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Abstract

Remembered sets and dirty bits have been proposed as al-
ternative implementations of the write barrier for garbage
collection. There are advantages to both approaches. Dirty
bits can be efficiently maintained with minimal, bounded
overhead per store operation, while remembered sets con-
cisely, and accurately record the necessary information. Here
we present evidence to show that hybrids can combine the
virtues of both schemes and offer competitive performance.
Moreover, we argue that a hybrid can better avoid the devils
that are the downfall of the separate alternatives.

1 Introduction

Generational garbage collectors [6, 10, 11] achieve short
pause times partly because they separate heap-allocated ob-
jects into two or more generations and do not process all
generations during each collection. Empirical studies have
shown that in many programs most objects die young, so
separating objects by age and focusing collection effort on
the younger generations is a popular strategy. However, any
collection scheme that processes only a small portion of the
heap must somehow know or discover all pointers outside
the collected area that refer to objects within the collected
area.

Since the areas not collected are generally assumed to
be large, most generational collectors employ some sort of
pointer tracking scheme, to avoid scanning the uncollected
areas. Again, empirical studies show that in many programs,
the older-to-younger pointers of interest to generational col-
lection are rare, so avoiding scanning presumably improves
performance. This is intuitively explained by the fact that
newly allocated objects can only be immediately initialized
to point to pre-existing (i.e., older) objects. Pointers from
older generations to younger generations can be created only
through assignment to pre-existing objects. Detecting such
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assignments requires special action at every pointer assign-
ment to see whether that pointer must now be considered by
the garbage collector when collecting the younger genera-
tions. This special action constitutes an extra hurdle at every
site in the program that might write a pointer into an object,
hence the term write barrier.

A number of schemes have been suggested for generat-
ing and maintaining the older-to-youngerpointer information
needed by generational collectors, including special-purpose
hardware support [10, 11] and generation by compilers of the
necessary inline code to perform the checks in software [2]
(adding to the overhead of pointer stores). Ungar [10, 11]
uses remembered sets to maintain the necessary information
on a per-generation basis, recording the objects in older gen-
erations that may contain pointers into the generation. The
garbage collector examines all the objects recorded in the
remembered sets of the younger generations being collected
to determine the live (i.e., reachable) objects.

Alternatively, dirty bits can be maintained for older gen-
erations indicating whether the generation contains pointers
to objects in younger generations. The heap is divided into
aligned logical regions of size 2k bytes—the address of the
first byte in the region will have k low bits zero. These re-
gions are called cards [9, 12]. Each card has a corresponding
entry in a table indicating whether the card might contain
a pointer of interest to the garbage collector. Mapping an
address to an entry in the table involves shifting the address
right by k bits and using the result to index the table.

The card table can be maintained explicitly by generating
code to index and dirty the corresponding table entry at ev-
ery store site in the program. Alternatively, by setting the
card size to correspond to the virtual memory page size, up-
dates to clean cards can be detected using the virtual memory
hardware. All clean pages in the heap are protected from
writes. When a write occurs to a protected page, the trap
handler records the update in the card table and unprotects
the page. Subsequent writes to the now dirty page incur no
further overhead. Note that all writes to a clean page cause a
protection trap, not just those that store pointers.

The time required to determine the relevant older-to-
younger pointers for garbage collection varies with the gran-
ularity of the information recorded. In an earlier study [5]
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we showed that this is the dominant factor distinguishing
different implementations of the write barrier, and that re-
membered sets offer the best performance because they com-
pactly record just those locations that can possibly contain
older-to-younger pointers. In contrast, the time to scan dirty
cards is proportional to the size of the cards. While software-
implemented card marking schemes are free to choose any
power of two for the card size, a page trapping scheme is
bound by the size of a virtual memory page. Since modern
operating systems and architectures typically use a relatively
large virtual memory page size (on the order of thousands of
bytes), scanning overheads are very high.

Nevertheless, card marking schemes have more pre-
dictable overhead at run time. The simple write barrier im-
poses a small, bounded amount of additional work on each
store. Meanwhile, remembered set maintenance is typically
more complicated, depending on the data structures used, and
a given store may incur unpredictable cost. For example, the
modified slot may already be recorded in the appropriate re-
membered set, otherwise it must be entered. On overflow, the
set must be grown to accommodate the new entry. Such con-
ditional code at every store site is also likely to be detrimental
to performance on modern pipelined architectures.

