Software Prefetching for Mark-Sweep Garbage Collection:
Hardware Analysis and Software Redesign

Chen-Yong Cher
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN 47907

chenyong@ecn.purdue.edu

Department of

ABSTRACT

Tracing garbage collectors traverse references from liegmam
variables, transitively tracing out the closure of liveadis. Mem-
ory accesses incurred during tracing are essentially randa@iven
object may contain references to any other object. SincBcapp
tion heaps are typically much larger than hardware caclesing
results in many cache misses. Technology trends will makkeca
misses more important, so tracing is a prime target for prbieg.
Simulation of Java benchmarks running with the Boehm-De-
mers-Weiser mark-sweep garbage collector for a projected-h
ware platform reveal high tracing overhead (up to 65% of stdp
time), and that cache misses are a problem. Applying Boehm’s
default prefetching strategy yields improvements in ekeattime
(16% on average with incremental/generational collectiorGC-
intensive benchmarks), but analysis shows that his siratefiers
from significant timing problems: prefetches that occur ¢aoly
or too late relative to their matching loads. This analysised
development of a new prefetching strategy that yields ughtee
timesthe performance improvement of Boehm'’s strategy for GC-
intensive benchmarks (27% average speedup), and achiedes p
mance close to that of perfect timinge,(few misses for tracing
accesses) on some benchmarks. Validating these simutasatis
with live runs on current hardware produces average speefci®b
for the new strategy on GC-intensive benchmarks with a GG con
figuration that tightly controls heap growth. In contrasteBm'’s
default prefetching strategy is ineffective on this platfo

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles—eache memorigs
B.3.3 [Memory Structures]: Performance Analysis and Design
Aids—simulation

D.3.4 [Programming Language$: Processors-memory manage-
ment (garbage collection), run-time environments

Permission to make digital or hard copies of all or part of tvork for
personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

ASPLOS’040ctober 7-13, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-804-0/04/00105.00.

Antony L. Hosking

Sciences
Purdue University
West Lafayette, IN 47907

hosking@cs.purdue.edu

T. N. Vijaykumar
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN 47907

vijay@ecn.purdue.edu

Computer

General Terms

Algorithms, management, measurement, performance,rdesig
experimentation, languages

Keywords

Cache architecture, prefetching, garbage collectionkraaeep,
prefetch-on-grey, buffered prefetch, depth-first, bredifst

1. INTRODUCTION

Automatic dynamic memory management, commonly referred
to asgarbage collectio(GC) [13], is an important aspect of run-
time systems for modern applications. Languages such as"Jav
[10] impose automatic dynamic memory management as a manda-
tory feature of the languagée(there is ndree operation in Java).
Languages like C, while not forcing automatic memory manage
ment on programmers, are stillamenable to modern GC tegbsjq
making GC a realistic option for them as well.

The comparative benefits of automatic versus manual memory
management are often hotly-debated among programmer§Get
is now a well-accepted approach for developing reliablgdascale
applications that allocate and manipulate complex linkad dtruc-
tures. Its key advantages derive from the fact that GC refiev
programmers from the need to free allocated objects eXglice-
sulting in separation of concerns between data producersam
sumers, promoting modularity and composition of rich aggiion
libraries, and eliminating “dangling pointer” errors thasult when
objects are freed prematurely.

The basic operating principle of GC is that an object alledat
in the dynamicheapwill not be freed while there remailive ref-
erences to that object. Any object referred to by live refees is
itself live, and cannot be freed. At a given point in a progsaexe-
cution, areference is said to be live ifitaybe used by the program
at some pointin the future to access its target object. Githiques
typically use a conservative approximation of referelieeness
simply assuming that all references held in the registéasicsar-
eas, and thread activation stacks are live. Live heap abpet
those reachable (transitively) via live references; esfees held
in live objects are themselves live (transitively). Thiracing GC
algorithms operate by traversing references from knovats (eg
registers, globals, and threads) to heap-allocated ahjantl then
object-to-object for references held in those objects. oblects
(transitively) reachable from thmots are considered to be live.
Objects not transitively reachable are considered to bd,dmad
can be freed.

Applications typically allocate objects from the heap ugaome

GC threshold, at which point tracing is used to enumeratdithe as well as the Boehm-Demers-Weiser collector used as the bas

objects; the remaining objects are freed. The space comsbsne of our study. Section 4 describes our experimental framievaod

freed objects is recycled for use in satisfying future altgmn re- methodology. Results and observations follow in Section\e

quests. conclude with a discussion of related work in Section 6, asdra-
While GC incurs overhead in terms of extra instructions ab we mary of our findings in Section 7.

as cache misses, technology trends are increasing the tyapene

processor speed and memory latency and expanding on-cip ex 2. TRACING GARBAGE COLLECTION
cution resourcesd, functional units). These trends will make extra Tracing garbage collection algorithms can be cateqorinl i
cache misses more significant. Despite the overheads oft@&C, i 99 9 9 iteg
L . - two basic approachesnark-sweepollectors, andopyingcollec-
becoming increasingly prevalent, not just for Java andrattezlern K I X h firski
languages, but even for C-based applicati@us €ven the popular tors.. Mar ~SWeep co ectors operate in two p ases, Mirskimgr
! the live objects as they are traced, and then sweeping upnthe u

?ncgnsompllers now use GC internally for their memory manage- marked dead objects, gathering them onto free lists fomusehise-
' quent allocations. Copying collectogsacuatdive objects as they
1.1 Our contribution are discovered, copying them into a new heap space; deact®bje

In this paper, we focus on reducing the cache miss overhead of €Man behind in the old space, which can then be freed waileles

GC, specifically targeting misses incurred by tracing aities as 2.1 GC overheads
they enumerate the live objects. We analyze the performafitbe
portable and widely-used Boehm-Demers-Weiser garbadeceol
tor [6, 5], including Boehm’s own prefetching strategy feducing

GC cache misses while tracing [4]. Our results, obtainedivial-
lation of standard Java benchmarks, reveal the overheadaing

(up to 65% of elapsed time), and demonstrate the improvement
obtained using Boehm'’s prefetching approach (16% on aedrag
incremental/generational GC on GC-intensive benchmarks)

The keys to effective prefetching are knowindpat to prefetch
andwhento prefetch it. For GCwhat to prefetch is known: we
must trace the live objects of the graph, and their refereree
discovered during the trac&/hento prefetch is trickier: prefetch-
ing an object too early means it may be displaced from theecach
before we can trace it; prefetching too late exposes meratenty.
Thus, the key issue is timeliness. Prefetches can occuraanbp-
ject references are discovered, while an object is scanviggteas
tracing algorithms impose traversal orders that are oftéardnt
from that order.

Our experimental methodology uses simulation of Java bench
marks running on projected hardware to obtain detailedyaisl
of GC prefetching behavior. Our key observation is that Bo'sh
prefetching approach suffers from severe timing problemany
prefetches occur too early or too late. The reason is thétetes
occur essentially breadth-first (FIFO), while BDW uses Hepst
traversal (LIFO) to access objects. This difference in ongeim-
plies that the time between prefetch and access can beaailigitr
short/long leading to prefetches that are too late/earlgse on
our analysis, we devise and implement a new prefetchintegtya
which imposes limited FIFO processing over a small windowhef
BDW mark stack, so that the amount of tracing work performed,
and hence time elapsed, between prefetch and accessiisled
The size of this window can be tuned for memory latency, per-
mitting tight control over prefetch timeliness. Our new eggzh
yields up tothree timesthe simulated performance improvement 2 2 Generational GC
of Boehm’s strategy for GC-intensive benchmarks (27% om-ave
age), and achieves performance close to that of perfeatgirfe,
no misses for tracing accesses) for some benchmarks. Watida
our simulation results on current hardware, the new styatdgp
yields performance improvement (from 2% to 6% on average, de
pending on GC configuration), even though current hardwase h
shorter memory latency and tighter restrictions on the remab
in-flight cache misses than the simulated platform.

The overhead of tracing GC breaks down into two components:
(1) enumerating the live objectsdcing), and (2) deallocating the
dead objectsffeeing. These costs are inherent to tracing GC re-
gardless of whether liveness is captured explicitly, by kimay,
or implicitly, by copying. Freeing the dead objects in a dogy
collector incurs no real overhead, since freeing the old¢sps a
constant-time operation. This fact is sometimes cited asrgo-
ment against mark-sweep collectors since the sweep phase mu
examine the whole heap, whereas the cost of a copying collec-
tor is proportional to the size of the live data (ignoring theer-
head of copying the objects). Howeviazy sweeping [12, 4] re-
duces the asymptotic complexity of mark-sweep collectorhat
of copying collectors. Lazy sweeping effectively transfére cost
of the sweep phase to allocation, piggy-backing some smalliat
of sweep work onto each allocation request, sufficient toalisr
enough free space to satisfy the request. Moreover, becanse
of the swept space is itself used to satisfy the allocatiquest,
lazy sweeping exhibits better locality. Thus, the cost offkna
(lazy)sweep GC reduces to the cost of enumerating the lijestsh
as for copying collection.

