barriers to accesses where program analysis shows that the barrier is redundant. To do so,
we must make them explicit in the access paths and then apply some definition of redundancy. Making barriers explicit means
obtaining for the source code access expression an intermediate representation (IR) in which the barriers are exposed. Opti-
mizations then operate on the IR to remove redundant barriers. Thus, we add barrier expressions to the original specification
of access expressions given in Table 1. The specification for barrier expressions appears in Table 2. For each source code
access expression Table 3 gives the form of the corresponding explicit-barrier IR.

Table 2: Barrier expressions

Notation Name Description

read(p) Read barrier Apply read barrier to, and return, object referred to byp
write(p) Write barrier Apply write barrier to, and return, object referred to byp

Table 3: IR for access expressions

Source Intermediate representation
Read access Write access

p:f read(p):f write(read(p)):f
p[i] read(p)[i] write(read(p))[i]

A barrier is redundant if we can guarantee that an earlier barrier of the same kind has already been applied to the same
object, and that the earlier barrier’s side-effect (e.g., to fault or dirty the object) has not been undone (i.e., the barrier isidem-
potentandenduring). This has implications for the interaction of barrier optimizations with the persistence run-time system,
which must not undo the effect of a barrier while optimized code downstream of the barrier can still execute. Solving this
problem requires a contract between the optimizer and the run-time system for each kind of barrier. The contract will depend
on the specifics of the implementation so we defer discussion of this issue to Section 3, which presents our implementation
for Java. A separate paper considers the issue from the perspective of the run-time system [Cutts et al. 1998].

Given two barrier expressionsread(p) andread(q), if we can guarantee thatp andq refer to the same object and that
read(p) dominatesread(q) thenread(q) is redundant and can be replaced simply byq. The crucial test here is that two access
paths refer to the same object. This amounts to detection of common access expressions, and the optimization can be framed
much like classical techniques for common subexpression elimination. In the simplest case, two lexically identical access

1The term “subtype” is not used at all in the official Java language specification [Gosling et al. 1996], presumably to avoid confusing the type hierarchy
induced by the subtype relation with class and interface hierarchies.
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paths in the same scope must refer to the same object, so long as no component of the path has been modified between the first
occurrence of the expression and the second. Unfortunately, the possibility of aliases means that an intervening assignment
might change some component of the path through a lexically distinct access path. Showing that intervening assignments do
not modify a given access path requiresalias analysis.

2.3 Type-based alias analysis

Type-based alias analysis (TBAA) [Diwan et al. 1998] assumes a type-safe programming language such as Java, since it uses
type declarations to disambiguate references. The compile-time type of an access path provides a simple way to do this: two
access pathsp andq may be aliases only if the relationTypeDecl(p;q) holds, defined as:

TypeDecl(p;q) � Subtypes(Type(p))\Subtypes(Type(q)) 6= /0

A more precise alias analysis will distinguish accesses to fields that are the same type yet distinct. This more precise relation,
FieldTypeDecl(p;q), is defined by induction on the structure ofp andq in Table 4. Again, two access pathsp andq may be

Table 4: FieldTypeDecl(AP 1;AP 2)

Case AP 1 AP 2 FieldTypeDecl(AP 1;AP 2)

1 p p true
2 p:f q:g ( f = g)^TypeDecl(p;q)
3 p:f q[i] false
4 p[i] q[ j] TypeDecl(p;q)
5 p q TypeDecl(p;q)

aliases only if the relationFieldTypeDecl(p;q) holds. It distinguishes accesses such ast:f andt:g thatTypeDeclmisses. The
cases in Table 4 determine that:

