
A Comparative Performance Evaluation of Write Barrier
Implementations∗

Antony L. Hosking J. Eliot B. Moss Darko Stefanović

Object Systems Laboratory
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

Abstract

Generational garbage collectors are able to achieve very
small pause times by concentrating on the youngest
(most recently allocated) objects when collecting, since
objects have been observed to die young in many sys-
tems. Generational collectors must keep track of all
pointers from older to younger generations, by “mon-
itoring” all stores into the heap. Thiswrite barrier has
been implemented in a number of ways, varying essen-
tially in the granularity of the information observed and
stored. Here we examine a range of write barrier im-
plementations and evaluate their relative performance
within a generation scavenging garbage collector for
Smalltalk.

1 Introduction

Generational collectors achieve short collection pause
times partly because they separate heap-allocated ob-
jects into two or more generations and do not process
all generations during each collection. Empirical stud-
ies have shown that in many programs most objects
die young, so separating objects by age and focusing
collection effort on the younger generations is a pop-
ular strategy. However,any collection scheme that

∗This work is supported by National Science Foundation Grant
CCR-8658074 and by Digital Equipment Corporation and Apple
Computer. The authors can be reached via Internet addresses
{hosking,moss,stefanov}@cs.umass.edu.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication andits date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Proceedings ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications
Vancouver, Canada, Oct. 1992, pp. 92–109

processes only a portion of the heap must somehow
know or discover all pointers outside the collected area
that refer to objects within the collected area. Since
the areas not collected are generally assumed to be
large, most generational collectors employ some kind
of pointer tracking scheme, to avoid scanning the un-
collected areas. Again, empirical studies show that in
many programs the older-to-younger pointers of inter-
est to generational collection are rare, so avoiding scan-
ning presumably improves performance.

To avoid scanning, the system must maintain some
kind of table enabling the collector to find all the in-
teresting pointers; we call this abstraction theinterest-
ing pointers table(IPT). Interesting pointers are cre-
ated when a pointer (as opposed to non-pointer data) is
stored in a heap object (as opposed to some other place)
and the modified object resides in an older generation
than the object that is the target of the pointer. Thus,
certain of the program’s stores must somehow create
IPT entries. The action required has been called astore
checkor awrite barrier by different authors. The gen-
eral approach is to add an entry to the IPT whenever
an interesting pointer is (or might be) created. The col-
lector uses and rebuilds the IPT, discarding any entries
that do not describe interesting pointers. Such entries
can come about either because the system, as it runs,
is imprecise about what is interesting, or because later
changes overwrite interesting pointers with uninterest-
ing data. Note that if the system is imprecise, it must err
on the side of putting too many entries in the IPT rather
than too few, since the IPT must allow the collector to
find all interesting pointers.

In this paper we are concerned with direct compari-
son of various methods of implementing the write bar-
rier. We will describe: our collector, the specific write
barrier methods we compare, the benchmarks we used,

Page 1



the experiment setup and methodology, and the results.
We also discuss related work and present the conclu-
sions we draw from the results. We offer two princi-
pal contributions here: the experimental results, which,
like most benchmark-based studies, are not conclusive
but nevertheless are interesting and useful; as well as
the unique (to our knowledge) experimental setup that
allows very direct and meaningful comparisons of the
various schemes.

2 Overview of the garbage collector

We now describe the garbage collector used for the per-
formance studies reported here. Its basis is the UMass
Language-Independent Garbage Collector Toolkit, to
which we add language specific code for our Smalltalk
system. We first offer a condensed description of the
toolkit and continue with appropriate details of the
Smalltalk system. For a more detailed discussion of
the toolkit see [4].

2.1 The toolkit concept

The toolkit divides the responsibility for and sup-
port of garbage collection into two parts: a language-
independent part, supplied by the toolkit, and a
language-specific part, nominally supplied by the lan-
guage implementor. The language-independent part
consists mostly of the data structures and code for man-
aging multiple generations and the allocation of heap
objects. The language implementor must supply the
following capabilities: locating at scavenge time all
root pointers(those pointers outside the scavenged gen-
erations that refer to objects in the scavenged gener-
ations), and locating all pointers within a heap object
given a pointer to the start of the object. The toolkit
includes a library of routines that an implementor can
use to support the IPT; it remains the implementor’s re-
sponsibility to locate roots lying in the stack(s), regis-
ters, and any other areas outside the heap.