Enumerating the live objects is thus the principal cost obgge
collection; tracing must complete fully before any objeanhde
freed. Moreover, it is memory-intensive since the refeesnoon-
tained in each live object must be enumerated and traveEsah
worse, the memory accesses incurred for tracing are ealnain-
dom: a given object may contain referencesmy other object in
the heap. Since application heaps are typically much ldhgerthe
capacity of the hardware cache hierarchy, tracing resultarge
numbers of cache misses. Tracing also displaces the afiptisa
working set from the caches and pollutes them with data net ge
mane to the working set; our results show pollution is notg bi
problem, even for incremental GC.

To reduce the intrusiveness of GC, notably extended pauses d
to GC, researchers have devised algorithms that exploibdeaph-
ic invariants in typical programs. One invariant is that tragects
die young. As a result, focusing tracing effort on the yolstgs-
jects in the heap is likely to yield a larger fraction of dedijeats
than from the heap as a whole. ThgsnerationalGC algorithms
[24] segregate objects by age (temporally, though not 1saciyg
spatially), and focus tracing effort on the youngest olgjeracing
1.2 Outline them more frequently than the older objects. All that is mekfibr
generational collection is a mechanism for tracking refees from
old objects to young objects, and treating those refereasdsC
roots (in addition to the usual roots) when tracing the yooipigcts

The remainder of the paper is organized as follows. In Se&jo
we describe the basics of tracing GC and its fundamentakcost

independently of the old objects. Tracing only the youngegan
tion reduces GC pauses, while usually yielding sufficieet fspace
for the application to proceed. If tracing the young objeftiss not
yield sufficient space, then GC can revert to a whole-heagtra

2.3 Incremental GC

Also to reduce intrusivenessicrementalGC algorithms inter-
leave tracing work with application execution. Using thenstard
graph analogy, the object heap is a directed graph, withctbpes
nodes and references as edges. The collector traces thealbdtdyg
of nodes in the graph from the rootStop-the-worldcollectors as-
sume that the object graph remains static while the colieciis.
In contrast, incremental collectors view the applicatioogoam as
a mutator of the object graph, that can arbitrarily transform the
graph before the collector has completed tracing it. As altebhe
collector must compensate for mutations that change thubadl-
ity of objects. Generally, it is safe to ignore objects |lgsarefer-
ence while the collector is tracing the graph — objects the their
last references will be collected at the next GC. More prolaligc
is the creation of new referencéem already-traced objects to an
object whose other references are overwritten by the mutafo
the collector never sees those old references then thetohikc
never be traced. Thus, incremental collectors requiretspmiza-
tion with the mutator.

Dijkstra’stri-color abstraction [9] serves as a useful basis for un-
derstanding synchronization approaches for incremengal @b-
jects in the heap are painted one of three colors:

Black nodes have already been traced (including all the refesence
they contain);

Grey nodes contain references still to be traced;
White nodes are untraced; at the end of tracing they are garbage.

Tracing is the process of partitioning the objects into blaad
white nodes. Tracing is complete when there are no grey nodes
nodes left white are garbage. Tracing correctness meawsryre
ing the mutator from writing references to white object®ihtack
objects without the collector knowing about it. There are pos-
sible approaches:

1. Prevent the mutator from seeing white objects; or

2. Inform the collector about creation of any reference from
black to white objects so that it can be traced.

The first approach imposesraad barrier on pointer traversals,
while the second requiresarite barrier on pointer stores. So
long as barriers are used to ensure correctness, incrernraciag
can proceed independently of the mutator. One approactypigg
backs a small amount of tracing onto each allocation request
ensure tracing progress is tied to mutator progress (asurezhs
by allocation). Alternatively, tracing can run concurigmith the
mutator in a separate thread or in parallel on a separategsoc

Incremental tracing minimizes intrusiveness by reducioi¢ec-
tor pause times, at the expense of synchronization oveshaadi
the churning effect of tracing on the memory hierarchy. Aga r
sult, while responsiveness for interactive or other (s@&fgl-time
activities may improve, overall throughput may suffer.

3. PREFETCHING IN GC

Boehm [4] was the first to apply prefetching techniques withi
GC, implemented within the Boehm-Demers-Weiser (BDW) col-
lector. We begin with an overview of BDW before discussingvho
it incorporates prefetching.

3.1 The Boehm-Demers-Weiser collector

The Boehm-Demers-Weiser (BDW) mark-(lazy)sweep collecto
is popular due its portability and language-independentepit-
omizes a class of collectors known @asbiguous rootgollectors.
Such collectors are able to forego precise information tbmats
and knowledge of the layout of objects, by assuming that aorgw
sized value is a potential heap reference. Any value thaigamb
ously appearsto refer to the heap (while perhaps simply having a
value that looks like a heap reference) is treated as a referethe
object to which it refers is considered to be I&he upshot of am-
biguity is that ambiguously-referenced objects cannoteneince
their ambiguous roots cannot be overwritten with the neweskd
of the object; if the ambiguous value is not really a refeeethen it
should not be modified. The BDW collector treats registetjcs
areas, and thread activation stacks ambiguously. If olgeciut
information is available (from the application programroecom-
piler) then the BDW collector can make use of it, but otheewis
values contained in objects are also treated ambiguously.

The advantage of ambiguous roots collectors is their inglepe
dence of the application programming language and comfilex
BDW collector supports garbage collection for applicasiaoded
in C and C++, which preclude accurate garbage collectioaumz
they are not type-safe. BDW is also often used with type-kafe
guages whose compilers do not provide the precise infoomati
necessary to support accurate GC. The minimal requireraénai
source programs not hide references from GC, and that cerapil
not perform transformations that hide references from GusT
BDW is used in more diverse settings than perhaps any otlter co
lector. As a result, the BDW collector has been heavily tuheth
for basic performance, and to minimize the negative impbatho
biguous roots [3].

The BDW collector supports generational/incrementalexibn
using a simple write barrier based on knowing which virtuahm
ory pages have been modified recently. For generational GI§, o
pages modified since the last collection can contain refe®to
objects allocated since that last collection. Treatingéhmewly al-
located objects as the young generation for generationah@ahs
tracing from the roots anahodifiedolder pages in the heap. BDW
interleaves incremental marking with the mutator, pigggiing a
little marking work onto every allocation. The amount of kiag
done is adjusted to avoid the mutator getting too far aheatbok-
ing, on the basis of bytes marked versus bytes allocated n\Wiee
incremental marking phase finishes, the only thing premgn8C
completion is the fact that the mutator may have createderfes
from black to white objects (as discussed above). BDW simply
treats all pages modified by the mutator since the start oKinmgr
as if they are grey, and completes tracing from those padesebe
permitting the mutator to run. This last “stop-the-worldarking
phase is usually relatively brief compared to the overait obtrac-
ing.

The BDW write barrier is implemented in one of two ways, de-
pending on the availability of support from the operatingteyn.
One approach is to use virtual memory page protection pviesit
to record page modifications [1]. This approach can be exgens
given the overhead of fielding protection traps from the apeg
system via user-level signal handlers to record updates. ofem
efficient, though less portable, alternative is to obtairyepage
information directly from the operating system'’s virtuaemory

LAmbiguous roots collectors are also sometimes referred¢or
servativecollectors, since they treat potential references coaserv
tively. However, the undecidability of variable livenesgans all
collectors are effectively conservative. We use the terrhiguous
roots to dispel such confusion.

Ensure that all objects are white.
Grey all objects pointed to by a root.
While there is a grey object g
Blacken g.
For each pointer pin g
If p points to a white object
Grey that object.

Figure 1: The BDW tracing algorithm

Push all roots on the mark stack, making them grey.
While there is a pointer to an object g on the stack
Pop g from the mark stack.
If g is still grey (not already black)
Blacken g.
For each pointer pin g's target
Prefetch p.
If pis white
Grey p and push p on the mark stack.

Figure 2: Prefetch-on-grey (PG)

page tables via system calls or access to per-process iafiorm
maintained in the pr oc file-system. BDW supports both ap-
proaches depending on the host system.

3.2 Prefetching in BDW

The BDW collector supports a rudimentary form of prefetchin
during tracing. The basic approach is to prefetch the tasfet
reference at the point that the target object is discoverdée grey.
An abstract formulation of the BDW tracing algorithm is givia
Figure 1 [4].

In reality, BDW maintains a tableeparatefrom the objects, con-
taining one mark bit per object. A mark bit value of zero cerre
sponds to a white object; a value of one indicates a grey akbla
object. A separate stack contains the addresses of all pjegts.
When an object is greyed its mark bit is set, and it is pushéd on
the mark stack. Blackening an object corresponds to rergavin
from the mark stack.