In this paper we consider a hybrid implementation which
combines the precision of remembered sets with the simplic-
ity of the card marking write barrier. As the dirty cards are
scanned prior to each scavenge, the older-to-youngerpointers
in those cards are summarized to the appropriate remembered
sets, which are then used as the basis of the scavenge. The
cards are thenceforth treated as clean. Subsequent scav-
enges need only update the remembered sets by rescanning
just those cards that have been dirtied since the previous
scavenge. We compare the performance of several imple-
mentations of this hybrid scheme (varying the card size, and
using page traps to note updates) with the pure remembered
set approach.

2 Implementation

Our experiments are based on a high-performance Smalltalk
interpreter of our own design, using the abstract definition
of Goldberg and Robson [4]. The implementation consists
of two components: the virtual machine and the virtual im-
age. The virtual machine implements a bytecode instruction
set to which Smalltalk source code is compiled, as well as
other primitive functionality. While we have retained the
standard bytecode instruction set of Goldberg and Robson
[4], our implementation of the virtual machine differs some-
what from their original definition to allow for more efficient
execution. Our virtual machine running on the DECstation
3100 performs around three times faster than a microcoded
implementation on the Xerox Dorado.

We compare several write barrier implementations: a pure
remembered set approach, the hybrid card marking schemes
(for various card sizes), and a similar page trapping scheme.

We also measure the performance of an implementation that
assumes an oracle to discover which pages of the heap are
dirty at each garbage collection. This allows us to determine
the optimal performance that could be expected if operating
systems were to provide user-level dirty bits (as suggested
by Shaw [8], and Appel and Li [3]).

2.1 Remembered sets

To avoid making the remembered sets too large we record
only those stores that create pointers from older objects to
younger objects. This involves extra conditional overhead at
every store site to perform the check, in addition to a subrou-
tine call to update the remembered set if the condition is true.
Smalltalk object references are tagged to allow direct encod-
ing of non-pointer immediate values such as integers. Since
many object references are immediate, the first action per-
formed by the check is to filter out non-pointer stores. This
is followed by a generation test to filter out “initializing”
stores to objects in the youngest generation (such stores can-
not create older-to-younger pointers).1 Finally, if the store
creates a pointer from an older object to a younger object the
remembered set is updated with a subroutine call.

In contrast to Ungar’s remembered sets, ours record lo-
cations that might contain older-to-younger pointers, as op-
posed to objects. This saves unnecessary scanning upon
garbage collection to determine the interesting pointers.

On the MIPS R2000 non-pointers are filtered in 2 cycles.
Filtering initializing stores requires another 8 cycles, while
filtering the remaining uninteresting stores consumes a fur-
ther 8 cycles. The entire inline sequence for a store typically
comes to 22 instructions, including the store itself, filtering
of uninterestingstores, and the call to update the remembered
set.

2.2 Card marking

For the card schemes we implement the card table as a con-
tiguous byte array, one byte per card, so as to simplify the
store check.2 By interpreting zero bytes as dirty entries and
non-zero bytes as clean, a pointer store can be recorded using
just a shift, index, and byte store of zero. Since the most at-
tractive feature of card marking is the simplicity of the write
barrier, we omit the checks used in the pure remembered set
scheme to filter uninteresting stores.

Thus, on the MIPS R2000 a store can be recorded with
just 5 instructions: 2 to load the base of the card table, a
shift to determine the index, an add to index the table, and
a byte store of zero. Including the store, the entire inline

1Note that we do not mean that the stores occur at object allocation. Such
stores never need to be recorded since objects are always allocated in the
youngest generation. Moreover, Smalltalk objects are always initialized to
contain only nil pointers.

2We first heard of this idea from Paul Wilson.
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sequence comes to 6 instructions.3 If we kept the card table
base in a register this sequence would shrink to 4 instructions
(registers are at a premium in the interpreter).

2.3 Page traps

The page trap scheme requires no inline code at store sites to
detect pointer stores, relying instead on the page protection
hardware to trap updates to protected pages. Thus there is
no longer any advantage in using a byte table to simplify the
store check. Rather, it is more important that the dirty page
table consume the smallest possible space. For this reason we
use a bit table; setting a bit indicates that the corresponding
page is dirty. When a protection trap occurs the bit in the
table corresponding to the modified page is set and the page
unprotected.