2.2 The structure of the heap

The toolkit defines the structure of the heap and sup-
plies the necessary allocation routines. The heap con-
sists of a number ofgenerations, ordered by age. We
number them 0, 1, 2, . . . , in order of increasing age. In
any given collection some generation and all younger

generations will be scavenged. The number of genera-
tions may vary over time.

Each generation consists of a number ofsteps. Steps
segregate objects by age within a generation, and dur-
ing scavenging all surviving (reachable) objects in a
given step are copied to some other step. Thispromo-
tion stepmay belong to the same or a different gener-
ation. By adjusting the promotion steps before scav-
enging one can introduce new steps, combine existing
steps, and so on, allowing the number of steps in a
generation to vary over time. The primary function of
steps is to eliminate the need for storing or maintain-
ing any age information in individual objects. This re-
duces storage and time costs, but also gives the collec-
tor age information without imposing any requirements
on object formats (which are entirely the responsibil-
ity of the language implementor). While the meaning
of steps is somewhat arbitrary, we impose a convention
that objects in the lower numbered steps are younger
than those in the higher numbered steps, numbering the
steps 0, 1, 2, . . . , such that every step in the system has
a unique number.

For example, generation 0 might have steps 0 and 1,
generation 1 might have steps 2 through 4, and so on.
A simple promotion policy is to promote survivors of
stepk to stepk+1. In that case, the number of steps in a
generation determines the number of scavenges (of that
generation) necessary to promote objects to the next
generation.

Each step consists of a number ofblocks. A block is
2n bytes, aligned on a 2n-byte boundary for some value
of n chosen when the system is built. A typical block
size might be 64K bytes. The number of blocks in a
step may vary over time. While the blocks of a step
are usually not contiguous, anurserymay be set up to
consist of a number of contiguous blocks, so that one
might more readily use a page trap to detect nursery
overflow and trigger a scavenge. This avoids the need
for an explicit limit check at every allocation.

Blocks have four primary advantages. First, they al-
low sizes of steps and generations to vary easily since
the storage of a step need not be contiguous. Second,
they allow speedy determination of the generation, step,
and promotion step of an object: one merely shifts the
address of the object right byn bits and indexes a block
table containing the needed information. Third, blocks
match naturally with page trapping or card marking
schemes (to be discussed in detail below). Fourth, they

Page 2



reduce the storage needed under some circumstances,
compared with copying collectors that use semi-spaces.
If b bytes are present in a generation before a scavenge
and the survivors consumea bytes, then a semi-space
scheme uses 2b bytes whereas our scheme usesb+a
bytes (modulo rounding resulting from the block size).
The degree of advantage depends on the survival rate
a/b, but may be significant in some applications.

Blocks do introduce a problem: they cannot handle
objects larger than the block size. To handle such ob-
jects we provide alarge object space(LOS), as sug-
gested in [14]. Indeed, it is probably a good idea to put
in LOS any object that consumes a significant fraction
of a block; we used the heuristic threshold of 1/8 of a
block. Further, as also discussed in [14], any object that
has few pointers in it and that exceeds some threshold
in size should be stored in LOS to avoid the overhead of
copying. Without going into all the details, LOS uses
free list allocation based on splay trees [10, 11, 5] and
once allocated an LOS object is never moved. However,
LOS objects still belong to a step, which is indicated by
threading the objects onto a doubly linked list rooted
in the step data structure. When an LOS object is pro-
moted, we simply unchain it from one list and chain it
into another. When scavenging is complete, any LOS
objects remaining on a scavenged step’s LOS list are
freed.

While the generation, step, and block of a non-LOS
object can be discovered via the simple shift and index
technique, LOS may mix objects from different steps
and generations in the same block. Therefore, we store
a back reference from each LOS object’s header to its
containing step, allowing relatively easy determination
of the step given a pointer to the object’s base. De-
termining the step given a pointer into the middle of
the object requires locating the object header, which is
supported but involves additional work.