1. Identical access paths are always aliases

2. Two field accesses may be aliases if they access the same field of potentially the same object

3. Array accesses cannot alias field accesses and vice versa

4. Two array accesses are aliases if they may access the same array (the subscript is ignored)

5. All other pairs of access expressions are aliases if they have common subtypes

Diwan et al. [1998] further refine type-based alias analysis by enumerating all the assignments in a program to determine
more accurately the types of objects an access path may reference: two variables may alias an object of a given type only if
there are assignments of that type to both variables. This refines theTypeDeclrelation, which merges the declared type of a
variable with all of its subtypes, to only merge a typeT with a subtypeS if there actually exists an assignment ofS to T in
the program. Unfortunately, this requires having the complete program available for analysis at the time of optimization. In
general, Java’s use of dynamic loading, not to mention the possibility of native methods hiding assignments from the analysis,
precludes a closed world analysis. Still, it may be possible to approximate closed world analysis in a persistent system that
stores all classes pertaining to persistent data. Our plans for exploring this have been described elsewhere [Cutts and Hosking
1997].

2.4 Partial redundancy elimination

Our approach to barrier optimization is based on application ofpartial redundancy elimination(PRE) [Morel and Renvoise
1979] to access expressions. To our knowledge this is the first time PRE has been applied to access paths. PRE is a powerful
global optimization technique that subsumes the more standard common subexpression elimination (CSE). PRE eliminates
computations that are only partially redundant; that is, redundant only on some, but not all, paths to some later re-computation.
By inserting evaluations on those paths where the computation does not occur, the later re-evaluation can be eliminated and
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Figure 1: PRE for arithmetic expressions

replaced instead with a use of the precomputed value. This is illustrated in Figure 1. In Figure 1(a), botha andb are available
along each path to the merge point, where expressiona+b is evaluated. However, this evaluation is partially redundant since
a+b is available on one path to the merge but not both. By hoisting the second evaluation ofa+b into the path where it was
not originally available, as in Figure 1(b),a+b need only be evaluated once along any path through the program, rather than
twice as before.

Traversing an access path requires successively loading the pointer at each memory location along the path and derefer-
encing it to the next location in the sequence. Before applying PRE to access path expressions, one must first disambiguate
memory references sufficiently to be able safely to assume that no memory location along the access path can be aliased (and
so modified) by some other distinct access path in the program. Consider the example in Figure 2. The expressiona:b[i]:c
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i
aa

i
a
i
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(a) Before PRE (b) After PRE
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Figure 2: PRE for access expressions

will be redundant at some subsequent re-evaluation so long as no store occurs to any one ofa, a:b, i, a:b[i] or a:b[i]:c occurs
on the code path between the first evaluation of the expression and the second. In other words, if there are potential aliases to
any one ofa, i, a:b, a:b[i] or a:b[i]:c through which those locationsmaybe modified between the first and second evaluation
of the expression, then that second evaluation cannot be treated as redundant.2 By exposing read and write barriers in the
intermediate representation for access expressions partial redundancy elimination will optimize them in the same way as other
expressions (Figure 3).

2.5 Java constraints on optimization

Java’s thread and exception models impose several constraints on optimization. Exceptions in Java areprecise: when an
exception is thrown all effects of statements prior to the throw-point must appear to have taken place, while the effects of
statements after the throw-point must not. This imposes a significant constraint on code motion optimizations such as PRE,
since code with side-effects cannot be moved relative to code that may throw an exception. The thread model prevents
movement of access expressions across (possible) synchronization points. Without inter-procedural control-flow analysis

2Note that ifa andi are local variables then they cannot be aliased.
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Figure 3: PRE for barrier expressions

this must include all method invocation sites, since the callee, or a method invoked inside the callee, may be synchronized.
Fortunately, read and write barriers for orthogonal persistence do not have side-effects that are relevant to source-level program
semantics, so their motion is unconstrained.

3 Implementation

Our implementation uses bytecode-to-bytecode class transformation to apply type-based alias analysis and access path PRE
to Java classes for execution on a modified version of the PJama [Atkinson et al. 1996; Dayn`es and Atkinson 1997] virtual
machine.