2.3.1 User-level dirty bits

If operating systems were to provide user-level dirty bits (as
suggested by Shaw [8], and Appel and Li [3]), the overhead
to reflect page traps through to the user-level protection viola-
tion handler can be avoided. Presumably, an extra user-level
dirty bit would be added to each page table entry, and a sys-
tem call (dirty) provided to return a list of pages dirtied in
a given address range since the last time it was called. The
system call would clear the user-level dirty bits and enable
traps on the specified pages. Traps could then be handled
directly in the operating system. This can have substantial
savings.

As reported for a MIPS R2000 [1], the time for a user
program to trap to a null C routine in the kernel and return to
the user program is 15.4�s round trip. In contrast, Appel and
Li report the corresponding overhead to handle page-fault
traps in user-mode to be 210�s on a DECstation 3100 (MIPS
R2000) running Ultrix 4.1. We have confirmed this with our
own measurement of page traps in a tight loop using the same
hardware and operating system configuration, obtaining a
round-trip time of�250�s. Note that these measurements are
for a tight loop executing many repetitions, and so may tend
to underestimate trap costs. Traps interspersed throughout
a program’s normal execution may perform less favorably,
since the OS trap handling code and data structures needed
to service the trap may no longer be in the hardware caches.
Meanwhile, a call to dirty should be no more expensive
than current primitives for manipulating page protections,
except in copying out the dirty bit information, adding little if
any extra overhead to applications that use the new primitive.

3We note that the byte store instruction on the R2000 is implemented in
the memory hardware as a read-modify-write instruction, requiring several
cycles for execution.

3 Experimental setup

We ran our experiments on a DECstation 3100 (MIPS
R2000A CPU clocked at 16.67MHz) running ULTRIX 4.1.4

The benchmarks were run with the system in single user
mode and the process’s address space was locked in main
memory to prevent paging. We measured elapsed time on
the client machine using a custom timer board5 having a
resolution of 100 ns. The fine-grained accuracy of this timer
allows separate measurement of each phase of a benchmark’s
execution.

4 Benchmarks

We use two benchmarks to evaluate garbage collection per-
formance. The first is a synthetic benchmark of our own
devising based on tree creation. The second consists of sev-
eral iterations through the standard “macro” benchmark suite
that is used to compare the relative performance of Smalltalk
implementations [7]. Our benchmarks have the following
characteristics:

� Destroy—trees with destructive updates: A large initial
tree (�2M bytes) is repeatedly mutated by randomly
choosing a subtree to be replaced and fully recreated.
The effect is to generate large amounts of garbage, since
the subtree that is destroyed is no longer reachable, while
retaining the rest of the tree to the next iteration. Re-
building the subtree causes many pointer stores, some
of which create older-to-younger pointers of interest to
the garbage collector.

Each run performs 160 garbage collections. Of the
59 646 stores performed, 37 403 are of non-immediate
pointers. Of these, 4 974 are non-“initializing” stores
into objects in older generations, of which 4 965 create
interesting older-to-younger pointers.

� Interactive—10 iterations of the “macro” benchmarks:
These measure a system’s support for the program-
ming activities that constitute typical interaction with
the Smalltalk programming environment, such as key-
board activity,compilation of methods to bytecodes, and
browsing.

Each run performs 137 garbage collections. Of 654 245
stores performed, 154 795 are of non-immediate point-
ers. Of these, 26 637 are non-“initializing” stores into
objects in older generations, of which 2 396 create in-
teresting older-to-younger pointers.

4DECstation and ULTRIX are registered trademarks of Digital Equip-
ment Corporation. MIPS and R2000 are trademarks of MIPS Computer
Systems. This version of the operating system had some official patches
installed that fix bugs in the mprotect system call.

5We thank Digital Equipment Corporation’s Western Research Labora-
tory, and Jeff Mogul in particular, for giving us the high resolution timing
board and the software necessary to support it.
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5 Results

We report the elapsed time of each phase of execution of the
benchmark, including:

� running: the time spent in the interpreter executing the
program, as opposed to the garbage collector (note that
running includes the cost of store checks or page traps);

� roots: the time spent scanning through remembered
sets or card/page tables and copying the immediate sur-
vivors; 6

� promoted: the time spent copying any remaining sur-
vivors; and

� other: the time spent in any remaining GC bookkeeping
activities.