2.3 Phases of a scavenge

A scavenge consists of two phases. First, the root set for
the scavenge is determined based on the IPT scheme
employed (as well as the stack and register decoding
approach). All objects directly reachable from the roots
are copied into new space, and the roots updated. In
the second phase all objects reachable from the new
space objects are copied over using a non-recursive Ch-

eney scan [2].1 As each object is copied, a forwarding
pointer is left in the old copy, so that other references
to the object can be updated as they are encountered.
Since the toolkit makes no object format assumptions,
the details of forwarding pointer format are up to the
language implementor. The toolkit does support auto-
matic determination of where to allocate the new copy
of the object, given the object’s size (which must be
determined by language-specific code).

Before a scavenge begins, the toolkit, following a dy-
namically modifiable plan supplied by the language im-
plementor, determines the generations to be scavenged
and creates new steps according to the number desired
for each scavenged generation. It also sets up all the
promotion step references. After a scavenge, all the old
steps of the scavenged generations are deleted and their
blocks become available for allocation.

2.4 Smalltalk details

Our Smalltalk system consists of a virtual machine of
our own design. It includes a bytecode interpreter for
the instruction set defined in [3], and we run a Smalltalk
image cloned (converted into our format) from an ear-
lier release of Smalltalk-80.2 We manage contexts
(stack frames) as described in [7]. In particular, a num-
ber of frames are preallocated and assembled on a dou-
bly linked list. Ordinary calls traverse the list in one
direction and ordinary returns traverse it the other way,
with cost similar to a stack. When a block context (sim-
ilar to a closure) is created, or a frame otherwise be-
comes referenceable as an object, it is removed from the
ordinary linked list so that it will not be reused until the
collector can establish that it is no longer referenced.
We store frames in step 0 and they are never promoted.
This means that we need never perform store checks on
stores into frames (they are in the youngest generation,
so such a store can never create an interesting pointer).

Non-frame objects are created in the nursery in step
1. Generation 0 includes steps 0 and 1, so in principle
we can use a slightly cheaper store check for initializ-
ing stores (which seem to be the most common stores
in the system): ignore stores if the modified object is

1The toolkit might be adapted to support mark-sweep or other
approaches to collection, but currently it provides only copying col-
lection. Also, it would not be hard to incorporate suggestions such
as hierarchical clustering [16].

2Smalltalk-80 is a registered trademark of PARC Place Systems.

Page 3



in generation 0 (regardless of the generation of the tar-
get of the pointer).3 There is a total of five generations,
with one step in each of generations 1, 2, 3, and 4. Each
step (except step 0, which never promotes, and step 5
which is the oldest step) promotes to the next step. Gen-
eration 0 is collected if we run out of frames or step 1
exceeds its allocation of one block. Similarly, gener-
ations 1, 2, and 3 are scavenged if they exceed their
respective limits of 1, 1, and 10 blocks. Generation 4 is
never collected. The block size is 64K bytes. All ob-
jects larger than 8K bytes are stored in LOS, as are all
bytes objects of size at least 496 bytes. We do not claim
that this arrangement is necessarily well-tuned, but we
held it fixed across all benchmark runs so the compar-
isons remain direct. Note that the system can easily be
configured to have a different heap arrangement.

3 Write barrier implementations

As previously sketched, the write barrier consists of ac-
tions performed in conjunction with a store that might
create an interesting pointer. The purpose of the write
barrier is to support efficient location of all root point-
ers in the heap (i.e., to avoid scanning the generations
not being collected). We have implemented several
versions of the three most common write barrier ap-
proaches. They vary mostly in the granularity of the
information they record.

The first scheme associates aremembered setwith
each generation [13], recording the objects or locations
in older generations thatmaycontain pointers into that
generation. Any pointer store that creates a reference
from an older generation to a younger generation is
recorded in the remembered set for the younger gen-
eration. At scavenge time the remembered sets for the
generations being scavenged include the heap root set
for the scavenge.

The other schemes divide the heap into logical re-
gions of size 2k bytes, aligned on a 2k-byte boundary,
for some fixedk. We call these regionscards, after
[12, 17]. Each card has a corresponding entry in a card
table indicating whether the card might contain pointers
into younger generations. Mapping an address to an en-
try in this table is simple: one shifts the address right by
k and uses the result as an index into the table. When-

3We detail later the exact store checks (if any) we used with each
write barrier implementation.

ever a pointer is stored into an object, the corresponding
card isdirtied. At scavenge time all dirty cards of gen-
erationsnot being scavenged include the heap root set
for the scavenge.

