
Software Prefetching for Mark-Sweep Garbage Collection:
Hardware Analysis and Software Redesign

Chen-Yong Cher
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN 47907

chenyong@ecn.purdue.edu

Antony L. Hosking
Department of Computer

Sciences
Purdue University

West Lafayette, IN 47907

hosking@cs.purdue.edu

T. N. Vijaykumar
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN 47907

vijay@ecn.purdue.edu

ABSTRACT
Tracing garbage collectors traverse references from live program
variables, transitively tracing out the closure of live objects. Mem-
ory accesses incurred during tracing are essentially random: a given
object may contain references to any other object. Since applica-
tion heaps are typically much larger than hardware caches, tracing
results in many cache misses. Technology trends will make cache
misses more important, so tracing is a prime target for prefetching.

Simulation of Java benchmarks running with the Boehm-De-
mers-Weiser mark-sweep garbage collector for a projected hard-
ware platform reveal high tracing overhead (up to 65% of elapsed
time), and that cache misses are a problem. Applying Boehm’s
default prefetching strategy yields improvements in execution time
(16% on average with incremental/generational collectionfor GC-
intensive benchmarks), but analysis shows that his strategy suffers
from significant timing problems: prefetches that occur tooearly
or too late relative to their matching loads. This analysis drives
development of a new prefetching strategy that yields up tothree
timesthe performance improvement of Boehm’s strategy for GC-
intensive benchmarks (27% average speedup), and achieves perfor-
mance close to that of perfect timing (ie, few misses for tracing
accesses) on some benchmarks. Validating these simulationresults
with live runs on current hardware produces average speedupof 6%
for the new strategy on GC-intensive benchmarks with a GC con-
figuration that tightly controls heap growth. In contrast, Boehm’s
default prefetching strategy is ineffective on this platform.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—cache memories;
B.3.3 [Memory Structures]: Performance Analysis and Design
Aids—simulation;
D.3.4 [Programming Languages]: Processors—memory manage-
ment (garbage collection), run-time environments
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1. INTRODUCTION
Automatic dynamic memory management, commonly referred

to asgarbage collection(GC) [13], is an important aspect of run-
time systems for modern applications. Languages such as JavaTM

[10] impose automatic dynamic memory management as a manda-
tory feature of the language (ie, there is nofreeoperation in Java).
Languages like C, while not forcing automatic memory manage-
ment on programmers, are still amenable to modern GC techniques,
making GC a realistic option for them as well.

The comparative benefits of automatic versus manual memory
management are often hotly-debated among programmers, yetGC
is now a well-accepted approach for developing reliable large-scale
applications that allocate and manipulate complex linked data struc-
tures. Its key advantages derive from the fact that GC relieves
programmers from the need to free allocated objects explicitly, re-
sulting in separation of concerns between data producers and con-
sumers, promoting modularity and composition of rich application
libraries, and eliminating “dangling pointer” errors thatresult when
objects are freed prematurely.

The basic operating principle of GC is that an object allocated
in the dynamicheapwill not be freed while there remainlive ref-
erences to that object. Any object referred to by live references is
itself live, and cannot be freed. At a given point in a program’s exe-
cution, a reference is said to be live if itmaybe used by the program
at some point in the future to access its target object. GC techniques
typically use a conservative approximation of referenceliveness,
simply assuming that all references held in the registers, static ar-
eas, and thread activation stacks are live. Live heap objects are
those reachable (transitively) via live references; references held
in live objects are themselves live (transitively). Thus,tracing GC
algorithms operate by traversing references from knownroots (eg,
registers, globals, and threads) to heap-allocated objects, and then
object-to-object for references held in those objects. Allobjects
(transitively) reachable from theroots are considered to be live.
Objects not transitively reachable are considered to be dead, and
can be freed.

Applications typically allocate objects from the heap up tosome



GC threshold, at which point tracing is used to enumerate thelive
objects; the remaining objects are freed. The space consumed by
freed objects is recycled for use in satisfying future allocation re-
quests.

While GC incurs overhead in terms of extra instructions as well
as cache misses, technology trends are increasing the gap between
processor speed and memory latency and expanding on-chip exe-
cution resources (ie, functional units). These trends will make extra
cache misses more significant. Despite the overheads of GC, it is
becoming increasingly prevalent, not just for Java and other modern
languages, but even for C-based applications (eg, even the popular
gcc compilers now use GC internally for their memory manage-
ment).

1.1 Our contribution
In this paper, we focus on reducing the cache miss overhead of

GC, specifically targeting misses incurred by tracing collectors as
they enumerate the live objects. We analyze the performanceof the
portable and widely-used Boehm-Demers-Weiser garbage collec-
tor [6, 5], including Boehm’s own prefetching strategy for reducing
GC cache misses while tracing [4]. Our results, obtained viasimu-
lation of standard Java benchmarks, reveal the overhead of tracing
(up to 65% of elapsed time), and demonstrate the improvements
obtained using Boehm’s prefetching approach (16% on average for
incremental/generational GC on GC-intensive benchmarks).

The keys to effective prefetching are knowingwhat to prefetch
andwhento prefetch it. For GC,what to prefetch is known: we
must trace the live objects of the graph, and their references are
discovered during the trace.Whento prefetch is trickier: prefetch-
ing an object too early means it may be displaced from the cache
before we can trace it; prefetching too late exposes memory latency.
Thus, the key issue is timeliness. Prefetches can occur onlyas ob-
ject references are discovered, while an object is scanned,whereas
tracing algorithms impose traversal orders that are often different
from that order.

Our experimental methodology uses simulation of Java bench-
marks running on projected hardware to obtain detailed analysis
of GC prefetching behavior. Our key observation is that Boehm’s
prefetching approach suffers from severe timing problems:many
prefetches occur too early or too late. The reason is that prefetches
occur essentially breadth-first (FIFO), while BDW uses depth-first
traversal (LIFO) to access objects. This difference in ordering im-
plies that the time between prefetch and access can be arbitrarily
short/long leading to prefetches that are too late/early. Based on
our analysis, we devise and implement a new prefetching strategy,
which imposes limited FIFO processing over a small window ofthe
BDW mark stack, so that the amount of tracing work performed,
and hence time elapsed, between prefetch and access isbounded.
The size of this window can be tuned for memory latency, per-
mitting tight control over prefetch timeliness. Our new approach
yields up tothree timesthe simulated performance improvement
of Boehm’s strategy for GC-intensive benchmarks (27% on aver-
age), and achieves performance close to that of perfect timing (ie,
no misses for tracing accesses) for some benchmarks. Validating
our simulation results on current hardware, the new strategy also
yields performance improvement (from 2% to 6% on average, de-
pending on GC configuration), even though current hardware has
shorter memory latency and tighter restrictions on the number of
in-flight cache misses than the simulated platform.