Having observed via profiling that a significant fraction bét
time for this algorithm is spent retrieving the first poingfrom
each grey object, Boehm [4] introduced a prefetch operatidhe
point wherep is greyed and pushed on the mark stack. The re-
sulting tracing algorithm, with concrete mark stack and 3ot
prefetch-on-grey (PG), appears in Figure 2.

Figure 3: Tree example

vations on how such problems may arise. As noted earlier, the
success of software prefetching in hiding cache miss laerie-
pends on timeliness. If a prefetch is issued too early, thewlata it
prefetches may be displaced from the cache by other accbsges
force its eviction, before the data is used. If a prefetctssied

too late, then the data will not be available in-cache whesrded,
exposing the miss latency.

Prefetch-on-grey is intimately tied to the depth-first ascerder
imposed by the stack-based BDW marking algorithm: prefetzh
curs when a node is pushed on the stack, while access occars wh
it is popped. The delay between pushing and popping a referen
is highly variable, and depends on the data structure beaogd.
Consider a tree data structure as illustrated in Figure Zcifg
from root object 1, BDW with prefetch-on-grey issues preties
in the order 3-2-4-5, but the stack-based BDW tracing aflgori
visits these objects in depth-first order 3-4-5-2. The pobfef 2
occurs early, but the access to 2 occurs late. If the worlopaed
in tracing 3-4-5 delays the access to 2 for too loiegthe prefetch
is issued too early) then the prefetched object 2 may beatisgl
from the cache.

3.4 Our improvement: buffered prefetching

An alternative approach might be to use a (FIFO) mark queue
instead of a (LIFO) mark stack, for breadth-first traverBakfetch
order would then be 2-3-4-5, matching the traversal orda@r42-
5. However, breadth-first search suffers from poorer logc#fian
depth-first search, tending to group traversal of unrelatgdcts
in a data structureef} cousins, rather than parents and children).
Also, prefetch-on-grey with breadth-first search stillfetg from
lack of control over timeliness: objects containing marfgrences
(such as large arrays) result in prefetching all the targefsre the
first target can be scanned.

Instead, we propose a new software prefetching approaaly usi

Boehm also permutes the code in the marker slightly, so that puffering (in software) to defer prefetching until grey eegnces

the last pointer contained igto be pushed on the mark stack is
prefetched first, so as to increase the distance betweemefetqh
and the load through that pointer. Thus, for every poiptéerside

an objecy, the prefetch operation gmis separated from any deref-
erence ofp by most of the pointer validity (necessary because of
ambiguity) and mark bit checking code for the pointers ciowetz

in g. Boehm notes that this allows the prefetch to be helpful even
for the first pointer followed, unlike the cases studied bk lamd
Mowry using “greedy prefetching” on pointer-based datactrires
[16].

In addition, Boehm linearly prefetches a few cache linesadhe
when scanning an object. Thesean-prefetchebelp with large
objects, as well as prefetching other relevant objects éndéta
structure being traced.

are popped from the stack. In effect, we use a hybrid of queue-
based (FIFO) and stack-based (LIFO) processing, by insango

a fixed-size window over references at the top of the markkstac
prefetching and processing references in the window in Flfeer.
The size of the window is tune-able with varying memory laten
(ie, larger window for longer latency). When a grey reference is
popped from the stack, we prefetch its target, and drop fieeaiece
into the software prefetch buffer. We pop and prefetch asyman
references from the top of the stack as will fill the buffer. &ithe
buffer fills, or when the mark stack is empty, we scan the dlgéc
the head of the buffer queue. Thus, at any given time, thermaxi
number of prefetch instructions in flight is limited to theesf the
prefetch buffer. Moreover, we scan objects from the préfbtdfer

in FIFO order. In combination, we thus retain a tight boundten

Boehm reported prefetch speedups between 1% and 17% for atime between issue of a prefetch instruction and its astmtigata

small set of C-based synthetic benchmarks and real applhsat

3.3 Observations on prefetch-on-grey

Before presenting our experimental evidence for timingbpro
lems with Boehm'’s prefetch-on-grey, we first make some ebser

access. Our results show that this algorithm eliminatesiyhed

2For this same reason, copying algorithms often clustetaglab-

jects together in depth-first order, to improve object liggPO,

22, 25].

Push all roots on the mark stack, making them grey.
Loop
While there is a pointer to an object g on the stack
If the prefetch buffer is full
Dequeue a pointer b from the buffer.
If bis still grey (not already black)

Table 1: Simulated hardware parameters
Processor 8-way issue, 300 RUU, 60 LSQ, 8 integer ALU
2 integer mul/div units, 2 memory ports, 4 H
ALUs, 2 FP mul/div units
8K/BK/8K hybrid predictor; 32-entry RAS, 8192

R

Branch prediction

Blacken b. entry 4-way BTB, 8-cycle misprediction penalty|
For each pointer pin b's target Caches 64KB 2-way 2-cycle /D L1, IMB 8-way 12-cycle
If pis white L2, both LRU, 32 L1 MSHRs and 32 L2 MSHRS§.
Grey p and push p on the mark stack. Memory Infinite capacity, 300 cycle Tatency
Pop g from the mark stack. Memory bus 32-byte wide, pipelined, split fransaction

Prefetch g and enqueue it in the prefetch buffer.
If the prefetch buffer is empty

Exit loop.
Dequeue a pointer b from the buffer.
If bis still grey (not already black)

cache blocks ahead). A side-effect of this optimal scafefrk
distance is that the second and third L2 cache blocks areavet ¢
ered by scan-prefetches. To eliminate cache misses whale sc

Blacken b.
For each pointer pin bs target ning these two blocks, we can issue two additional prefetcbee
If p is white each for the second and third blocks of an object, at the simnee t

Grey p and push p on the mark stack.
Continue loop.

Figure 4: Buffered-prefetch (BP)

as the PG or BP prefetch, depending on the algorithm. Inteffec
thesegap-prefetcheincrease the effective prefetch granularity for
PG/BP prefetches to cover the first three cache blocks of @etipb
they fill the gap between PG/BP prefetches and scan-prefetch
Our experiments show that gap-prefetches improve both RIG an
BP, so our experiments use gap-prefetching unless otremas-
tioned.

4.1 Experimental platform

cache misses in the marking code. Our revised algorithmaappe
in Figure 4.

Returning to the example of Figure 3, let us assume use of a
2-entry prefetch buffer. Beginning with object 1 on the ktabe

buffered-prefetch algorithm executes as follows: podgioh-en-

queue 1, dequeue-scan 1, push 2, push-pop-prefetch-en@,eu

pop-prefetch-enqueue 2, dequeue-scan 3, push-popgirafatu-
eue 4; dequeue-scan 2; dequeue-scan 4, push-pop-prefejubue

5, dequeue-scan 5. Considering simply the prefetches aas sc

from this sequence we have: prefetch 1, scan 1, prefetclefktph
2, scan 3, prefetch 4, scan 2, scan 4, prefetch 5, scan 5.

We modified SimpleScalar version 3.0 [2] to simulate an 8-way
issue, out-of-order processor. To simulate accuratelyithieg ef-
fects of cache misses, we incorporated support for sinauladf
Miss Status History Registers (MSHRs). SimpleScalar sitesl
Alpha binaries directly, including standard system calfigt we
added emulation of system calls that mimic OS-maintainegpa
level dirty bits for BDW incremental/generational GC. Theen

Despite reducing most cache misses in the marking code<as re head to maintain and deliver these dirty bits is not diresttgu-

vealed in our experiments below), this algorithm does delay

lated. As a result, our results give an ideal impression akimen-

cessing ofcache-residenobjects, since their references must now tal/generational executions, for which querying dirty ibfiorma-

transition through the buffer queue as well as the stackrbafey

tion costs nothing. Table 1 lists the default hardware patams

can be scanned. This may hurt performance. To study the im- we use for all experiments except for those we specify otlserw

pact of this deferral, our experiments also consider usafofm-
ing prefetches [11] that notify if the prefetch hits immedizted
the cache. If so, then the collector can scan the object inatedy

and avoid the overhead of managing the buffer. However, »ur e

periments show that delaying the processing of the blocksitsn
does not hurt performance.

4. EXPERIMENTS

Our experiments use the gcc-based static compiler for dmya (

to compile a set of standard Java benchmarks into staticaAlp
executables. We then simulate these benchmarks using e Si

pleScalar architecture simulator [2]. Our methodologyrissator-
based because detailed analysis of prefetch timing behsvimt
possible with live runs, even using hardware performanceies.
We compare several different configurations of the BDW ctie
with and without incremental/generational support andgtch-
on-grey(PG)/buffered-prefetch(BP). We use the defautipaters
for BDW as shipped with gcj, such as the free-space divisBD(F
used to trigger GCs and the GC rate variable that dictates whe
cremental marking should occur. All prefetches load intcchthe
as defined by the Alpha ISA.