One variant of this scheme uses the page protection
mechanism of the operating system to detect stores into
clean cards. A card in this scheme corresponds to a
page of virtual memory. All clean pages are protected
from writes. When a write occurs to a protected page,
the trap handler dirties the corresponding entry in the
card table and unprotects the page. Subsequent writes
to the now dirty page incur no extra overhead. Note
that all writes to a clean page cause a protection fault,
not just those that store pointers. An operating system
could more efficiently supply the information needed
in the page protection scheme if it offered appropriate
calls to manipulate the page dirty bits maintained by
most memory management hardware [8].

With each of these schemes we are faced with the
choice of remembering either the slot that is updated or
the object containing that slot. For remembered sets,
this is simply a matter of entering the object pointer
or the slot address in the appropriate remembered set.
For card marking, remembering the containing object
means dirtying the card containing the header of the
object. Remembering the slot means dirtying the actual
card in which the slot lies, which may be different. Nat-
urally, the page protection scheme is only able to dirty
the page containing the slot, since that is the location
updated.

We now give a detailed description of our implemen-
tation of these schemes.

3.1 Remembered sets

Our remembered sets are implemented as circular hash
tables using linear hashing. A remembered set is allo-
cated as an array of 2i+k entries. To enter an item in the
set, we hash the item to obtaini bits and index the table.
If the indexed location is empty then the item is stored
in that slot and we are done. If the location already
contains the item then we are done also. Otherwise,
the immediately succeedingk slots are examined to try
to place the item (this is not done circularly; hence the
2i+k rather than simply 2i). If an empty location still
cannot be found then a circular search of the table is
made to find an empty slot. The hash tables are kept
relatively sparse by growing a table whenever an item

Page 4



cannot be placed in its natural hash slot or thek fol-
lowing slots, and 60% or more of the table’s slots are
full. We fixed k=2 and the growth policy is to incre-
menti (i.e., basically double the table size when a table
is grown).

3.1.1 The write barrier

To avoid making the remembered sets too large we
record only those stores that are interesting; we use
the termfiltering to indicate the process of determin-
ing whether an item is interesting. In Smalltalk we al-
ways do a pointer vs. non-pointer test on the item being
stored. If the item is a pointer, this is followed by a
generation test, which we perform by determining the
generations of both the modified source object and the
target object whose pointer is being stored, and com-
paring the two. Following Zorn [18], and based on our
own run-time traces of the Smalltalk system which re-
veal that most stores occur toinitialize newly allocated
objects, we can frequently avoid the need to determine
the generation of the target object by checking if the
modified object is in generation 0. As mentioned ear-
lier, determining the generation of an object involves
shifting its pointer and indexing into the block table.
Thus, our store filter involves a shift, index, and load to
obtain the source object’s generation, a conditional to
filter initializing stores, followed by a shift, index, and
load for the target object, and a comparison. If the store
passes through this filter then it is interesting, so we in-
voke a subroutine to hash the modified object or slot
into the appropriate remembered set. To avoid run-time
code to determine precisely which remembered set to
update, all interesting stores are actually hashed into a
run-timescratchset.

On the MIPS R2000 initializing stores are filtered us-
ing 7 instructions. The remaining uninteresting stores
are filtered using another 7 instructions. The entire in-
line sequence comes to a total of 17 instructions includ-
ing the call to update the remembered set.

3.1.2 Scavenging

At scavenge time the remembered sets of the genera-
tions being scavenged plus the scratch set determine the
heap root set. To eliminate duplicates in the root set we
hash the remembered sets of the scavenged generations
into the scratch set to form the union. Each entry in
the scratch set is then processed to locate pointers into

the scavenged generations: if we are remembering ob-
jects then the heap root set consists of all pointer loca-
tions in those objects; otherwise if slots are being re-
membered then they directly constitute the root set. As
scratch set entries and promoted objects are processed,
all interesting pointers that we encounter are recorded
in their appropriate remembered set, in order to rebuild
the remembered sets of the scavenged generations and
to keep those of the older unscavenged generations up
to date.

The apparent advantages of remembered sets are
their conciseness and accuracy, achieved at the cost of
filtering for interesting pointer stores before recording
them in the appropriate remembered set, and of hash-
ing to keep the sets small by eliminating duplicates. At
scavenge time, unless there has been repeated mutation
of an object or location, the remembered set is likely to
be a very accurate characterization of the heap root set.