3.1 Bytecode-level class transformation

The Java virtual machine (VM) specification [Lindholm and Yellin 1996] is intended as the interface between Java compilers
and Java execution environments. Its standard class format and instruction set permit multiple compilers to inter-operate
with multiple VM implementations, enabling the cross-platform delivery of applications that is Java’s hallmark. Conforming
class files generated byanycompiler will run in anyJava VM implementation, no matter if that implementation interprets
bytecodes, performs dynamic “just-in-time” (JIT) translation to native code, or precompiles Java class files to native object
files. Targeting compiled Java classes for analysis and optimization has several advantages. First, program improvements
accrue even in the absence of source code, and independently of the compiler and VM implementation. Second, Java class
files retain enough high-level type information to enable advanced optimizations. Finally, analyzing and optimizing bytecode
can be performed off-line, permitting JIT compilers to focus on fast code generation rather than expensive analysis, while
also exposing opportunities for fast low-level JIT optimizations.

We have implemented a bytecode-to-bytecode class transformer that performs PRE for access expressions in Java. Our
implementation [Nystrom 1998; Nystrom et al. 1998], called BLOAT (forBytecode-LevelOptimization andAnalysisTool)
takes compiled Java classes adhering to the Java VM specification and generates transformed classes as output. For each
method, BLOAT first builds a control-flow graph, with an expression tree for each basic block, then infers the types of local
variables and the operand stack at each point in the code [Palsberg and Schwartzbach 1994], constructs an intermediate
representation based on static single-assignment (SSA) form [Cytron et al. 1991; Wolfe 1996; Briggs et al. 1998], performs
SSA-based value numbering [Briggs et al. 1997] with TBAA, followed by SSA-based PRE [Chow et al. 1997], and finishes
with generation of new Java bytecodes for the method. Note that BLOAT is a stand-alone tool that can be used to optimize
Java classes independently of VM implementation.

3.2 Optimizations for PJama

PJama [Atkinson et al. 1996] is a prototype implementation of orthogonal persistence for Java being developed jointly by Sun
Microsystems Laboratories and Glasgow University. The PJama VM is based on the Sun Java Development Kit (JDK) VM
and conforms to the Java VM specification; it executes classes compiled to the standard bytecode instruction set and class
file format. Persistence functionality is provided by an extended API, extensions to the VM for read and write barriers, and
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Table 5: Bytecodes requiring barriers

Opcode Barrier
arraylength read on array operand
athrow read on object operand
getfield
instanceof
Taload read on array/object operand
Tastore readandwrite on array/object operand
putfield readandwrite on object operand
invokevirtual read on object operand
invokespecial
invokeinterface

T = b, s, i, l, f, d, c, a

Table 6: New barrier bytecodes

Operation read barrier write barrier
Format

read
index

write
index

Forms read= 233 (0xe9) read= 234 (0xea)
Stack No change No change
Description The index is an unsigned byte between 0 and 255,

inclusive. The operand stack word at offsetin-
dex from the top of the stack must be of type
reference. If that reference is notnull then the
object it references is checked for residency, and
faulted in if it is not.

The indexis an unsigned byte between 0 and 255,
inclusive. The operand stack word at offsetin-
dex from the top of the stack must be of type
reference. If that reference is notnull then the
object it references is marked dirty in the object
cache.

associated run-time support. In the current release of PJama, the read and write barriers are hidden inside the bytecodes that
implement access expressions and method invocations; these are listed in Table 5.

To optimize the persistence barriers they must first be exposed. Thus, we have deleted the hidden barrier code from
the implementations of the original bytecodes and extended the PJama VM with two new internal barrier bytecodes. As
a class is loaded into the extended PJama VM its methods must now be edited to insert the appropriate barrier bytecode
immediately before each occurrence of the bytecodes listed in Table 5. BLOAT supports this operation with a preprocessing
(non-analyzing, non-optimizing) pass over the class to insert the barriers. The class can then go on to execute in the extended
VM. Subsequent optimization by BLOAT can then occur at any convenient time. BLOAT also supports a “way-ahead-of-
time” option to preprocess and optimize class files for later loading by the new PJama VM; this option is commonly used to
prepare the core Java classes for loading into a virgin PJama persistent store.