1.2 Outline
The remainder of the paper is organized as follows. In Section 2,

we describe the basics of tracing GC and its fundamental costs,

as well as the Boehm-Demers-Weiser collector used as the basis
of our study. Section 4 describes our experimental framework and
methodology. Results and observations follow in Section 5.We
conclude with a discussion of related work in Section 6, and asum-
mary of our findings in Section 7.

2. TRACING GARBAGE COLLECTION
Tracing garbage collection algorithms can be categorized into

two basic approaches:mark-sweepcollectors, andcopyingcollec-
tors. Mark-sweep collectors operate in two phases, first marking
the live objects as they are traced, and then sweeping up the un-
marked dead objects, gathering them onto free lists for use in subse-
quent allocations. Copying collectorsevacuatelive objects as they
are discovered, copying them into a new heap space; dead objects
remain behind in the old space, which can then be freed wholesale.

2.1 GC overheads
The overhead of tracing GC breaks down into two components:

(1) enumerating the live objects (tracing), and (2) deallocating the
dead objects (freeing). These costs are inherent to tracing GC re-
gardless of whether liveness is captured explicitly, by marking,
or implicitly, by copying. Freeing the dead objects in a copying
collector incurs no real overhead, since freeing the old space is a
constant-time operation. This fact is sometimes cited as anargu-
ment against mark-sweep collectors since the sweep phase must
examine the whole heap, whereas the cost of a copying collec-
tor is proportional to the size of the live data (ignoring theover-
head of copying the objects). However,lazy sweeping [12, 4] re-
duces the asymptotic complexity of mark-sweep collectors to that
of copying collectors. Lazy sweeping effectively transfers the cost
of the sweep phase to allocation, piggy-backing some small amount
of sweep work onto each allocation request, sufficient to discover
enough free space to satisfy the request. Moreover, becausesome
of the swept space is itself used to satisfy the allocation request,
lazy sweeping exhibits better locality. Thus, the cost of mark-
(lazy)sweep GC reduces to the cost of enumerating the live objects,
as for copying collection.

Enumerating the live objects is thus the principal cost of garbage
collection; tracing must complete fully before any object can be
freed. Moreover, it is memory-intensive since the references con-
tained in each live object must be enumerated and traversed.Even
worse, the memory accesses incurred for tracing are essentially ran-
dom: a given object may contain references toanyother object in
the heap. Since application heaps are typically much largerthan the
capacity of the hardware cache hierarchy, tracing results in large
numbers of cache misses. Tracing also displaces the application’s
working set from the caches and pollutes them with data not ger-
mane to the working set; our results show pollution is not a big
problem, even for incremental GC.

2.2 Generational GC
To reduce the intrusiveness of GC, notably extended pauses due

to GC, researchers have devised algorithms that exploit demograph-
ic invariants in typical programs. One invariant is that most objects
die young. As a result, focusing tracing effort on the youngest ob-
jects in the heap is likely to yield a larger fraction of dead objects
than from the heap as a whole. Thus,generationalGC algorithms
[24] segregate objects by age (temporally, though not necessarily
spatially), and focus tracing effort on the youngest objects, tracing
them more frequently than the older objects. All that is needed for
generational collection is a mechanism for tracking references from
old objects to young objects, and treating those referencesas GC
roots (in addition to the usual roots) when tracing the youngobjects



independently of the old objects. Tracing only the young genera-
tion reduces GC pauses, while usually yielding sufficient free space
for the application to proceed. If tracing the young objectsdoes not
yield sufficient space, then GC can revert to a whole-heap trace.

2.3 Incremental GC
Also to reduce intrusiveness,incrementalGC algorithms inter-

leave tracing work with application execution. Using the standard
graph analogy, the object heap is a directed graph, with objects as
nodes and references as edges. The collector traces the reachability
of nodes in the graph from the roots.Stop-the-worldcollectors as-
sume that the object graph remains static while the collector runs.
In contrast, incremental collectors view the application program as
a mutator of the object graph, that can arbitrarily transform the
graph before the collector has completed tracing it. As a result, the
collector must compensate for mutations that change the reachabil-
ity of objects. Generally, it is safe to ignore objects losing a refer-
ence while the collector is tracing the graph – objects that lose their
last references will be collected at the next GC. More problematic
is the creation of new referencesfrom already-traced objects to an
object whose other references are overwritten by the mutator. If
the collector never sees those old references then the object will
never be traced. Thus, incremental collectors require synchroniza-
tion with the mutator.

Dijkstra’s tri-color abstraction [9] serves as a useful basis for un-
derstanding synchronization approaches for incremental GC. Ob-
jects in the heap are painted one of three colors:

Black nodes have already been traced (including all the references
they contain);

Grey nodes contain references still to be traced;

White nodes are untraced; at the end of tracing they are garbage.

Tracing is the process of partitioning the objects into black and
white nodes. Tracing is complete when there are no grey nodes;
nodes left white are garbage. Tracing correctness means prevent-
ing the mutator from writing references to white objects into black
objects without the collector knowing about it. There are two pos-
sible approaches:

1. Prevent the mutator from seeing white objects; or

2. Inform the collector about creation of any reference from
black to white objects so that it can be traced.

The first approach imposes aread barrier on pointer traversals,
while the second requires awrite barrier on pointer stores. So
long as barriers are used to ensure correctness, incremental tracing
can proceed independently of the mutator. One approach piggy-
backs a small amount of tracing onto each allocation request, to
ensure tracing progress is tied to mutator progress (as measured
by allocation). Alternatively, tracing can run concurrently with the
mutator in a separate thread or in parallel on a separate processor.

Incremental tracing minimizes intrusiveness by reducing collec-
tor pause times, at the expense of synchronization overheads and
the churning effect of tracing on the memory hierarchy. As a re-
sult, while responsiveness for interactive or other (soft)real-time
activities may improve, overall throughput may suffer.

3. PREFETCHING IN GC
Boehm [4] was the first to apply prefetching techniques within

GC, implemented within the Boehm-Demers-Weiser (BDW) col-
lector. We begin with an overview of BDW before discussing how
it incorporates prefetching.