3.1.3 The sequential store buffer

For an interpreted language such as our Smalltalk sys-
tem the space overhead of 17 instructions at every store
site is not a problem, since stores occur at a relatively
small number of fixed locations in the interpreter. How-
ever, for compiled languages this overhead will be in-
curred at every one of an arbitrary number of compiled
store sites, which may be prohibitive. For this reason
we have devised a scheme similar to that introduced
by Appel [1], allowing batch filtering and recording of
pointer stores, using asequential store buffer(SSB)
to buffer the necessary information. The SSB com-
prises some number of contiguous pages, bounded by
a “guard” page that has been protected from writes.
Recording a word of information in the SSB consists of
storing to the next free location in the buffer and bump-
ing the free pointer. If the free pointer is maintained
in a register then this can be implemented on the MIPS
R2000 using just two instructions: one to store the word
and the other to increment the pointer.

At scavenge time the information recorded in the
SSB is processed to update the scratch set, with filter-
ing as described above. Overflow of the SSB at run time
is trapped by the operating system when an attempt is
made to store into the guard page. The trap handler
processes the SSB and resets the free pointer to the be-
ginning of the buffer.

We record two words of information in the SSB for

Page 5



each store to allow for efficient filtering of uninterest-
ing pointers: when remembering slots we record the
modified object as well as the updated slot;4 when re-
membering objects we record both the modified source
object and the target object to avoid scanning the entire
modified object for interesting pointers when process-
ing the SSB.

3.2 Card marking

Card marking requires that we allocate a contiguous
card table containing an entry for every card in the heap.
Our garbage collector allows the heap to grow as large
as the operating system (and practical considerations)
will allow, since blocks are incrementally added to the
heap as they are needed. While we envision a scheme
where the card table grows incrementally, in the bench-
mark runs we imposed an upper bound on heap growth
and allocated a fixed-size card table during memory
manager initialization.

3.2.1 The write barrier

One of the most attractive features of card marking is
the simplicity of the write barrier. For this reason we
have chosen to implement the card table as a byte ar-
ray rather than a bit map.5 By interpreting zero bytes
as dirty entries and non-zero bytes as clean, a pointer
store can be recorded using just a shift, index, and byte
store of zero. On the MIPS R2000 this comes to just
4 instructions: a load to get the base of the card table,
a shift to determine the index, an add to determine the
byte entry’s address, and a byte store of zero.

3.2.2 Scavenging

At scavenge time the dirty cards of the generations not
being scavenged determine the root set. We must scan
each card to find all references into the generations be-
ing scavenged. If we are remembering objects (i.e., if
pointer stores dirty the containing object’s card) then

4Recording the slot alone would be sufficient. However, we can
take advantage of the fact that our Smalltalk implementation allo-
cates all object headers in small object space. Large objects are
represented by a header in small object space with a pointer to the
body of the object in large object space. This makes determining
the generation of a slot much simpler if we are given a pointerto
its containing object’s header rather than the address of the slot it-
self. By recording the modified object as well as the slot we avoid
unnecessarily complicating SSB filtering.

5We first heard of this idea from Paul Wilson.

every pointer slot of every object whose header lies in
a dirty card must be examined. If we are remembering
slots (i.e., if stores dirty the updated slot’s card) then the
root set consists of all pointers that lie in dirty cards.
Either way, locating pointers within cards is compli-
cated by the mixing of bytes and pointers in Smalltalk
objects, and the potential for objects to span multiple
cards.

To find the pointers in a card we must be able to find
the object headers in the card, which encode the for-
mats of the objects allowing us to locate their pointers.
To support locating object headers, we maintain a ta-
ble of card offsets parallel to the dirty card table, indi-
cating the location of thelast (highest address) object
header within each card. This requires every alloca-
tion of an object in any generation but the youngest to
update the card offset table. These updates are uncon-
ditional, since we allocate from low to high addresses,
so the most recent allocation in a card is always the
offset of the last object in the card. Since new objects
are always allocated in the youngest generation this al-
location overhead is incurred only upon promotion of
objects at scavenge time.6 A negative offset entry indi-
cates that the card contains no object header—the ob-
ject header must be in some previous card. A positive
offset indicates thelongwordof the card at which the
last object’s header begins. Using longword offsets al-
lows us to keep the offset table entries to just one byte
for cards of 512 bytes or less. For larger cards we use a
two-byte entry.