The new barrier bytecodes are specified in Table 6.3 Rather than operating on the reference at the top of the stack, the
new bytecodes take a stack offset so as to ease insertion of the barrier for the target of method invocation bytecodes, which
is always located on the stack at some known offset below the other arguments to the call. Thus, the initial preprocessing to
insert barriers needs no expensive analysis.

As in Hosking [1997], we also exploit Java’s object-oriented execution paradigm to avoid barriers on accesses to the object
on which an instance method was invoked. Since the target—accessed via thethis keyword inside the instance method—is

3The current PJama prototype distinguishes pointer stores from non-pointer stores in its implementation of the write barrier, for reasons having to do
with details of its implementation of heap stabilization. To support this functionality we must insert and optimizetwo different write barrier bytecodes, one
for pointers and one for non-pointers. BLOAT does in fact support this, but we consider them to be equivalent for this paper so as to demonstrate the full
potential for optimization of write barriers.
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made resident at the time of the call by the read barrier associated with the “invoke” bytecodes of Table 5, there is no need for
barriers on accesses viathis. The JDK compiler storesthis in the first local variable of instance methods, allowing BLOAT
to recognize such accesses. BLOAT also recognizes references to objects that are instantiated using the “new” bytecodes, so
as to eliminate barriers on accesses to newly-allocated objects.

3.3 Cache management

As mentioned earlier, barrier optimizations require a contract with the persistence run-time system, which must not undo the
effect of a barrier while optimized code can execute that assumes the barrier is still in effect. The contract with the PJama
run-time system is simple: PJama must maintain the effect of both barriers for all objects directly referenced from a Java
thread’s stack frames (both operand stacks and local variables). In other words, resident objects referenced directly from a
thread stack must bepinnedin the object cache whenever the thread is active. Thus, the PJama object cache manager must
either avoid evicting pinned objects when it attempts to reclaim cache space, or arrange for them to be made resident before
the optimized thread resumes execution. Similarly, dirty bits set on objects in the cache that are directly referenced from
a thread’s stack must be maintained, even across stabilizations. Clearly, this contract has significant ramifications for the
run-time system; Cutts et al. [1998] explore the issues in more detail.

It is possible to refine the compile-time/run-time contract if the compiler can provide more detailed information to the
run-time system as to the barriers in effect for ranges of optimized code. Such information is similar to the static tables
sometimes provided to the run-time system for exception handling and garbage collection [Diwan et al. 1992; Agesen et al.
1998].

4 Experiments

To evaluate the impact of our optimizations we applied them to the traversal portions of a Java implementation of the OO7
benchmarks [Carey et al. 1993], comparing the number of barriers required for execution of each benchmark for unoptimized
code versus optimized code. The classes for the OO7 benchmarks, as well as the Java core classes used by OO7, were first
edited by BLOAT to add the new persistence barrier bytecodes. Optimized classes were obtained from these using BLOAT’s
ahead-of-time optimization option. Also, in order to separate out the impact of exposed barrier PRE versus access expression
PRE alone we optimized the original barrier-free classes, then edited them to add persistence barriers. Thus, we obtain results
for three distinct configurations of the OO7 classes: unoptimized with barriers (none), access path optimizations without
barrier optimizations (access), and access path optimizations with barrier optimizations (access+barrier). The difference
betweenaccess andaccess+barrier reveals the advantage to be gained by exposing the barriers to optimization.