To ensure best GC performance on our simulated machine, we

tuned the scan-prefetch distance for linear prefetched dgeng

4.1.1 Capitulating loads

As noted earlier, BP delays processing of blocks that hihen t
cache, which may slow down the GC mark phase. If tracing im-
mediately processes a block thtis in the cache without entering
the block into the prefetch queue, then performance maydwgpr
by not delaying dependent tracing and allowing additionairiap
of tracing work with earlier prefetchege(buffering will degrade
overall performance if all blocks hit in the cache). To seethkr

h deferral of tracing in BP hurts performance, we also sineuetiew

kind of informing load instruction [11] that we call eapitulating
load (c-load). A c-load is one that attempts the load opanatbut
which returns immediately if the access is a miss, indicathe
miss status with an additional output register operand ¢oldhd
operation. On a hit, a c-load returns the accessed data alitng
the hit status. Applications can use the status informat®a con-
dition, to choose whether to process the targeted blocleildad
hits, or to do something else if it misses. In our case, we Gan u
c-loads to decide dynamically whether to use BP-deferracirtg
of a non-resident object, or immediate tracing of a residbject.
We implement c-loads in the simulator to return hit statud @n
cache hit and miss status otherwise, and modify the marlodg c
to conditionallyprefetch (and buffer) objects that miss.

object scanning. Since both PG and BP use the same scanning

code, both benefit from this tuning. Trial-and-error meaments
led to selection of the scan-prefetch distance at 384 bitiesg L2

Table 2: Benchmark inputs

[SPECjvm98 I Java Olden
| Benchmark] Parameters| Benchmark] Parameters |
compress | Titeration bh -b 4096 -m
Jess Sstandard bisort -5 250000 -m
raytrace standard em3d -n 2000 -d 100 -m
db standard mst -v 256 -m
javac Sstandard permeter -T1I6-m
mpegaudio | standard pOWer -m
jack standard reeadd -120-m
Sp -c 10000 -m
voronoi -n 20000 -m

4.2 Benchmarks

For our experiments we use the standard SPECjvm98 bench-
marks [21] as well as Java versions of the Olden benchmaté& sui
[7, 8]. The Java Olden benchmarks are heap-intensive pragra
with large footprints that stress the memory system. We gsed
version 3.0, with optimization level @2, targeting Alpha Tru64
version 5, to compile and statically link the benchmarksncgi
Zilles [26] points out that the Olden benchmark health idfine
cient in both algorithm and implementation, making it umesen-
tative as a benchmark, we omit health from our results. Abss,
cause our simulator lacks support for Java threads, we otrtib
SPECjvm98. Instead, we use the single-threaded benchragrk r
trace, which mtrt invokes as its per-thread workload. T&blists
the benchmarks and their parameters for our experiments.

5. RESULTS

We now present our simulation results. Section 5.1 showsatve
speedup of Boehm'’s PG and our new BP, while also varying mem-
ory latency. Section 5.3 explores the effect of varying theHR
count for BP. Finally, we show the effect of using c-loadshoase
dynamically between BP-deferred and immediate tracing.

For completeness, we show results for three different GG con
figurations: whole-heap stop-the-worlié,(non-generational, non-
incremental), generational only, and incremental/gaferal. We
refer to these as STW, GEN, and INCGEN, respectively. We do
not consider an incremental/non-generational collecemabse it
is unlikely one would forego the benefits of generationalemtion
when the write barrier support needed for it is availablét igsvith
incremental GC.

5.1 Speedup

Speedups for PG and BP appear in Figure 5, for each of the
three GC configurations. To show the effect of increasing mem
ory latency, we report results for memory latencies of 308 an

Not GC-intensive GeoMean

0 300, PG
§ 300, BP-8
0 300, BP-16|
1 500, PG
@ 500, BP-16]

GC-intensive)

ittt

speedup (%)

S B g = S L 8 W S L= e R RN
2% (o ¢ R FTC @ o B & (@ P V@
P \? RN AN o X o e oV
RS & K S C;C/\“
(a) STW
80 GC-intensive| Not GC-intensive GeoMean
0 300, PG
. u 300, BP-8
60 0 300, BP-16
=Y 1 500, PG
S 0 500, BP-16
B 40 1
Q
Q
& | i
) HW T"m
0 ¢& (\\} o } \,ad es-%{ e\é‘«\"\{ @WI::SJ!\-‘!_‘}@ r:;;{ = } \“z“ ‘Q,sg o° ,j\\@ &
\qa'a% o @ ¥ Qe‘\@ & o Yo © 50‘(\‘) 6\\@‘)@ o \‘\@(\ o
<)
80 GC-intensive| Not GC-intensive GeoMean
0 300, PG
= u 300, BP-8
60 0 300, BP-16
=Y 1 500, PG
S 0 500, BP-16
? 401
Q
Q
&
20| k
o/l 1 dﬂ

t t t t it t t 5 t
RN ec) e o < & & NS A\
K ¥ e‘@e W ‘a\;\@ Na SN
?

SR T @ e ©
O ¢ o N N
o 7 5 F @Q@Zo\“\@ o

8
oot (O
@ o o

(c) INCGEN

Figure 5: Speedup

memory latency, normalized against a non-prefetching lbase
with 500-cycle memory latency. The mean speedups représent
geometric mean of speedups for the GC-intensive benchraacks
all benchmarks, respectively.

We see that BP performs better than PG in most cases. For 300-
cycle memory latency, BP-8 achieves 28%, 24%, and 19% mean
speedups on GC-intensive benchmarks for STW, GEN, and IN-
CGEN, respectively. BP-16 achieves 28%, 23%, and 20% mean
speedups, respectively. These speedups are substahiigtigr
compared to PG, with 21%, 17%, and 13%.

With increased latency of 500 cycles, because the L2-caibge-
penalty consumes a larger portion of total execution tinogh lal-
gorithms achieve higher speedups, though BP-16 outpesf&i@
BP-16 (fifth bar) achieves 40%, 32%, and 27% mean speedups on

500 cycles. The graphs show elapsed time speedup as IC,ercemgsc-intensive benchmarks for STW, GEN, and INCGEN, respec-

age improvement over the respective base case withouttgnefe
ing. Benchmarks are sorted from left to right in decreasirdgno
of GC-intensiveness measured as the proportion of total tivat is
spent tracing. We compute mean speedup for benchmarksatvet h
high GC-intensiveness (greater than 5% of total execuiioa)tin
order to focus on benchmarks for which prefetching in thekmar
phase can have any significant impact. Note that, for themen-
tal/generational collector, marking is interleaved withtator ac-
tivity, but that GC-intensiveness considers only markingrbeads.
Each set of bars represents a benchmark. Within a set, the firs
bar represents PG. The second and third bars represent BP wit
queue sizes of 8 (BP-8) and 16 (BP-16), respectively. Thé firs
three bars are for 300-cycle memory latency, normalizednaga
a non-prefetching base case with 300-cycle memory latefog.
fourth and fifth bars represent PG and BP-16, both for 500ecyc

tively. These are substantially higher than for PG (fourén)p
which achieves 27%, 21%, and 16%. This shows that BP-16 is
more effective in reducing cache misses for longer memaenty
than PG.

Trends across GC configurations are similar, though we hate t
GEN and INCGEN, which both collect only a portion of the heap
at each GC cycle have less opportunity for speedup, sinckimgar
consumes a smaller fraction of total time. Also, note tha@@®EN
which need not complete a full GC mark cycle before the bench-
mark terminates, has correspondingly less opportunityriprove-
ment.

Because trends among GCs are similar, we focus our discus-
sion for individual benchmarks on GEN. With 300-cycle latgn
treeadd, voronoi and bh obtain speedups of 60%, 42% and 32%,
respectively, for BP-8, compared to 39%, 21% and 22% for PG.

Increasing the latency to 500 cycles causes treeadd, viemaddoh

to obtain higher speedups of 84%, 61% and 43%, respectively f
BP-16, compared with 47%, 25% and 28% for PG. When compar-
ing ratios between these speedups, treeadd, voronoi archigvea
15%, 13% and 8% better speedup for BP-16 going from 300- to
500-cycle latency, compared to the lower 6%, 4% and 5% for PG.
Because the mark phase is not a significant fraction of tatdie

tion time for compress, mpegaudio, bisort, tsp and powefepeh-

ing does not improve performance for these benchmarks. 8¢ 30
cycle latency, db and perimeter perform better for PG, aiinie

speedups of 11% and 32%, compared to 10% and 28% with BP-

8. We discuss these degradations in the next section.
the benchmarks we simulated has performance lower thaoiits n
prefetching base case.

5.2 Detailed comparisons

fetching improves javac from 10% to 17%, raytrace from 19% to
28%, treeadd from 8% to 39% and voronoi from 17% to 24% in
STW GC. Except for bh in GEN, and javac, jess, and jack, in INC-
GEN, which see 1-3% degradation, most benchmarks with PG gai
or maintain speedups with the addition of gap-prefetchi&gni-
larly, BP-16 (sixth bar) also benefits from gap-prefetchstgowing
reduction in execution times from BP-16 without gap prdieig
(fifth bar).