Before scanning a dirty card for pointers, we first
mark it clean. Then if we find any interesting pointer in
the card (even if the generation of the target is not be-
ing scavenged), we dirty the card for future scavenges.
Note that a dirty card becomes clean if the scan certi-
fies that the card contains no interesting pointers. We
reduce scanning overhead by scanning all contiguous
dirty cards as a group, running from the first to the last.
Promoted objects are always allocated in newly allo-
cated blocks whose cards are assumed to be clean, so
as promoted objects are scanned we also update their
card entries.

An unresolved question is just how large cards
should be. There is an obvious tradeoff in that large
cards mean fewer cards and smaller tables, but larger

6There is one rare exception to this brought about by our imple-
mentation of the Smalltalk primitive methodbecome:.

Page 6



cards also imply a larger root set at scavenge time.
There is also the question of filtering. As for remem-
bered sets we filter non-pointer stores to avoid unneces-
sarily marking cards. However, there is the possibility
that generation filtering might also improve the accu-
racy of the root set by reducing the number of marked
cards to be scanned at scavenge time.

3.3 Page protection

The final scheme is a variant of card marking where
the write barrier is implemented by using the paging
hardware’s capability to trap writes to protected pages.
Rather than recordingevery storeat run time, we trap
only writes to clean pages. This means that there is
no overhead for writing todirty pages at run time, but
stores to clean pages will incur the significant overhead
of fielding a signal from the operating system, unpro-
tecting the appropriate page, and resuming (∼ 250µs
round trip as measured in a tight loop under Ultrix 4.1
on the DECStation 3100).

At scavenge time we process dirty pages (of genera-
tions not being scavenged) essentially as for card mark-
ing, except that any dirty page certified as clean must be
protected. We scan runs of contiguous dirty pages as a
group. Similarly, to protect a run of contiguous ex-dirty
pages we issue just one system call for the entire run,
to minimize system call overhead.

Unlike card marking, where we allocate promoted
objects in newly allocated blocks whose cards are as-
sumed to be clean, the page protection scheme assumes
that the pages of all newly allocated blocks are dirty.
This means that there is no need to record interesting
pointers as promoted objects are scanned. It also means
that no page is ever protected in the youngest genera-
tion, where new objects are allocated, so allocating and
storing into a new object never causes a trap.

4 Benchmarks

We chose a set of five Smalltalk programs to run as
benchmarks under each of the write barrier implemen-
tations. The first two benchmarks are real applications,
the second two are synthetic benchmarks designed to
reveal the behavior of the garbage collector, and the last
is intended to reveal the behavior of the garbage collec-
tor in an “interactive” session. We now describe each
benchmark and characterize its behavior:

Richards: This is the Richards operating system sim-
ulation benchmark. It is a computation-intensive
program, and preallocates most of its data. Most
subsequent allocations consist of frames. We
chose this benchmark to reveal the cost of garbage
collection in a program that does little allocation
and creates little garbage.

Lambda: This is a pureλ-calculus interpreter of our
own devising. It representsλ-expressions as di-
rected graphs, internally consisting of small fixed
size Smalltalk objects. It modelsβ- andη- reduc-
tion. Internally, it implements normal order re-
duction by copying the argument subexpression.
This entails intensive allocation activity (for each
occurrence of the bound variable, it allocates ob-
jects for the argument copy) and garbage genera-
tion (following the substitution, the original argu-
ment is garbage). In addition, variable bindings
are handled internally using Smalltalk dictionar-
ies, giving rise to a large number ofbecome: op-
erations to grow the dictionaries.

Swap—trees with mutation: This synthetic bench-
mark first builds a complete tree of branching fac-
tor 4 and height 6. Each node consists of an ar-
ray of pointers to the node’s children and a small
data array. The total size of the tree is 600K bytes.
Once the tree is built the program loops swapping
random subtrees of height 3. This benchmark re-
veals the efficiency of the write barrier.