4.1 Benchmarks

The OO7 benchmarks [Carey et al. 1993] are an accepted test of object-oriented database performance. They operate on a
synthetic design database, consisting of a keyed set ofcomposite parts. Associated with each composite part is adocumen-
tation object consisting of a small amount of text. Each composite part consists of a graph ofatomic partswith one of the
atomic parts designated as theroot of the graph. Each atomic part has a set of attributes, and is connected via a bi-directional
association to several other atomic parts. The connections are implemented by interposing a separate connection object be-
tween each pair of connected atomic parts. Composite parts are arranged in anassemblyhierarchy; each assembly is either
made up of composite parts (abaseassembly) or other assemblies (acomplexassembly). Each assembly hierarchy is called
a module. Our results are all obtained with thesmallOO7 database, configured as in Table 7.

We used the following traversal operations of the OO7 benchmarks:

1 Raw traversal speed: traverse the assembly hierarchy; for each base assembly encountered visit each of its unshared
composite parts; for each composite part encountered visit its entire graph of atomic parts using depth-first search;
return a count of the number of atomic parts visited

2 Traversal with updates: repeat traversal 1 but update atomic parts during the traversal (as follows) by swapping two
attributes; return the number of updates performed
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Table 7: Small OO7 database configuration

Modules 1
Assembly levels 7
Subassemblies per complex assembly 3
Composite parts per base assembly 3
Composite parts per module 500
Atomic parts per composite part 20
Connections per atomic part 3
Total composite parts 500
Total atomic parts 10000

Table 8: Results

Read barriers executed Write barriers executed
PRE level PRE level

Traversal none access access access % removed none access access access % removed
+barrier +barrier +barrier +barrier

+this +this
1 10535707 7899406 3456590 2126883 80 495363 495363 404599 404599 18
2a 10588195 7951894 3500330 2168436 80 499737 499737 406786 406786 19
2b 10666927 8030626 3456590 2126883 80 582843 582843 448339 448339 23
2c 11191807 8555506 3456590 2170623 81 845283 845283 448339 448339 47
3a 10586008 7949707 3500330 2168436 80 497550 497550 406786 406786 18
3b 10623187 7986886 3456590 2126883 80 539103 539103 448339 448339 17
3c 11016847 8205586 3631550 2170623 80 670323 670323 448339 448339 33
6 3458575 1215934 47057 27363 99 14223 14223 10939 10939 23

(a) Update one atomic part per composite part encountered

(b) Update every atomic part encountered

(c) Update each atomic part in a composite part four times

3 Traversal with indexed field updates: repeat traversal 2, except that the update is on an indexed attribute

6 Sparse traversal speed: traverse the assembly hierarchy; for each base assembly encountered visit each of its unshared
composite parts; for each composite part encountered visit just the root atomic part; return the number of atomic parts
visited

4.2 Metrics

For each combination of benchmark and optimization level we measure the number of barrier operations executed for the
benchmark using an instrumented version of the VM that reports bytecode execution frequencies. We measured only warm
executions of the benchmark operations, so as to eliminate the overhead of bytecodes executed for initialization of classes as
they are dynamically loaded by the VM.

4.3 Results

The results are given in Table 8, revealing that on average 83% of read barriers, and 25% of write barriers, are removed
by PRE over both access expressions and barrier expressions. Considering the write barrier results individually, one can
immediately see the impact of optimization by comparing traversals 2b and 2c, which differ only in the number of times each
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part is updated. The four updates per part in 2c are performed in a tight loop, so the optimizer is able to hoist the write barrier
out of the loop, resulting in the same number of write barriers executed as traversal 2b.

Applying PRE just to the access expressions before insertion of the barriers is much less effective, indicating the advan-
tages to be gained from exposing them to the optimizer. In other words, simply adding PRE over access expressions to the
original PJama implementation (in which the barriers are buried inside the access bytecodes) is less effective at reducing
barrier overheads.

5 Conclusions

Combining type-based alias analysis with partial redundancy elimination over access expressions is a powerful technique for
reducing the fundamental barrier overheads of orthogonal persistence. For the OO7 traversal benchmarks these optimizations
remove a majority of read barriers and a significant fraction of write barriers. We believe these techniques will prove crucial
to the achievement of respectable performance by persistent systems.
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