Figure 2 plots the results for the remembered set (rem-
sets), hybrid page trap (pages), and hybrid card implemen-
tations (for card sizes of 16, 64, 256, 1024, and 4 096 bytes)
on the Destroy benchmark. The performance that might be
obtained using a zero-cost implementation of dirty is esti-
mated by taking the running, roots, and promoted times for
the oracle-based implementation along with the other over-
heads for the card marking scheme. This is plotted alongside
the other measurements (dirty). For comparison, Figure 1
gives the results for the original non-hybrid card and page
trap implementations. The results for the Interactive bench-
mark are similarly shown in Figures 3 and 4.

In contrast with the original implementations, we see that
summarizing interesting pointer information into remem-
bered sets for use in subsequent scavenges can significantly
reduce the scanning overhead needed to determine root ob-
jects for collection. This allows the hybrid card schemes to
be competitive with the pure remembered set scheme, with
the 1K byte card scheme being best overall. Nevertheless,
the pure remembered set scheme still has markedly less over-
head to determine the roots. We also note that using a bit
table versus a byte table has little effect on root processing
time (the roots times are very similar for dirty, which scans
a bit table, and cards-4096, which scans a byte table).

The results are somewhat less conclusive for running-time
overheads. The variation in running time amongst the card
schemes can only be explained by hardware data cache ef-
fects, since the card schemes all execute the exact same code
(barring differences in the shift value used to index the card
table). Similarly, the fact that the oracle-based dirty scheme
does not exhibit the best running time of the different im-
plementations can only be explained as a result of such data
cache effects. Nevertheless, dirty has running time less than
pages for both benchmarks. Since these implementations
use exactly the same virtual machine and garbage collec-
tion data structures, any difference is unlikely to be due to

6In Smalltalk the stack is stored as heap objects so there is no separate
stack processing. In fact, all the process stacks are copied during each
scavenge. Also, Smalltalk has only a few global variables, in the interpreter.

hardware cache effects. Thus we can get some idea of the
overhead to field a trap from the operating system, unprotect
the appropriate page, and return to normal execution, by sub-
tracting the running time of the oracle-based dirty scheme
from that of the pages scheme, and dividing by the number
of page traps. This yields a per-trap overhead of 4 387�s for
the Destroy benchmark (864 traps), and 1 211�s for the In-
teractive benchmark (1 656 traps), showing that the traps can
be much more expensive than the lower bound of 250�s we
obtained by measuring their cost in a tight loop. These results
suggest that the frequency of traps affects their cost. Presum-
ably, more frequent traps mean that the hardware caches are
more likely to contain the operating system code and data
required to service a trap, making for faster trap handling.

Given the number of store checks executed by the card
schemes and the number of traps incurred by the page trap
scheme for each benchmark, we can determine the trade-
off between using explicit code to maintain dirty bits and a
page trapping approach. Ignoring hardware cache effects,
the break-even point is determined by the formula:

cx = fty

where

c = the number of store checks executed by an explicitly
coded software scheme;

x = cycles per check;

f = clock frequency (16.67 MHz for DECstation 3100);

t = the number of traps incurred by a page trapping
scheme;

y = �s per trap.

For these benchmarks this yields Table 1, which gives the
maximum page trap overhead such that a page trapping ap-
proach will incur less running time than an alternative explicit
implementation having the given overhead per store check.
Let us assume that our current 5-instruction sequence for
card marking executes in no more than 10 cycles. To be
competitive a page trap implementation would have to in-
cur no more than 41�s and 237�s per trap, for the Tree and
Interactive benchmarks respectively. These values are sig-
nificantly lower than the estimated trap overheads for these
benchmarks quoted above, and lower even than the 250�s
lower bound obtained for a tight loop.

Finally, we note that the hybrid page implementation in-
curs more page traps than the original implementation, since
all pages are considered to be clean after each scavenge,
rather than just those that contain no interesting pointers.
This increases the running time component for the hybrid
page trapping scheme. Nevertheless, the reduction in the
number of dirty pages that must be scanned to determine the
garbage collection roots makes this tradeoff well worthwhile,
resulting in a net reduction in total execution time.
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Figure 1: Destroy: old implementation
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Figure 2: Destroy: new hybrid implementation
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Figure 3: Interactive: old implementation
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Figure 4: Interactive: new hybrid implementation
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Tree Interactive
Store checks (c) 59 646 654 245
Page traps (t) 864 1 656

Cycles per check (x) �s per trap (y)
1 4 24
2 8 47
4 17 95
5 21 118

10 41 237
15 62 355
20 83 474
50 207 1 185

100 414 2 370
150 621 3 555
200 828 4 740

Table 1: Break-even points for GC implementations that use
page trapping vs explicit checks