Destroy—trees with destructive updates: This syn-
thetic benchmark builds a complete tree of branch-
ing factor 6 and height 5, similar to the tree of
the Swap benchmark. The total size of the tree
is 900K bytes. However, instead of swapping sub-
trees, Destroy replaces a subtree of height 3 (size
about 25K bytes) with a newly allocated subtree
of the same size. The total amount of data pro-
cessed during a run is about 24 megabytes. This
benchmark explores the cost of applications that
generate garbage rapidly.

Interactive—the “macro” benchmarks: For this
benchmark we iterate 10 times through the full set
of “macro” benchmarks. These benchmarks are
part of the standard suite of benchmarks [6] used
to compare the relative performance of different
Smalltalk implementations. They measure system
support for the programming activities that consti-
tute typical interaction with the Smalltalk system,
such as keyboard activity, compilation of methods
to bytecodes, and browsing.

Page 7



5 Experiments

To ensure that each benchmark exhibited the same be-
havior from run to run we modified the Smalltalk inter-
preter to record and replay sessions. Thus, every run
sees exactly the same Smalltalk events, such as alloca-
tion, system time, keyboard/mouse events, interrupts,
etc. We note that the toolkit and write barrier soft-
ware design is such that each scavenge is presented
with exactly the same heap layout, collection of ob-
jects, blocks, etc., even to the point that the offset of the
objects in blocks will be the same. Indeed, the mem-
ory contents can differ only in the sizes and locations
of the write barrier data structures (card table, remem-
bered sets) and the placement and order of the blocks
(the presence of the write barrier structures may cause
blocks to be allocated in different places under different
schemes).

Naturally, there will still be some variation from run
to run due to context switching by the operating sys-
tem, but we minimized this by doing all timing tests in
single user mode, disconnected from the network. We
ran each benchmark several times under various imple-
mentations of the write barrier on a DECStation 3100
running Ultrix 4.1.7 There was adequate real memory
to prevent paging.

We measured elapsed time using a custom timer
board with a resolution of 100 ns. Extracting the value
of the timer involves reading 4 contiguous words from
a memory location to which the timer device has been
mapped, resulting in little timing overhead. The fine-
grained accuracy of this timer allowed us to measure
the elapsed time of each phase of execution separately:
running time between scavenges, processing of the root
set, scanning of promoted objects, and other overheads
of garbage collection. To obtain dynamic counts of al-
locations, pointer stores, etc., we built an instrumented
version of the interpreter and did a separate set of runs
(i.e., the counter instrumented interpreter was not used
for timing purposes).

Our experiments included runs for the two versions
of the remembered set scheme (one remembering ob-
jects, the other slots), object and slot versions of the
card scheme, with card sizes varying from 16 to 4096
bytes by powers of 2, and the page protection scheme

7The operating system had some official patches installed that
fix bugs in themprotect system call.

(the page size is 4096 bytes). We also measured the
SSB variant of the remembered set scheme for both ob-
jects and slots with a 10-page SSB, and a variant of the
most promising card scheme using the same generation
filter as for remembered sets to minimize the number of
dirtied cards.

6 Results

We now report the elapsed time performance of each
benchmark in turn. To best eliminate any uncontrolled
interference from the operating system, we take the
minimumelapsed time foreach phase(separately) over
twenty runs. The phases include:

• running, the time spent in the interpreter as op-
posed to the collector (note that running includes
the cost of store checks and/or page traps);

• root processing, the time spent scanning through
remembered sets or card/page tables and copying
the immediate survivors;8

• promotion, the time spent copying the remaining
survivors; and

• other, time spent in any remaining activities, such
as setting up internal tables, etc.

In addition, for the SSB variant of the remembered set
scheme we measured the time spent processing the SSB
prior to each scavenge. Note that any SSB processing
required to handle SSB overflow is charged to therun-
ning phase. We exclude all image loading and initial-
ization time (i.e., all actions prior to entering the main
interpreter loop). We present results for the slot-based
approaches first, and discuss the object remembering
schemes later (results for the object-based schemes ap-
pear at the end of the paper).

6.1 Richards

The computation-intensive nature of the Richards
benchmark is revealed in Figure 1. We see small gc
overhead, indicating little need for scavenging apart
from the recovery of block contexts (frames). Even so,
expanding the scavenge part of the graph to examine

8In Smalltalk the stack is stored as heap objects so there is no
separate stack processing. In fact, all the process stacks are copied
during each scavenge. Also, Smalltalk has only a few global vari-
ables, in the interpreter.

Page 8