3.1 The Boehm-Demers-Weiser collector
The Boehm-Demers-Weiser (BDW) mark-(lazy)sweep collector

is popular due its portability and language-independence.It epit-
omizes a class of collectors known asambiguous rootscollectors.
Such collectors are able to forego precise information about roots
and knowledge of the layout of objects, by assuming that any word-
sized value is a potential heap reference. Any value that ambigu-
ouslyappearsto refer to the heap (while perhaps simply having a
value that looks like a heap reference) is treated as a reference – the
object to which it refers is considered to be live.1 The upshot of am-
biguity is that ambiguously-referenced objects cannot move, since
their ambiguous roots cannot be overwritten with the new address
of the object; if the ambiguous value is not really a reference then it
should not be modified. The BDW collector treats registers, static
areas, and thread activation stacks ambiguously. If objectlayout
information is available (from the application programmeror com-
piler) then the BDW collector can make use of it, but otherwise
values contained in objects are also treated ambiguously.

The advantage of ambiguous roots collectors is their indepen-
dence of the application programming language and compiler. The
BDW collector supports garbage collection for applications coded
in C and C++, which preclude accurate garbage collection because
they are not type-safe. BDW is also often used with type-safelan-
guages whose compilers do not provide the precise information
necessary to support accurate GC. The minimal requirement is that
source programs not hide references from GC, and that compilers
not perform transformations that hide references from GC. Thus,
BDW is used in more diverse settings than perhaps any other col-
lector. As a result, the BDW collector has been heavily tuned, both
for basic performance, and to minimize the negative impact of am-
biguous roots [3].

The BDW collector supports generational/incremental collection
using a simple write barrier based on knowing which virtual mem-
ory pages have been modified recently. For generational GC, only
pages modified since the last collection can contain references to
objects allocated since that last collection. Treating these newly al-
located objects as the young generation for generational GCmeans
tracing from the roots andmodifiedolder pages in the heap. BDW
interleaves incremental marking with the mutator, piggy-backing a
little marking work onto every allocation. The amount of marking
done is adjusted to avoid the mutator getting too far ahead ofmark-
ing, on the basis of bytes marked versus bytes allocated. When the
incremental marking phase finishes, the only thing preventing GC
completion is the fact that the mutator may have created references
from black to white objects (as discussed above). BDW simply
treats all pages modified by the mutator since the start of marking
as if they are grey, and completes tracing from those pages before
permitting the mutator to run. This last “stop-the-world” marking
phase is usually relatively brief compared to the overall cost of trac-
ing.

The BDW write barrier is implemented in one of two ways, de-
pending on the availability of support from the operating system.
One approach is to use virtual memory page protection primitives
to record page modifications [1]. This approach can be expensive
given the overhead of fielding protection traps from the operating
system via user-level signal handlers to record updates. A more
efficient, though less portable, alternative is to obtain dirty-page
information directly from the operating system’s virtual memory

1Ambiguous roots collectors are also sometimes referred to ascon-
servativecollectors, since they treat potential references conserva-
tively. However, the undecidability of variable liveness means all
collectors are effectively conservative. We use the term ambiguous
roots to dispel such confusion.



Ensure that all objects are white.
Grey all objects pointed to by a root.
While there is a grey object g

Blacken g.
For each pointer p in g

If p points to a white object
Grey that object.

Figure 1: The BDW tracing algorithm

Push all roots on the mark stack, making them grey.
While there is a pointer to an object g on the stack

Pop g from the mark stack.
If g is still grey (not already black)

Blacken g.
For each pointer p in g’s target

Prefetch p.
If p is white

Grey p and push p on the mark stack.

Figure 2: Prefetch-on-grey (PG)

page tables via system calls or access to per-process information
maintained in the/proc file-system. BDW supports both ap-
proaches depending on the host system.

3.2 Prefetching in BDW
The BDW collector supports a rudimentary form of prefetching

during tracing. The basic approach is to prefetch the targetof a
reference at the point that the target object is discovered to be grey.
An abstract formulation of the BDW tracing algorithm is given in
Figure 1 [4].

In reality, BDW maintains a tableseparatefrom the objects, con-
taining one mark bit per object. A mark bit value of zero corre-
sponds to a white object; a value of one indicates a grey or black
object. A separate stack contains the addresses of all grey objects.
When an object is greyed its mark bit is set, and it is pushed onto
the mark stack. Blackening an object corresponds to removing it
from the mark stack.

Having observed via profiling that a significant fraction of the
time for this algorithm is spent retrieving the first pointerp from
each grey object, Boehm [4] introduced a prefetch operationat the
point wherep is greyed and pushed on the mark stack. The re-
sulting tracing algorithm, with concrete mark stack and Boehm’s
prefetch-on-grey (PG), appears in Figure 2.

Boehm also permutes the code in the marker slightly, so that
the last pointer contained ing to be pushed on the mark stack is
prefetched first, so as to increase the distance between the prefetch
and the load through that pointer. Thus, for every pointerp inside
an objectg, the prefetch operation onp is separated from any deref-
erence ofp by most of the pointer validity (necessary because of
ambiguity) and mark bit checking code for the pointers contained
in g. Boehm notes that this allows the prefetch to be helpful even
for the first pointer followed, unlike the cases studied by Luk and
Mowry using “greedy prefetching” on pointer-based data structures
[16].

In addition, Boehm linearly prefetches a few cache lines ahead
when scanning an object. Thesescan-prefetcheshelp with large
objects, as well as prefetching other relevant objects in the data
structure being traced.

Boehm reported prefetch speedups between 1% and 17% for a
small set of C-based synthetic benchmarks and real applications.

3.3 Observations on prefetch-on-grey
Before presenting our experimental evidence for timing prob-

lems with Boehm’s prefetch-on-grey, we first make some obser-
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Figure 3: Tree example

vations on how such problems may arise. As noted earlier, the
success of software prefetching in hiding cache miss latencies de-
pends on timeliness. If a prefetch is issued too early, then the data it
prefetches may be displaced from the cache by other accessesthat
force its eviction, before the data is used. If a prefetch is issued
too late, then the data will not be available in-cache when needed,
exposing the miss latency.

Prefetch-on-grey is intimately tied to the depth-first access order
imposed by the stack-based BDW marking algorithm: prefetchoc-
curs when a node is pushed on the stack, while access occurs when
it is popped. The delay between pushing and popping a reference
is highly variable, and depends on the data structure being traced.
Consider a tree data structure as illustrated in Figure 3. Tracing
from root object 1, BDW with prefetch-on-grey issues prefetches
in the order 3-2-4-5, but the stack-based BDW tracing algorithm
visits these objects in depth-first order 3-4-5-2. The prefetch of 2
occurs early, but the access to 2 occurs late. If the work performed
in tracing 3-4-5 delays the access to 2 for too long (ie, the prefetch
is issued too early) then the prefetched object 2 may be displaced
from the cache.