Now, compare PG (third bar) with BP-16 (sixth bar). As shown
earlier, BP-16 performs better than PG. Figure 6 shows Hestet
improvements come from the reduction in marking overheauin-C

None ofparing these prefetching algorithms to their perfect pobfieg cas-

es, PG's performance is often far away from PG perfect (fourt
bar), while BP-16's performance is often closer to BP-1&qur
(seventh bar). Summarizing, BP-16 achieves 93%, 96% and 95%
of its potential across all benchmarks in STW, GEN and INCGEN

We now show detailed comparisons between PG and BP-16 for configurations, respectively. In contrast, PG achievey 8605,

execution times, and statistics for STW, GEN, and INCGEN GC
configurations.

To show the potential performance improvements for differe
prefetching algorithms, we implement an oracle simulatidrich
we call perfect prefetching. This treats the matching laadef/-
ery prefetch as if it is a hiti€, as if the prefetch was perfectly
timed). The implementation simply tags the target cachekblo
for each prefetch, and makes that block immediately aviailab

83% and 87% of its potential, respectively.

One interesting observation in Figure 6 is that perfect BRér-
forms better than perfect PG in many cases. We attributetahis
improved instruction-level parallelism for BP-16's hydbrilepth-
first/breadth-first traversal (strict depth-first must éhdspendent
pointers while breadth-first follows independent siblirggrpers).

Table 3 shows the timing of prefetching, categorizing pkfes
as: late if the load latency experienced by the corresponding de-

L1 and L2 caches when a demand-load requests it. The tags arenand loads are larger than the L2 latentigely if the load la-

cleared after the matching demand-load. Because the tagssan-
tained separately from the cache simulation data strugtthrey are
not affected by replacement events in the caches. Noti¢g#ra
fect prefetching does not show the potential for elimingibache
misses in marking, because there are misses that are naedove
by prefetching, including misses that occur because treihe
blocks are evicted after first use despite being prefetclagiibe
We only show perfect prefetching for PG and BP-16, both with
gap-prefetching.

Figure 6 shows normalized overall execution times. Eaclofset
bars represent a benchmark. Within a set, the first bar sheosvs e
cution time for the non-prefetching base case without pecafag.
The second and third bars represent PG without gap-préfigtch
and PG with gap-prefetching, respectively. The fourth thaws
perfect PG. The fifth and sixth bars correspond to BP-16 witho
gap-prefetching and BP-16 with gap-prefetching. The stvbar
shows perfect BP-16. All the bars are normalized to the saime n
prefetching base case (the first bar).

tency experienced is smaller than the L2 latency, eady if the
prefetched block is neither in-flight nor in L1/L2 caches. put
things in perspective, too early prefetches typically moore pen-
alty because they fully expose memory latency to demandsload
The table shows the percentage of all prefetches occumiegch
category for each benchmark/GC combination.

Table 3 shows that a large fraction of prefetches using P@iare
ther early or late, whereas BP-16 successfully minimizely/ste
prefetches to increase the percentage of timely prefetdnethe
case of GEN (Figure 6(b)), javac's timely prefetches insesiaom
68% with PG to 92% for BP-16. Similarly, jess increases frd#i7
to 94%, voronoi increases from 76% to 96%, and treeadd inesea
from 91% to 96%. In db’s case, timely prefetches do not ireeea
significantly and BP-16 pays the price of instruction ovedhee-
sulting in performance degradation.

Table 4 lists the GC statistics for PG and BP-16. The first col-
umn shows execution time for the non-prefetching base Cese.
second column pair shows instruction overhead for PG and ®P-

Each bar has two parts: the lower shaded part represents mark expressed as a percentage over the non-prefetching baseltas

ing overheadig, the portion of execution time that prefetching di-
rectly impacts) shown as a fraction of total execution tinfde
upper white part corresponds to the non-marking portiorxete-
tion time (including both mutator code and sweeping).

From the first bar in Figure 6, we see that marking overhead is
a significant portion of total execution time for many beneinks.
Using GEN as an example, marking constitutes as much as 70% fo
voronoi, 60% for treeadd, 53% for javac, and 44% for jess this
significant overhead that represents any opportunity f@raving
performance using prefetching during marking. Sectionrseh-
tions that prefetching cannot improve compress, mpegabiiort,
tsp and power because they are not GC-intensive. Figures ill
trates that their GC marking overhead is less than 5% of &xtal
ecution time. Other benchmarks have marking overhead mgngi
from 17% to 70%.

We now turn to the impact of gap-prefetching. Comparing PG
without gap-prefetching (second bar) versus PG with gafepch-
ing (third bar), there is clear improvement. For examplg-pgee-

third column pair shows maximum heap size for PG and BP-16,
respectively. Note that PG and the base case are the sanee sinc
they trace objects in the same order. BP-16 can differ siifter-d
ent tracing orders can produce differences in GC behavicase
of BDW's treatment of ambiguous roots. The fourth columrr pai
shows the percentage increasedm-markingtime with respect to
the base case for PG and BP-16, respectively. The fifth cojaim
gives the number of times the collector is invokéel umber of
mark phases) for PG and BP-16, respectively. Table 4 shaats th
BP-16 tends to have higher instruction overhead than PGusec
of the extra code to manage the buffer. Because BP-16 elieina
more cache misses than PG, BP-16 is able to absorb the cost of
these extra instructions and still improve performance.
Looking at maximum heap sizes we note that the base case and
PG always have the same traversal order so their heap fotstpri
are always the same. Similarly, STW collectors always [getee
whole heap without interleaving mutator activity, so thedaase,
PG and BP-16 all have the same footprint. Differences exikt o

GC-intensive| Not GC-intensive

=
=)

o
=)

[non-marking time|

M Base
L 1 PG w/o gap [
H PG
@ PG perfect
m Il BP-16 w/o gap il
O BP-16
W BP-16 perfect

o
>

o
~

elapsed time (normalized)

o
N

= , , ,
(reeadd voronoi hh Javac jess perimeter I em3d db jack bisort tsp ' ower compress " mpegaudio

o

GC-intensive| Not GC-intensive

[
=)

o
=3

] non-marking time

M Base

L [0 PG w/o gap [
PG

@ PG perfect
= W BP-16 w/o gap il
O BP-16

Il BP-16 perfect

elapsed time (normalized)
o o
S D

o
N

treeadd voronoi bh Javac Jess perlmeter mst em d raytrace db jack bisort tsp ' power ' compress " mpegaudio

(b) GEN

perimeter mst em3d db jack bisort f tsp f power compress }mpegaudio

(QINCGEN
Figure 6: Normalized execution time

o
o

GC-intensive| Not GC-intensive

[
=)

o
©

] non-marking time

M Base
L [0 PG w/o gap [
| PG

I
a

elapsed time (normalized)
=4
5y

o
N

treeadd K

o

Table 3: Prefetch timing

STW GEN INCGEN
PG BP PG BP PG BP
E T L[L|E T L[L|E T L[L|[E T L[L[E T L[[|E T T

tfreeadd I 91 8] 3 9 1| 1 91 8| 3 97 1| I 9T 8| 4 9 1

VOronoi 6 74 20| 1 97 2| 8 76 16| 2 96 1|10 76 14| 3 96 1

bh 12 73 16| 5 90 511 76 13| 6 92 2112 75 13| 8 90 2

javac 7 8 11| 5 93 2|24 68 8| 6 92 1|27 66 7| 7 92 1

jess 8 76 16| 2 88 10|24 71 5/ 3 94 3124 72 5/ 3 94 4

perimeter | 11 84 5|11 8 3|11 84 4|12 8 2|10 8 4|12 87 2

mst 9 8 5| 8 8 8| 6 9 4| 6 8 5| 8 8 4| 9 8 6

em3d 18 69 13|10 65 25|16 70 14| 9 70 21|18 73 9|11 73 17

raytrace 8 8 6| 5 92 3|27 69 4|10 8 4|26 70 4| 9 8 4

db 7 89 41 9 86 6|11 88 110 87 3| 8 88 4111 86 3

jack 8 8 10| 1 76 23|10 80 10| 2 92 6|10 80 10| 2 91 7

bisort 3 89 8] 4 90 712 92 6] 3 93 41 2 92 6] 5 92 4

tsp 7 79 13| 2 65 33| 4 8 10| 2 81 17| 4 8 10| 2 79 20

power 14 81 4|10 78 12|19 73 8| 9 79 12|16 76 7| 7 82 11

compress | 15 70 15| O 43 56(10 75 15| 1 65 33| 9 76 15| 2 67 32

mpegaudio| 14 68 19| O 36 64| 3 79 18| 1 61 38| 3 82 15| 2 66 32

E = %early, T = %timely,L = %late
(E+L+T =100%

for BP-16 when mutator activity is interleaved with part@aCs a larger reduction in L2 misses. From this table, we can sae th
(both GEN and INCGEN); heap footprints can differ somewhat BP-16 is more effective than PG in reducing cache missess Thi
because BP-16 traverses the generations/increments ffeeedt data confirms our expectation that BP-16 reduces L2 misses-to
order than base/PG. prove execution times.