5.1 Interpreters versus compilers

The experiments and results we have presented are for an in-
terpreted language. An obvious question is how they would
change for a compiled language. The results will likely
stand since compilation will tend to shrink the time actually
spent in the program code, but garbage collection costs will
be unaffected since they are part of the language run-time
system. Thus, collection time overheads become more im-
portant, strengthening our arguments for software rather than
hardware approaches in many circumstances. Reducing the
incremental costs of noting updates for garbage collection
will not improve the situation. Rather, it is better to invest
in improving the garbage collection overheads, which are
heavily impacted by the granularity of the noted updates.
Nevertheless, inline checks do affect program size and pos-
sibly instruction cache behavior, so we cannot predict the
situation with certainty. The size and frequency of inline
checks will affect overhead with respect to a non-garbage
collected implementation, but in the absence of contrary ev-
idence, it is reasonable to assume that the relative ranking of
the various schemes will remain the same.

6 Discussion

Our earlier results [5] showed that, despite the more compli-
cated store checks, remembered sets gave best performance
overall because of their precise representation of older-to-
younger pointers, allowing the scavenge roots to be discov-
ered quickly. The hybrid scheme used here has eliminated
the need to rescan cards that have not changed since the
last scavenge, thus reducing the scanning overhead to locate
roots. We have also established that a trap implementation
is unlikely to be competitive with our software card mark-

ing scheme unless page trap overheads can be dramatically
reduced. Thus, a combination of card marking with remem-
bered sets seems the best option.

One of the problems with any remembered set scheme is
that in the worst case the remembered set for a given gener-
ation can grow to be as large as all the older generations—if
every word in the older generations contained a pointer into
that generation then the remembered set would contain an
entry for each of those words. At some point scanning a card
becomes less expensive than the corresponding remembered
set processing. By arranging for the hybrid garbage col-
lector to detect when remembered sets are becoming overly
large and unwieldy, it can dynamically switch over to card
scanning on a card-by-card basis. If a given card contains
more interesting pointers than can be efficiently recorded
with remembered sets, then the card is marked as dirty. The
interesting pointers are then rediscovered while scanning at
the next scavenge. The collector can re-evaluate this decision
at each scavenge, and switch back to recording the interesting
pointers in the remembered sets.

7 Conclusions

We have shown that a hybrid scheme which uses card mark-
ing to track pointer stores, and remembered sets to summarize
the interesting pointers for garbage collection, can offer ac-
ceptable performance and attractive behavior. Remembered
sets provide accurate determination of interesting pointers,
but suffer from high store check costs. Cards offer a simple,
predictable store check. Combining these two techniques
provides a competitive scheme that has the store check over-
head of cards while preserving most of the high precision of
remsets, yielding better behaved, more predictable garbage
collection.
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comparative performance evaluation of write barrier
implementations. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 92–109, Vancouver, Canada,
Oct. 1992. ACM SIGPLAN Not. 27, 10 (Oct. 1992).

[6] H. Lieberman and C. Hewitt. A real-time garbage
collector based on the lifetimes of objects. Commun.
ACM, 26(6):419–429, June 1983.

[7] K. McCall. The Smalltalk-80 benchmarks. In
G. Krasner, editor, Smalltalk-80: Bits of History,
Words of Advice, chapter 9, pages 153–173.
Addison-Wesley, 1983.

[8] R. A. Shaw. Improving garbage collector performance
in virtual memory. Technical Report CSL-TR-87-323,
Stanford University, Mar. 1987.

[9] P. G. Sobalvarro. A lifetime-based garbage collector
for LISP systems on general-purpose computers, 1988.
B.S. Thesis, Dept. of EECS, Massachusetts Institute of
Technology, Cambridge.

[10] D. Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. In
Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical
Software Development Environments, pages 157–167,
Pittsburgh, Pennsylvania, Apr. 1984. ACM SIGPLAN
Not. 19, 5 (May 1984).

[11] D. M. Ungar. The Design and Evaluation of a High
Performance Smalltalk System. ACM Distinguished
Dissertations. The MIT Press, Cambridge, MA, 1987.
Ph.D. Dissertation, University of California at
Berkeley, February 1986.

[12] P. R. Wilson and T. G. Moher. Design of the
Opportunistic Garbage Collector. In Proceedings of
the Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 23–35,
New Orleans, Louisiana, Oct. 1989. ACM SIGPLAN
Not. 24, 10 (Oct. 1989).

Page 8