3.4 Our improvement: buffered prefetching
An alternative approach might be to use a (FIFO) mark queue

instead of a (LIFO) mark stack, for breadth-first traversal.Prefetch
order would then be 2-3-4-5, matching the traversal order 2-3-4-
5. However, breadth-first search suffers from poorer locality than
depth-first search, tending to group traversal of unrelatedobjects
in a data structure (eg, cousins, rather than parents and children).2

Also, prefetch-on-grey with breadth-first search still suffers from
lack of control over timeliness: objects containing many references
(such as large arrays) result in prefetching all the targetsbefore the
first target can be scanned.

Instead, we propose a new software prefetching approach using
buffering (in software) to defer prefetching until grey references
are popped from the stack. In effect, we use a hybrid of queue-
based (FIFO) and stack-based (LIFO) processing, by interposing
a fixed-size window over references at the top of the mark stack,
prefetching and processing references in the window in FIFOorder.
The size of the window is tune-able with varying memory latency
(ie, larger window for longer latency). When a grey reference is
popped from the stack, we prefetch its target, and drop the reference
into the software prefetch buffer. We pop and prefetch as many
references from the top of the stack as will fill the buffer. When the
buffer fills, or when the mark stack is empty, we scan the object at
the head of the buffer queue. Thus, at any given time, the maximum
number of prefetch instructions in flight is limited to the size of the
prefetch buffer. Moreover, we scan objects from the prefetch buffer
in FIFO order. In combination, we thus retain a tight bound onthe
time between issue of a prefetch instruction and its associated data
access. Our results show that this algorithm eliminates nearly all

2For this same reason, copying algorithms often cluster related ob-
jects together in depth-first order, to improve object locality [20,
22, 25].



Push all roots on the mark stack, making them grey.
Loop

While there is a pointer to an object g on the stack
If the prefetch buffer is full

Dequeue a pointer b from the buffer.
If b is still grey (not already black)

Blacken b.
For each pointer p in b’s target

If p is white
Grey p and push p on the mark stack.

Pop g from the mark stack.
Prefetch g and enqueue it in the prefetch buffer.

If the prefetch buffer is empty
Exit loop.

Dequeue a pointer b from the buffer.
If b is still grey (not already black)

Blacken b.
For each pointer p in b’s target

If p is white
Grey p and push p on the mark stack.

Continue loop.

Figure 4: Buffered-prefetch (BP)

cache misses in the marking code. Our revised algorithm appears
in Figure 4.

Returning to the example of Figure 3, let us assume use of a
2-entry prefetch buffer. Beginning with object 1 on the stack, the
buffered-prefetch algorithm executes as follows: pop-prefetch-en-
queue 1, dequeue-scan 1, push 2, push-pop-prefetch-enqueue 3,
pop-prefetch-enqueue 2, dequeue-scan 3, push-pop-prefetch-enqu-
eue 4; dequeue-scan 2; dequeue-scan 4, push-pop-prefetch-enqueue
5, dequeue-scan 5. Considering simply the prefetches and scans
from this sequence we have: prefetch 1, scan 1, prefetch 3, prefetch
2, scan 3, prefetch 4, scan 2, scan 4, prefetch 5, scan 5.

Despite reducing most cache misses in the marking code (as re-
vealed in our experiments below), this algorithm does delaypro-
cessing ofcache-residentobjects, since their references must now
transition through the buffer queue as well as the stack before they
can be scanned. This may hurt performance. To study the im-
pact of this deferral, our experiments also consider use ofinform-
ing prefetches [11] that notify if the prefetch hits immediately in
the cache. If so, then the collector can scan the object immediately,
and avoid the overhead of managing the buffer. However, our ex-
periments show that delaying the processing of the blocks onhits
does not hurt performance.

4. EXPERIMENTS
Our experiments use the gcc-based static compiler for Java (gcj)

to compile a set of standard Java benchmarks into static Alpha
executables. We then simulate these benchmarks using the Sim-
pleScalar architecture simulator [2]. Our methodology is simulator-
based because detailed analysis of prefetch timing behavior is not
possible with live runs, even using hardware performance counters.
We compare several different configurations of the BDW collector,
with and without incremental/generational support and prefetch-
on-grey(PG)/buffered-prefetch(BP). We use the default parameters
for BDW as shipped with gcj, such as the free-space divisor (FSD)
used to trigger GCs and the GC rate variable that dictates when in-
cremental marking should occur. All prefetches load into L1cache
as defined by the Alpha ISA.

To ensure best GC performance on our simulated machine, we
tuned the scan-prefetch distance for linear prefetches used during
object scanning. Since both PG and BP use the same scanning
code, both benefit from this tuning. Trial-and-error measurements
led to selection of the scan-prefetch distance at 384 bytes (three L2

Table 1: Simulated hardware parameters
Processor 8-way issue, 300 RUU, 60 LSQ, 8 integer ALUs,

2 integer mul/div units, 2 memory ports, 4 FP
ALUs, 2 FP mul/div units

Branch prediction 8K/8K/8K hybrid predictor; 32-entry RAS, 8192-
entry 4-way BTB, 8-cycle misprediction penalty

Caches 64KB 2-way 2-cycle I/D L1, 1MB 8-way 12-cycle
L2, both LRU, 32 L1 MSHRs and 32 L2 MSHRs.

Memory Infinite capacity, 300 cycle latency
Memory bus 32-byte wide, pipelined, split transaction

cache blocks ahead). A side-effect of this optimal scan-prefetch
distance is that the second and third L2 cache blocks are not cov-
ered by scan-prefetches. To eliminate cache misses while scan-
ning these two blocks, we can issue two additional prefetches, one
each for the second and third blocks of an object, at the same time
as the PG or BP prefetch, depending on the algorithm. In effect,
thesegap-prefetchesincrease the effective prefetch granularity for
PG/BP prefetches to cover the first three cache blocks of an object;
they fill the gap between PG/BP prefetches and scan-prefetches.
Our experiments show that gap-prefetches improve both PG and
BP, so our experiments use gap-prefetching unless otherwise men-
tioned.