The non-mark column shows that times spent in the applicatio
(mutator) and for sweepinge not marking), do not vary much 5.3 Effect of number of MSHRs
from the base case. In modern processors that support non-blocking loads, tine- n
Table 5 shows L1 and L2 demand-load miss rates in the GC ber of MSHRs limits the number of outstanding memory recaiest
marking code for STW, GEN and INCGEN. To put things in per- Because BP-16 increases the number of memory requestgtin-fli
spective, because the number of L2 accesses is the numbér of L by issuing prefetches, fewer MSHRs may result in decreased p
misses, the reduction in both L1 and L2 miss rates actudlgats formance. The question is whether BP-16 is still worthwhiiéh

Table 5: Miss rates in the marking code (%)

STW GEN INCGEN
LT L2 LT L2 LT L2

Base PG BP-1tBase PG BP-16Base PG BP-16Base PG BP-16Base PG BP-16fBase PG BP-1b
treeadd 41 I 28 7 2 41 I 27 7 2 5 1 2 16 5 1
vVoronoi 5 4 2| 26 10 4 5 4 2 24 9 6 6 5 3] 18 8 5
bh 7 5 4/ 28 9 3 9 6 3] 30 12 11y 10 7 4 29 13 10
javac 6 5 4/ 25 7 5 8 7 4| 21 14 9 8 7 5/ 19 14 9
jess 7 4 3] 27 8 4 7 6 4| 21 13 5 8 7 4/ 17 13 6
perimeter 5 1 2 25 9 2 5 1 2| 23 7 2 5 1 2| 20 5 1
mst 4 2 1| 25 10 2 4 2 2| 18 6 2 5 2 2l 11 5 2
em3d 5 3 2| 32 15 3 6 2 2| 26 13 2 6 3 2l 19 11 2
raytrace 6 2 2| 24 4 2 6 4 3] 21 8 5 7 4 3] 17 8 6
db 6 3 2l 21 7 3 6 3 2| 18 6 3 7 3 3] 15 4 3
jack 9 4 3] 29 14 4 9 6 4, 17 9 4 9 6 4/ 15 9 4
bisort 5 1 1| 29 15 2| 5 1 1| 20 10 2 5 2 2| 11 6 2
tsp 9 2 1| 31 25 5 8 2 2| 16 12 2 8 2 3] 12 9 2
power 7 3 2| 27 13 2 8 4 3| 15 7 3 9 5 3] 10 4 3
compress 10 4 1 37 29 14 10 3 3| 33 27 77 10 3 3| 27 22 7
mpegaudiq 11 4 1| 39 32 14 11 3 3| 28 23 5 10 4 3] 18 15 5

Base = non-prefetching, PG = prefetch-on-grey, BP-16 =ritB¢éuffered-prefetch

___GC-iptensive

[y
=

t GC-intensive
[[1[]

L 0 non-marking time|
M W 32, Base Il
1 32, BP-16

o
@

marking portions of execution. However, even on a machirth wi

MSHRs are exhausted, which happens in both marking and non-

elapsed time (normalized)

o
o

o
by

o
N

=4
o

W 16, Base
o 16, BP-16

8F T
o 0‘0“

R

o
L
A ¥ @““

@ T

\e‘ ENT ey
O o ¢

(@) STW

“\50‘\ e

«©

e

@Q

ad

O
N
o
o

only 16 MSHRs, BP-16 is able to achieve speedups that are@omp
rable to those achieved on a machine with 32 MSHRs. This shows
that BP-16 does not require a large number of MSHRs to achieve
its performance benefit. Because the BDW GC uses many instruc
tions to mark an object, BP-16 allows the prefetch to suffitye
overlap memory latency with the processing of 16 objectenef/

the loads to these objects hit in the cache. As a result, B#o&6
not rely on overlapping many prefetches to reduce cacheesiiss

5.4 Effect of delaying processing

C-intensive| N¢

[y
=
i

t GC-intensive
[[]

O non-marking time|

o
@

delaying processing of blocks that hit in the cache. We nom-co
pare the performance of BP to a conditional BP algorithmtsat
N HL ‘ c-loads, to see if deferring tracing via the prefetch buffarts
PR performance. As a reminder, a c-load notifies the CPU abaut th
hit/miss status of a block. The program uses this statusrirdtion
to choose between processing the block if the load hits aguBP
if the load misses.

Figure 8 shows execution time normalized to the non-prifetc
base case similarly to the earlier graphs. The first bar slexws
cution time for the base case; the second and third bars skow e
ecution time for the BP-16 and conditional BP-16 using aina

respectively. We see that c-loads performs similarly to Bits
LT THTTTHT shows that deferral of tracing through the prefetch buffesinot
I hurt performance. In some cases, c-loads perform worseBRan
We attribute that to the overheads of additional instruxtiand
branch mispredictions.

5.5 Effect of tracing pollution
As mentioned in Section 2.1, GC tracing may pollute the cache

o
»
I
I
I
I

elapsed time (normalized)
o o
N >
T
T
T
T

SR
2 T
o (&e@

=4
s 2

o c\}v‘\ e e \e‘{ NS
e,?p(\ \,o“’“ oY Qe‘\ﬁ\e o

(b) GEN

C-intensive r\lioﬁ%-iﬁtensive i
O non-marking time|

W 32, Base M
0032, BP-16
W 16, Base H
O 16, BP-16

[y
=
i

o
@

o
by

elapsed time (normalized)
o
>

o
N

=4

A

S
© & ¢
\‘eae(\ 0 o =

ey
@ & o <&°
@‘!\‘ ¥ QOG\Q o

a“‘ 5%{ \e‘{ 5\{ N
o g o«

(c) INCGEN

Figure 7: Varying the number of MSHRs

fewer MSHRs. In this section, we vary MSHR count, considgrin
32 and 16 entries for both L1 and L2 cache.

Similar to the previous section, Figure 7 shows normalized e
cution time. Again, GC marking overhead appears as a fractio
total time. The first and second bars show execution timehfer t
base case and BP-16 with 32 MSHRs. The third and fourth bars
show execution time for the base case and BP-16 with 16 MSHRs.
All the bars are normalized to the same base case with 32 MSHRs

We see that both the base case and BP-16 have longer execu:
tion time with only 16-entry MSHRs. This trend is not surpris
ing because the machines are more exposed to cache misses whe

tracing pollution, we simulated an idealized machine ttet two
L2 caches, each with the same size/associativity as for éise b
case. The simulator accesses both L2 caches for each L1butss,
pollutes only one of the L2 caches with tracing accesses.sithe
ulator treats an access that hits in either L2 cache as alhiesun
benefits from tracing locality but does not suffer from tragpol-
lution. Table 6 shows the resulting speedups for the bagevelasn
tracing pollution is avoided in this way. We see only 2-3%ralle
improvement for GC-intensive benchmarks. This shows tlaat t
ing pollution is not a problem for a machine with a large L2toac