4.1 Experimental platform
We modified SimpleScalar version 3.0 [2] to simulate an 8-way

issue, out-of-order processor. To simulate accurately thetiming ef-
fects of cache misses, we incorporated support for simulation of
Miss Status History Registers (MSHRs). SimpleScalar simulates
Alpha binaries directly, including standard system calls,but we
added emulation of system calls that mimic OS-maintained page-
level dirty bits for BDW incremental/generational GC. The over-
head to maintain and deliver these dirty bits is not directlysimu-
lated. As a result, our results give an ideal impression of incremen-
tal/generational executions, for which querying dirty bitinforma-
tion costs nothing. Table 1 lists the default hardware parameters
we use for all experiments except for those we specify otherwise.

4.1.1 Capitulating loads
As noted earlier, BP delays processing of blocks that hit in the

cache, which may slow down the GC mark phase. If tracing im-
mediately processes a block thathits in the cache without entering
the block into the prefetch queue, then performance may improve
by not delaying dependent tracing and allowing additional overlap
of tracing work with earlier prefetches (ie, buffering will degrade
overall performance if all blocks hit in the cache). To see whether
deferral of tracing in BP hurts performance, we also simulate a new
kind of informing load instruction [11] that we call acapitulating
load (c-load). A c-load is one that attempts the load operation, but
which returns immediately if the access is a miss, indicating the
miss status with an additional output register operand to the load
operation. On a hit, a c-load returns the accessed data alongwith
the hit status. Applications can use the status informationas a con-
dition, to choose whether to process the targeted block if the load
hits, or to do something else if it misses. In our case, we can use
c-loads to decide dynamically whether to use BP-deferred tracing
of a non-resident object, or immediate tracing of a residentobject.
We implement c-loads in the simulator to return hit status onL1
cache hit and miss status otherwise, and modify the marking code
to conditionallyprefetch (and buffer) objects that miss.



Table 2: Benchmark inputs
SPECjvm98 Java Olden

Benchmark Parameters Benchmark Parameters
compress 1 iteration bh -b 4096 -m
jess standard bisort -s 250000 -m
raytrace standard em3d -n 2000 -d 100 -m
db standard mst -v 256 -m
javac standard perimeter -l 16 -m
mpegaudio standard power -m
jack standard treeadd -l 20 -m

tsp -c 10000 -m
voronoi -n 20000 -m

4.2 Benchmarks
For our experiments we use the standard SPECjvm98 bench-

marks [21] as well as Java versions of the Olden benchmark suite
[7, 8]. The Java Olden benchmarks are heap-intensive programs
with large footprints that stress the memory system. We usedgcc
version 3.0, with optimization level-O2, targeting Alpha Tru64
version 5, to compile and statically link the benchmarks. Since
Zilles [26] points out that the Olden benchmark health is ineffi-
cient in both algorithm and implementation, making it unrepresen-
tative as a benchmark, we omit health from our results. Also,be-
cause our simulator lacks support for Java threads, we omit mtrt of
SPECjvm98. Instead, we use the single-threaded benchmark ray-
trace, which mtrt invokes as its per-thread workload. Table2 lists
the benchmarks and their parameters for our experiments.

5. RESULTS
We now present our simulation results. Section 5.1 shows overall

speedup of Boehm’s PG and our new BP, while also varying mem-
ory latency. Section 5.3 explores the effect of varying the MSHR
count for BP. Finally, we show the effect of using c-loads to choose
dynamically between BP-deferred and immediate tracing.

For completeness, we show results for three different GC con-
figurations: whole-heap stop-the-world (ie, non-generational, non-
incremental), generational only, and incremental/generational. We
refer to these as STW, GEN, and INCGEN, respectively. We do
not consider an incremental/non-generational collector because it
is unlikely one would forego the benefits of generational collection
when the write barrier support needed for it is available, asit is with
incremental GC.

5.1 Speedup
Speedups for PG and BP appear in Figure 5, for each of the

three GC configurations. To show the effect of increasing mem-
ory latency, we report results for memory latencies of 300 and
500 cycles. The graphs show elapsed time speedup as percent-
age improvement over the respective base case without prefetch-
ing. Benchmarks are sorted from left to right in decreasing order
of GC-intensiveness measured as the proportion of total time that is
spent tracing. We compute mean speedup for benchmarks that have
high GC-intensiveness (greater than 5% of total execution time) in
order to focus on benchmarks for which prefetching in the mark
phase can have any significant impact. Note that, for the incremen-
tal/generational collector, marking is interleaved with mutator ac-
tivity, but that GC-intensiveness considers only marking overheads.

Each set of bars represents a benchmark. Within a set, the first
bar represents PG. The second and third bars represent BP with
queue sizes of 8 (BP-8) and 16 (BP-16), respectively. The first
three bars are for 300-cycle memory latency, normalized against
a non-prefetching base case with 300-cycle memory latency.The
fourth and fifth bars represent PG and BP-16, both for 500-cycle
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Figure 5: Speedup

memory latency, normalized against a non-prefetching basecase
with 500-cycle memory latency. The mean speedups representthe
geometric mean of speedups for the GC-intensive benchmarksand
all benchmarks, respectively.

We see that BP performs better than PG in most cases. For 300-
cycle memory latency, BP-8 achieves 28%, 24%, and 19% mean
speedups on GC-intensive benchmarks for STW, GEN, and IN-
CGEN, respectively. BP-16 achieves 28%, 23%, and 20% mean
speedups, respectively. These speedups are substantiallyhigher
compared to PG, with 21%, 17%, and 13%.

With increased latency of 500 cycles, because the L2-cache-miss
penalty consumes a larger portion of total execution time, both al-
gorithms achieve higher speedups, though BP-16 outperforms PG.
BP-16 (fifth bar) achieves 40%, 32%, and 27% mean speedups on
GC-intensive benchmarks for STW, GEN, and INCGEN, respec-
tively. These are substantially higher than for PG (fourth bar),
which achieves 27%, 21%, and 16%. This shows that BP-16 is
more effective in reducing cache misses for longer memory latency
than PG.

Trends across GC configurations are similar, though we note that
GEN and INCGEN, which both collect only a portion of the heap
at each GC cycle have less opportunity for speedup, since marking
consumes a smaller fraction of total time. Also, note that INCGEN
which need not complete a full GC mark cycle before the bench-
mark terminates, has correspondingly less opportunity forimprove-
ment.

Because trends among GCs are similar, we focus our discus-
sion for individual benchmarks on GEN. With 300-cycle latency,
treeadd, voronoi and bh obtain speedups of 60%, 42% and 32%,
respectively, for BP-8, compared to 39%, 21% and 22% for PG.



Increasing the latency to 500 cycles causes treeadd, voronoi and bh
to obtain higher speedups of 84%, 61% and 43%, respectively for
BP-16, compared with 47%, 25% and 28% for PG. When compar-
ing ratios between these speedups, treeadd, voronoi and bh achieve
15%, 13% and 8% better speedup for BP-16 going from 300- to
500-cycle latency, compared to the lower 6%, 4% and 5% for PG.
Because the mark phase is not a significant fraction of total execu-
tion time for compress, mpegaudio, bisort, tsp and power, prefetch-
ing does not improve performance for these benchmarks. At 300-
cycle latency, db and perimeter perform better for PG, achieving
speedups of 11% and 32%, compared to 10% and 28% with BP-
8. We discuss these degradations in the next section. None of
the benchmarks we simulated has performance lower than its non-
prefetching base case.

5.2 Detailed comparisons
We now show detailed comparisons between PG and BP-16 for

execution times, and statistics for STW, GEN, and INCGEN GC
configurations.

To show the potential performance improvements for different
prefetching algorithms, we implement an oracle simulationwhich
we call perfect prefetching. This treats the matching load for ev-
ery prefetch as if it is a hit (ie, as if the prefetch was perfectly
timed). The implementation simply tags the target cache block
for each prefetch, and makes that block immediately available in
L1 and L2 caches when a demand-load requests it. The tags are
cleared after the matching demand-load. Because the tags are main-
tained separately from the cache simulation data structures, they are
not affected by replacement events in the caches. Notice that per-
fect prefetching does not show the potential for eliminating cache
misses in marking, because there are misses that are not covered
by prefetching, including misses that occur because their cache
blocks are evicted after first use despite being prefetched earlier.
We only show perfect prefetching for PG and BP-16, both with
gap-prefetching.

Figure 6 shows normalized overall execution times. Each setof
bars represent a benchmark. Within a set, the first bar shows exe-
cution time for the non-prefetching base case without prefetching.
The second and third bars represent PG without gap-prefetching
and PG with gap-prefetching, respectively. The fourth bar shows
perfect PG. The fifth and sixth bars correspond to BP-16 without
gap-prefetching and BP-16 with gap-prefetching. The seventh bar
shows perfect BP-16. All the bars are normalized to the same non-
prefetching base case (the first bar).

Each bar has two parts: the lower shaded part represents mark-
ing overhead (ie, the portion of execution time that prefetching di-
rectly impacts) shown as a fraction of total execution time.The
upper white part corresponds to the non-marking portion of execu-
tion time (including both mutator code and sweeping).

From the first bar in Figure 6, we see that marking overhead is
a significant portion of total execution time for many benchmarks.
Using GEN as an example, marking constitutes as much as 70% for
voronoi, 60% for treeadd, 53% for javac, and 44% for jess. It is this
significant overhead that represents any opportunity for improving
performance using prefetching during marking. Section 5.1men-
tions that prefetching cannot improve compress, mpegaudio, bisort,
tsp and power because they are not GC-intensive. Figure 6 illus-
trates that their GC marking overhead is less than 5% of totalex-
ecution time. Other benchmarks have marking overhead ranging
from 17% to 70%.

We now turn to the impact of gap-prefetching. Comparing PG
without gap-prefetching (second bar) versus PG with gap-prefetch-
ing (third bar), there is clear improvement. For example, gap-pre-

fetching improves javac from 10% to 17%, raytrace from 19% to
28%, treeadd from 8% to 39% and voronoi from 17% to 24% in
STW GC. Except for bh in GEN, and javac, jess, and jack, in INC-
GEN, which see 1-3% degradation, most benchmarks with PG gain
or maintain speedups with the addition of gap-prefetching.Simi-
larly, BP-16 (sixth bar) also benefits from gap-prefetching, showing
reduction in execution times from BP-16 without gap prefetching
(fifth bar).

Now, compare PG (third bar) with BP-16 (sixth bar). As shown
earlier, BP-16 performs better than PG. Figure 6 shows that these
improvements come from the reduction in marking overhead. Com-
paring these prefetching algorithms to their perfect prefetching cas-
es, PG’s performance is often far away from PG perfect (fourth
bar), while BP-16’s performance is often closer to BP-16 perfect
(seventh bar). Summarizing, BP-16 achieves 93%, 96% and 95%
of its potential across all benchmarks in STW, GEN and INCGEN
configurations, respectively. In contrast, PG achieves only 85%,
83% and 87% of its potential, respectively.

One interesting observation in Figure 6 is that perfect BP-16 per-
forms better than perfect PG in many cases. We attribute thisto
improved instruction-level parallelism for BP-16’s hybrid depth-
first/breadth-first traversal (strict depth-first must chase dependent
pointers while breadth-first follows independent sibling pointers).

Table 3 shows the timing of prefetching, categorizing prefetches
as: late if the load latency experienced by the corresponding de-
mand loads are larger than the L2 latency,timely if the load la-
tency experienced is smaller than the L2 latency, andearly if the
prefetched block is neither in-flight nor in L1/L2 caches. Toput
things in perspective, too early prefetches typically incur more pen-
alty because they fully expose memory latency to demand loads.
The table shows the percentage of all prefetches occurring in each
category for each benchmark/GC combination.

Table 3 shows that a large fraction of prefetches using PG areei-
ther early or late, whereas BP-16 successfully minimizes early/late
prefetches to increase the percentage of timely prefetches. In the
case of GEN (Figure 6(b)), javac’s timely prefetches increase from
68% with PG to 92% for BP-16. Similarly, jess increases from 71%
to 94%, voronoi increases from 76% to 96%, and treeadd increases
from 91% to 96%. In db’s case, timely prefetches do not increase
significantly and BP-16 pays the price of instruction overhead, re-
sulting in performance degradation.

Table 4 lists the GC statistics for PG and BP-16. The first col-
umn shows execution time for the non-prefetching base case.The
second column pair shows instruction overhead for PG and BP-16,
expressed as a percentage over the non-prefetching base case. The
third column pair shows maximum heap size for PG and BP-16,
respectively. Note that PG and the base case are the same since
they trace objects in the same order. BP-16 can differ since differ-
ent tracing orders can produce differences in GC behavior because
of BDW’s treatment of ambiguous roots. The fourth column pair
shows the percentage increase innon-markingtime with respect to
the base case for PG and BP-16, respectively. The fifth columnpair
gives the number of times the collector is invoked (ie, number of
mark phases) for PG and BP-16, respectively. Table 4 shows that
BP-16 tends to have higher instruction overhead than PG, because
of the extra code to manage the buffer. Because BP-16 eliminates
more cache misses than PG, BP-16 is able to absorb the cost of
these extra instructions and still improve performance.