As mentioned in Section 3.4, BP may cause extra overhead by

with data not needed by the mutator. To expose the overhead of

S10 GC-intensive | Not GC-intensive
Table 4 GC StatIStICS E] non-marking time|
< 0.8 H
Cycles| 1nsn. | Max. heag non-mark| _ GCs s EE?’ES
(x10°) | overhead| (MB) time (count) 3%
(%) overhead Soa HITHTH
(%) i
Base PG BP-1§ PG BP-1§PG BP-14 PG BP-1 Che
treeadd 05] 2 15[44 44 0 -11 10 10| 0.0 JE R S
voronoi 1.7 2 7| 33 33 -1 -3| 15 15] o O o o«
bh 10.8| 2 5/ 5 4| 1 1/335 33§
javac 63 1 4/31 31 1 1|37 37 (a) STW
jess 5.0 2 3| 7 7 2 41233 233
e | 01l s 65 8o a5 5 g ol
em3d 04| 1 1| 12 12| O o 7 7 Sos
raytrace 38| 2 5/ 11 11 1 1| 64 64 5
> db 05 2 5/ 15 15 O ol 6 6 50°
£ jack 6.1 1 1| 3 3] 0 -2|285 28§ Eo,a
» [bisort 150 0 o] 7 710 O 5 5 2
tsp 09/ 0 o 2 2 0 0| 5 5 £02
power 71 0 0| 3 3] 0 0| 30 30 0.0
compress 12| O 0| 16 16| O 0| 6 6
mpegaudid 31 0 ol 4 4/ 0 o 2 2
treeadd 0.6] 2 16] 44 a4 2 1] 28 28 (b) GEN
voronoi 17| 2 5| 33 33 O 0| 43 43
_bh 183 % g 42 43 8 '% 6?3 6763 S10 GC-intensive | Not GC-intensive
javac . g
jess 56| 2 3] 5 5 1 -1/663 665 Sos
perimeter 0.7 4 7| 28 28 0 1| 26 26 M
mst 0.1 4 9] 5 5| -1 -1| 16 16| g
em3d 04| 2 2| 13 13 0 A1) 21 21 =04
raytrace 28| 1 2| 8 8l 1 1/163 163 202
= db 0.5 2 12| 15 15/ O 0| 12 12 3
| jack 6.1 0 1| 3 3] 0 0/588 601 00
O[bisort 151 0 O] 7 7] 0 O 17 17
tsp 09| O 1l 2 2l 0 -1| 16 17
power 7000 0 2 2/ 0 o8 88 (c) INCGEN
compress 12| O 0| 16 16| O 0l 10 10 . . .
mpegaudio 3.1] 0 0| 4 3| 0 0| 3 3 Figure 8: Impact of capitulating loads
treeadd 04] 2 15] 42 411 0 2] 11 11
vVoronoi 13| 2 3| 39 371 2 1| 18 17,
bh g-g % 2 52 581 g % 333 4??2 Table 6: Speedup without tracing pollution (%)
Javac . STW | GEN | INCGEN
jess 51 2 3| 6 6| 4 -1{410 404 freeadd > T >
perimeter 0.7) 4 4| 29 29 0 1| 19 19 VOronoi 4 3 3
mst 01 3 6| 5 5 0 0| 12 12 bh 7 1 2
em3d 04 1 1| 12 12 0 0| 16 16 javac 5 3 4
Z | raytrace 3.0/ 1 111 11 1 0|127 127 jess 7 5 3
o|db 05| 2 8| 15 15 0 ‘1| 8 8 perimeter 2 2 2
Oljack 59/ 0 2| 5 4/ 0 -1/403 459 mst 4 2 4
Z bisort T4 0 0] 6 770 0 © 38 em3d 1 1 1
tsp 09| 0 ol 2 2| 0 -1 11 11 raytrace 1 1 2
power 7.0 0 0| 2 2| 0 o| 77 75 db 1 1 1
compress 12, 0 0| 16 16 O ol 7 7 jack 2 2 1
mpegaudiq 31 0 ol 4 4/ 0 o 3 3 BiSort 0 0 0
Base = non-prefetching, PG = prefetch-on-grey tsp 0 0 0
BP-16 = 16-entry buffered-prefetch power 0 0 0
compress 0 0 0
mpegaudio 0 0 0
5.6 Liveruns g(é?mg]swe 3.2 2.0 2.4
We have validated our simulation-based results by runrtieg t Overall ‘ 21 ‘ 14 ‘ 1.7 ‘

benchmarks on a real machine. The platform used is an Apple
G5 PowerPC 970 (see hardware details in Table 7), running 32-
bit PowerPC Linux 2.6.3 (with benh patches) in single-usede

Table 7: Live hardware parameters

We compiled the benchmarks using gcj 3.2.3, and ran the BDW | Processor %’ygﬁi;iﬁ%ﬁgﬂeﬂ??tv 1.8GHz, 8-way issue, 200 max-
collector in its out-of-the-box STW configuration, varyiagly the Caches | 64KB direct-mapped ”?S”ucnon [T, 37KB 2-Way assocja-
free-space-divisor (FSD), and adding prefetching for PG BR tive data L1, 512KB 8-way unified L2, 8 L1 and 8 LP
using the PowerP@cht “data-cache-block-touch” instruction to MSHRs

prefetch into L1. Because memory latency for current mahin Memory | 512MB

is less than what we simulated, we found that tuning the fiefe Prefeich | Prefetch ino L1 usinglchtinstruction

buffer for size 4 (BP-4) produced best results.
Speedups with FSD 3 (the BDW default used in our simulations)
for PG and BP-4, and with FSD 10 for PG and BP-4, are shown

obtain after each collection cycle as a fraction of totalghse.

Thus, FSD 3 (the BDW default) states that GC should free up a

in Figure 9. The FSD parameter to the BDW collector contrioés t third of the heap at each GC, expanding the heap as necessgry o

rate of GC by stating the ideal free-space that a given GCldhou

10 _ _GC-intensive | Not GC-intensive
T LT TH T
£ [non-marking time
] Il FSD 3, Base
£0.6 HH —] FSD 3, PG — H
Q Il FSD 3, BP-4
£ 3 FSD 10, Base
g 0.4 M i M FSD 10, PG i n
8 3 FSD 10, BP-4
&o2 H H H H H H
00 treeadd Voronoi bh 7javac jess perimeter em3d raytrace db jack ~bisort 15; = po 75" = compress f mpegaudio
Figure 10: Normalized execution time: live runs
20 GC-intensive|Not GC-intensive GeoMean|
Table 8: GC statistics: live runs
€ 8 FSD 3, B Time | Max. heap | non-mark GCs
2 B FSD 10, B (s) (MB) time (count)
810 overhead
g | (%)
0 IJ: o ":JI:L": IJI} =, ']: nf e 'I: -1 Base| PG BP-4 PG BP-4| PG BP4
) S & o F o oP O o P o O N treeadd 0.4 20 20 1 21 5 5
S T T T e @ o voronoi 21|21 20| O 2| 8 8
; . - i bh 81| 11 11 0 -5 58 58
Figure 9: Speedup: live runs javac 279 24 1l o 2 19 19
jess 7.2 8 8 0 -2 63 63
perimeter 05| 15 15 0 6 4 4
to achieve this goal. The higher the FSD, the more frequehdy mst 0.1 2 2 0 4 1 1
collector will run. In effect, the FSD parameter controle thade- em3d 061 8 81 0 0| 3 3
. . raytrace 6.8 9 9 0 -1 24 24
off of space (smaller heap sizes) for time (more frequeniecel | db 07! 10 10| 0 1 3 3
tions). Any benefits obtained from prefetching while magkinill 2 | jack 184.8| 6 6 0 0| 40 40
be more pronounced with more frequent invocations of thiecel L | bisort 1273 3] O o 2 2
tor (ie, higher FSD) tsp 091 2 21 0 0p 1 L
» higher . o o power 88| 3 3| 0 o| 8 8
The superior performance of BP over PG is evident in Figure 9. compress 1.7] 13 13| -1 -1 5 4
Indeed, slowdown predominates for PG at both FSD 3 and FSD 10 mpegaudio| 3.8 4 4 0 0 2 2
(first and third bars), showing marginal mean slowdown at BSD treeadd 0871 18 87 0 18] 16 16
(-0.19% for GC-intensive benchmarks and -0.08% overat)rao ‘éﬂrono' ﬁg 12 12 8 g ﬁi 227%
i -0.79% GC-intensive and8%h5 i ' ’
ticeable slowdowns for FSD 10 (-0.79% i javac 302 15 14| o ol 59 67
overall). In stark contrast, BP-4 (second and fourth bansivs jess 10.1| 3 3 0 -1|300 301
noticeable mean speedup for both GC-intensive benchmaudks a perimeter 08| 15 15| 0 61 15 15
ll, with marginal speedup for FSD 3 (1.57% GC-inteesi mst S B
overall, with marginal speedup for (1.57% -inteasiv em3d 07! 8 gl o ol 11 11
and 1.17% overall) but significant speedup at FSD 10 (6.25% GC | 5 | raytrace 89| 4 5 0 0| 125 117
intensive and 4.47% overall). a dbk 0.7 10 10| O -1 8 8
Detailed comparisons between PG and BP-4 for normalized ex- | { Jt‘;j}(s:ort 18?'3 g 2 8 8 118 1165
ecution times appear in Figure 10. Again, we highlight tlzetion tsp 10 1 1 0 1 5 5
of total execution time spent in the marking phase of GC orctvhi power g% 1}1 1}1 8 8 42 48
H i 7 R compress .
prefetching has impact. The first three bars give results R&D 3 mpegaudio| 38| 4 2| o 0 5 5

for the base, PG and BP-4 configurations, while the fourtbubh
fifth bars show results for FSD 10. For all benchmarks, BP-4 al
ways improves mark time over the base case, though in sorae cas
we see increased total execution tinig Slowdown) despite the
reduction in mark time. We attribute this to pollution etleof
marking on sweeping and the mutator, in contrast to our sitiur
results. Note that this observation is consistent with thrikation
results in Section 5.5 which show some benchmarks gainirtg up
7% improvement when pollution is avoided.

6. RELATED WORK

We focus discussion of related work on software-based ffefe
ing techniques for linked data structures, noting also Kistence
of a vast literature on hardware prefetching and array priefe
ing that is not directly related to our work. Prior work fonkied
data structures has focused on general techniques forwngrac-
cesses bgeneralprograms. Some appjump-pointertechniques,
which place prefetch hints in the form of object pointershivithe
linked data structures [16, 17, 18, 7]. Thus, for examplénked
list node might contain additional pointers to nodes beysintgply
the next node in the list, in addition to its own data payldathen
traversing the list, it is then possible to prefetch someoebdes

ahead of the current node. Automatic derivation of jumpates
and placement of prefetch instructions by optimizing cderpiare
important contributions [16, 7]. Other software technigjhave not
relied on such support [15, 19, 14, 23].