Looking at maximum heap sizes we note that the base case and
PG always have the same traversal order so their heap footprints
are always the same. Similarly, STW collectors always process the
whole heap without interleaving mutator activity, so the base case,
PG and BP-16 all have the same footprint. Differences exist only



treeadd voronoi bh javac jess perimeter mst em3d raytrace db jack bisort tsp power compress mpegaudio0.0

0.2

0.4

0.6

0.8

1.0
el

ap
se

d 
tim

e 
(n

or
m

al
iz

ed
)

Not GC-intensiveGC-intensive

non-marking time
Base
PG w/o gap
PG
PG perfect
BP-16 w/o gap
BP-16
BP-16 perfect

(a) STW

treeadd voronoi bh javac jess perimeter mst em3d raytrace db jack bisort tsp power compress mpegaudio0.0

0.2

0.4

0.6

0.8

1.0

el
ap

se
d 

tim
e 

(n
or

m
al

iz
ed

)

Not GC-intensiveGC-intensive

non-marking time
Base
PG w/o gap
PG
PG perfect
BP-16 w/o gap
BP-16
BP-16 perfect

(b) GEN

treeadd voronoi bh javac jess perimeter mst em3d raytrace db jack bisort tsp power compress mpegaudio0.0

0.2

0.4

0.6

0.8

1.0

el
ap

se
d 

tim
e 

(n
or

m
al

iz
ed

)

Not GC-intensiveGC-intensive

non-marking time
Base
PG w/o gap
PG
PG perfect
BP-16 w/o gap
BP-16
BP-16 perfect

(c) INCGEN

Figure 6: Normalized execution time

Table 3: Prefetch timing
STW GEN INCGEN

PG BP PG BP PG BP
E T L E T L E T L E T L E T L E T L

treeadd 1 91 8 3 96 1 1 91 8 3 97 1 1 91 8 4 96 1
voronoi 6 74 20 1 97 2 8 76 16 2 96 1 10 76 14 3 96 1
bh 12 73 16 5 90 5 11 76 13 6 92 2 12 75 13 8 90 2
javac 7 82 11 5 93 2 24 68 8 6 92 1 27 66 7 7 92 1
jess 8 76 16 2 88 10 24 71 5 3 94 3 24 72 5 3 94 4
perimeter 11 84 5 11 86 3 11 84 4 12 86 2 10 86 4 12 87 2
mst 9 87 5 8 83 8 6 90 4 6 89 5 8 88 4 9 84 6
em3d 18 69 13 10 65 25 16 70 14 9 70 21 18 73 9 11 73 17
raytrace 8 86 6 5 92 3 27 69 4 10 86 4 26 70 4 9 86 4
db 7 89 4 9 86 6 11 88 1 10 87 3 8 88 4 11 86 3
jack 8 82 10 1 76 23 10 80 10 2 92 6 10 80 10 2 91 7
bisort 3 89 8 4 90 7 2 92 6 3 93 4 2 92 6 5 92 4
tsp 7 79 13 2 65 33 4 86 10 2 81 17 4 86 10 2 79 20
power 14 81 4 10 78 12 19 73 8 9 79 12 16 76 7 7 82 11
compress 15 70 15 0 43 56 10 75 15 1 65 33 9 76 15 2 67 32
mpegaudio 14 68 19 0 36 64 3 79 18 1 61 38 3 82 15 2 66 32

E = %early,T = %timely,L = %late
(E+L+T = 100%)

for BP-16 when mutator activity is interleaved with partialGCs
(both GEN and INCGEN); heap footprints can differ somewhat
because BP-16 traverses the generations/increments in a different
order than base/PG.

The non-mark column shows that times spent in the application
(mutator) and for sweeping (ie, not marking), do not vary much
from the base case.

Table 5 shows L1 and L2 demand-load miss rates in the GC
marking code for STW, GEN and INCGEN. To put things in per-
spective, because the number of L2 accesses is the number of L1
misses, the reduction in both L1 and L2 miss rates actually reflects

a larger reduction in L2 misses. From this table, we can see that
BP-16 is more effective than PG in reducing cache misses. This
data confirms our expectation that BP-16 reduces L2 misses toim-
prove execution times.

5.3 Effect of number of MSHRs
In modern processors that support non-blocking loads, the num-

ber of MSHRs limits the number of outstanding memory requests.
Because BP-16 increases the number of memory requests in-flight
by issuing prefetches, fewer MSHRs may result in decreased per-
formance. The question is whether BP-16 is still worthwhilewith



Table 5: Miss rates in the marking code (%)
STW GEN INCGEN

L1 L2 L1 L2 L1 L2
Base PG BP-16Base PG BP-16Base PG BP-16Base PG BP-16Base PG BP-16Base PG BP-16

treeadd 4 1 1 28 7 2 4 1 1 27 7 2 5 1 2 16 5 1
voronoi 5 4 2 26 10 4 5 4 2 24 9 6 6 5 3 18 8 5
bh 7 5 4 28 9 3 9 6 3 30 12 11 10 7 4 29 13 10
javac 6 5 4 25 7 5 8 7 4 21 14 9 8 7 5 19 14 9
jess 7 4 3 27 8 4 7 6 4 21 13 5 8 7 4 17 13 6
perimeter 5 1 2 25 9 2 5 1 2 23 7 2 5 1 2 20 5 1
mst 4 2 1 25 10 2 4 2 2 18 6 2 5 2 2 11 5 2
em3d 5 3 2 32 15 3 6 2 2 26 13 2 6 3 2 19 11 2
raytrace 6 2 2 24 4 2 6 4 3 21 8 5 7 4 3 17 8 6
db 6 3 2 21 7 3 6 3 2 18 6 3 7 3 3 15 4 3
jack 9 4 3 29 14 4 9 6 4 17 9 4 9 6 4 15 9 4
bisort 5 1 1 29 15 2 5 1 1 20 10 2 5 2 2 11 6 2
tsp 9 2 1 31 25 5 8 2 2 16 12 2 8 2 3 12 9 2
power 7 3 2 27 13 2 8 4 3 15 7 3 9 5 3 10 4 3
compress 10 4 1 37 29 14 10 3 3 33 27 7 10 3 3 27 22 7
mpegaudio 11 4 1 39 32 14 11 3 3 28 23 5 10 4 3 18 15 5

Base = non-prefetching, PG = prefetch-on-grey, BP-16 = 16-entry buffered-prefetch
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Figure 7: Varying the number of MSHRs

fewer MSHRs. In this section, we vary MSHR count, considering
32 and 16 entries for both L1 and L2 cache.