In comparison with jump-pointer prefetching approachest th
use a queue to remember application data-access orderbemd t
construct a prefetch order from the queue, with our appraeeh
use a queue to remember the prefetch order and then latergtins
the data-access order from this queue. The reason is thajan-a
eral pointer-based program one cannot change the datasacce
der, but only the prefetch order. Here, we change both datasa
order and prefetch order, giving us more control over timiFigus,
in contrast to prior work that addresses general programshtain
detailed analysis of prefetching for a particular algaritmamely
tracing GC, and use that analysis to drive redesign of tharititgn
for significant performance improvement.

7. CONCLUSIONS [9] DIIKSTRA, E., LAMPORT, L., MARTIN, A., SCHOLTEN, C.,AND

Memory accesses made during garbage collection (GC) éxhibi fggﬂf{;'coonm'fﬂ3;{'ﬁgca&bg?fliﬂ'ffﬂfgégﬁ”gegse_rg% in
significantly less locality than typical programs and inconsid- [10] Gogume J DY B .STEELE R.G 'AND B’RACHA G'The
erable overhead due to cache misses. Using simulationsof st Java Lané]ua’ge épeéificatipsécona ed. Addison-Wes’Iey, 2000.
dard Java benchmarks on a projected hardware platform, umel fo [11] HOROWITZ M., MARTONOSI, M., MOWRY, T. C.,AND SMITH,

that as much as 60% of program time may be spent in tracing M. D. Informing memory operations: Memory performance

in the Boehm-Demers-Weiser (BDW) garbage collector. While feedback mechanisms and their applicatioh&M Trans. Comput.
Boehm’s prefetch-on-grey technique for BDW reduces thisrov Syst. 162 (May 1998), 170-205.

head by 16% on average with incremental/generational GG@r [12] HuGHES, R. J. M. A semi-incremental garbage collection algorithm.

Software—Practice and Experience, 21 (Nov. 1982), 1081-1084.
[13] JoNES, R.,AND LINS, R.Garbage Collection: Algorithms for
Automatic Dynamic Memory Managemetiley, May 1996.

intensive benchmarks, our results showed that prefetegren is
less than ideal. Further analysis revealed that prefetegrey suf-

fers frc_)m lack of timeliness — many prefetches are too early;_@ Chapter on distributed collection by Lins.

late with respect to the corresponding access. The key measo [14] KARLSSON, M., DAHLGREN, F., AND STENSTROM, P. A

that while prefetch-on-grey issues prefetches in FIFO itttz ac- prefetching technique for irregular accesses to linked datictures.
cesses occur in LIFO ordering, causing prefetches to beatepa In Proceedings of the International Symposium on High Peréorce
from accesses by arbitrary amounts of time. By processimyadl s Computer Architectur¢Toulouse, France, Jan.). IEEE Computer

Society, 2000, pp. 206-217.

LIPASTI, M. H., SCHMIDT, W. J., KUNKEL, S. R.,AND
ROEDIGER, R. R. SPAID: Software prefetching in pointer- and
call-intensive environments. Proceedings of the International

FIFO window at the top of the LIFO BDW stack we successfully
control the timing between prefetch and access. Our sionolag-
sults show that this approach achieves 27% average speedup a

=
K&

up to three times the speedup of prefetch-on-grey for Gensive Symposium on MicroarchitecturdCM/IEEE, 1995, pp. 231-236.
benchmarks, virtually eliminating misses in tracing asessfor [16] Luk, C.-K.,AND MOWRY, T. C. Compiler-based prefetching for
some benchmarks. Moreover, buffered prefetching prodsices recursive data structures. Rroceedings of the ACM International
nificant speedup on current hardware of 6% on average for a GC Conference on Architectural Support for Programming Laaaps
configuration that tightly controls heap growth, whereag!Bo’s and Operating Systen{€ambridge, Massachusetts, OcAEM

SIGPLAN Notices 319 (Sept. 1996), pp. 222-233.
[17] ROTH, A., MOSHOVOS A., AND SOHI, G. S. Dependence based
prefetching for linked data structures. Pmoceedings of the ACM
Acknowledg ments International Conference on Architectural Support for ramming

This work is supported by the National Science Foundation un Languages and Operating Syste(8an Jose, California, OCtACM

SIGPLAN Notices 3311 (Nov. 1998), pp. 115-126.
der grants Nos. CCR-9711673, 11S-9988637, CCR-008579R-CC [18] RoTH, A., AND SOHI, G. S. Effective jump-pointer prefetching for

prefetch-on-grey yields no noticeable improvement.

9875960 (CAREER), CCR-9986020 (Instrumentation), by tee D linked data structures. IRroceedings of the International
fense Advanced Research Program Agency, and by gifts fram Su Symposium on Computer Architectftlanta, Georgia, May).
Microsystems and IBM. Computer Architecture News 27 (May 1999), pp. 111-121.
[19] RuUBIN, S., BERNSTEIN, D., AND RODEH, M. Virtual cache line: A
8 REFERENCES new technique to improve cache exploitation for recursatad
' structures. IrProceedings of the International Conference on
[1] ApPPEL A. W.,AND L1, K. Virtual memory primitives for user Compiler ConstructiofAmsterdam, The Netherlands, Mar.),
programs. IrProceedings of the ACM International Conference on S. Jahnichen, Ed. vol. 1575 bécture Notes in Computer Science
Architectural Support for Programming Languages and Ogiata 1999, pp. 259-273.
SystemgSanta Clara, California, AprACM SIGPLAN Notices 26! [20] ScHKOLNICK, M. A clustering algorithm for hierarchical structures.
(Apr. 1991), pp. 96-107. ACM Trans. Database Syst. 2 (Mar. 1977), 27-44.
[2] AusTIN, T. M., LARSON, E.,AND ERNST, D. SimpleScalar: An [21] SPEC. SPECjvm98 benchmarks, 1998.
infrastructure for computer system modeliti§EE Computer 352 http://www.spec.org/osg/jvm98.
(Feb. 2002), 59-67. [22] Stamos, J. W. Static grouping of small objects to enhance
[3] BoeHM, H.-J. Space efficient conservative garbage collection. In performance of a paged virtual memoACM Trans. Comput. Syst.
Proceedings of the ACM Conference on Programming Language 2, 2 (May 1984), 155-180.
Design and Implementatio(rAIbuquerque, New Mexico, Juné)CM [23] STOUTCHININ, A., AMARAL, J. N., G0, G. R., DEHNERT, J. C.,
SIGPLAN Notices 28 (June 1993), pp. 197-206. JAIN, S.,AND DOUILLET, A. Speculative prefetching of induction
[4] BoEHM, H.-J. Reducing garbage collector cache misses. In pointers. InProceedings of the International Conference on
Proceedings of the ACM International Symposium on Memory Compiler ConstructiorfGenova, Italy, Apr.), R. Wilhelm, Ed.
Managemen{Minneapolis, Minnesota, Oct., 200CM SIGPLAN vol. 2027 ofLecture Notes in Computer Scien@901, pp. 289-303.
Notices 361 (Jan. 2001), pp. 59-64. [24] UNGAR, D. Generation scavenging: A non-disruptive high
[5] BOEHM, H.-J., DEMERS, A. J.,AND SHENKER, S. Mostly parallel performance storage reclamation algorithmPhoceedings of the
garbage collection. IRroceedings of the ACM Conference on ACM Symposium on Practical Software Development Envirotsne
Object-Oriented Programming Systems, Languages, and (Pittsburgh, Pennsylvania, Apr.). 1984, pp. 157-167.
Applications(Phoenix, Arizona, Oct.)ACM SIGPLAN Notices 26 [25] WiLsON, P. R., Lam, M. S.,AND MOHER, T. G. Effective
11 (Nov. 1991), pp. 157-164. “static-graph” reorganization to improve locality in gage-collected
[6] BOEHM, H.-J.,AND WEISER, M. Garbage collection in an systems. IrProceedings of the ACM Conference on Programming
uncooperative environmeroftware—Practice and Experience, 18 Language Design and Implementatifforonto, Canada, JunéACM
9 (Sept. 1988), 807—820. SIGPLAN Notices 26 (June 1991), pp. 177-191.
[7]1 CAHOON, B., AND MCKINLEY, K. S. Data data flow analysis for [26] ZiLLES, C. B. Benchmark HALTH considered harmfulACM
software prefetching linked data structures in Jav&risceedings of SIGARCH Newsletter 28 (June 2001), 4-5.

IEEE International Conference on Parallel Architecturasda
Compilation Technique@Barcelona, Spain, Sept.). 2001,
pp. 280-291.

[8] CaHOON, B. D. Effective Compile-Time Analysis for Data
Prefetching in JavaPhD thesis, University of Massachusetts at
Amherst, Sept. 2002.