Similar to the previous section, Figure 7 shows normalized exe-
cution time. Again, GC marking overhead appears as a fraction of
total time. The first and second bars show execution time for the
base case and BP-16 with 32 MSHRs. The third and fourth bars
show execution time for the base case and BP-16 with 16 MSHRs.
All the bars are normalized to the same base case with 32 MSHRs.

We see that both the base case and BP-16 have longer execu-
tion time with only 16-entry MSHRs. This trend is not surpris-
ing because the machines are more exposed to cache misses when

MSHRs are exhausted, which happens in both marking and non-
marking portions of execution. However, even on a machine with
only 16 MSHRs, BP-16 is able to achieve speedups that are compa-
rable to those achieved on a machine with 32 MSHRs. This shows
that BP-16 does not require a large number of MSHRs to achieve
its performance benefit. Because the BDW GC uses many instruc-
tions to mark an object, BP-16 allows the prefetch to sufficiently
overlap memory latency with the processing of 16 objects, even if
the loads to these objects hit in the cache. As a result, BP-16does
not rely on overlapping many prefetches to reduce cache misses.

5.4 Effect of delaying processing
As mentioned in Section 3.4, BP may cause extra overhead by

delaying processing of blocks that hit in the cache. We now com-
pare the performance of BP to a conditional BP algorithm thatuses
c-loads, to see if deferring tracing via the prefetch bufferhurts
performance. As a reminder, a c-load notifies the CPU about the
hit/miss status of a block. The program uses this status information
to choose between processing the block if the load hits or using BP
if the load misses.

Figure 8 shows execution time normalized to the non-prefetching
base case similarly to the earlier graphs. The first bar showsexe-
cution time for the base case; the second and third bars show ex-
ecution time for the BP-16 and conditional BP-16 using c-loads,
respectively. We see that c-loads performs similarly to BP.This
shows that deferral of tracing through the prefetch buffer does not
hurt performance. In some cases, c-loads perform worse thanBP.
We attribute that to the overheads of additional instructions and
branch mispredictions.

5.5 Effect of tracing pollution
As mentioned in Section 2.1, GC tracing may pollute the caches

with data not needed by the mutator. To expose the overhead of
tracing pollution, we simulated an idealized machine that has two
L2 caches, each with the same size/associativity as for the base
case. The simulator accesses both L2 caches for each L1 miss,but
pollutes only one of the L2 caches with tracing accesses. Thesim-
ulator treats an access that hits in either L2 cache as a hit, so the run
benefits from tracing locality but does not suffer from tracing pol-
lution. Table 6 shows the resulting speedups for the base case when
tracing pollution is avoided in this way. We see only 2-3% overall
improvement for GC-intensive benchmarks. This shows that trac-
ing pollution is not a problem for a machine with a large L2 cache.



Table 4: GC statistics
Cycles Insn. Max. heap non-mark GCs
(×109) overhead (MB) time (count)

(%) overhead
(%)

Base PG BP-16 PG BP-16 PG BP-16 PG BP-16
treeadd 0.5 2 15 44 44 0 -1 10 10
voronoi 1.7 2 7 33 33 -1 -3 15 15
bh 10.8 2 5 5 4 1 1 335 338
javac 6.3 1 4 31 31 1 1 37 37
jess 5.0 2 3 7 7 2 4 233 233
perimeter 0.7 4 6 28 28 0 0 9 9
mst 0.1 3 6 5 5 0 -1 5 5
em3d 0.4 1 1 12 12 0 0 7 7
raytrace 3.8 2 5 11 11 1 1 64 64
db 0.5 2 5 15 15 0 0 6 6
jack 6.1 1 1 3 3 0 -2 285 285

S
T

W

bisort 1.5 0 0 7 7 0 0 5 5
tsp 0.9 0 0 2 2 0 0 5 5
power 7.1 0 0 3 3 0 0 30 30
compress 1.2 0 0 16 16 0 0 6 6
mpegaudio 3.1 0 0 4 4 0 0 2 2
treeadd 0.6 2 16 44 44 2 1 28 28
voronoi 1.7 2 5 33 33 0 0 43 43
bh 10.9 2 5 5 5 0 -1 658 664
javac 8.3 2 5 48 44 0 2 72 72
jess 5.6 2 3 5 5 1 -1 663 665
perimeter 0.7 4 7 28 28 0 1 26 26
mst 0.1 4 9 5 5 -1 -1 16 16
em3d 0.4 2 2 13 13 0 -1 21 21
raytrace 2.8 1 2 8 8 1 1 163 163
db 0.5 2 12 15 15 0 0 12 12
jack 6.1 0 1 3 3 0 0 588 601

G
E

N

bisort 1.5 0 0 7 7 0 0 17 17
tsp 0.9 0 1 2 2 0 -1 16 17
power 7.0 0 0 2 2 0 0 88 88
compress 1.2 0 0 16 16 0 0 10 10
mpegaudio 3.1 0 0 4 3 0 0 3 3
treeadd 0.4 2 15 42 41 0 -2 11 11
voronoi 1.3 2 3 39 37 2 1 18 17
bh 9.4 1 6 8 8 0 1 388 406
javac 8.0 2 4 52 51 3 1 38 38
jess 5.1 2 3 6 6 4 -1 410 404
perimeter 0.7 4 4 29 29 0 1 19 19
mst 0.1 3 6 5 5 0 0 12 12
em3d 0.4 1 1 12 12 0 0 16 16
raytrace 3.0 1 1 11 11 1 0 127 127
db 0.5 2 8 15 15 0 -1 8 8
jack 5.9 0 2 5 4 0 -1 403 459

IN
C

G
E

N

bisort 1.4 0 0 6 7 0 0 6 8
tsp 0.9 0 0 2 2 0 -1 11 11
power 7.0 0 0 2 2 0 0 77 75
compress 1.2 0 0 16 16 0 0 7 7
mpegaudio 3.1 0 0 4 4 0 0 3 3

Base = non-prefetching, PG = prefetch-on-grey
BP-16 = 16-entry buffered-prefetch

5.6 Live runs
We have validated our simulation-based results by running the

benchmarks on a real machine. The platform used is an Apple
G5 PowerPC 970 (see hardware details in Table 7), running 32-
bit PowerPC Linux 2.6.3 (with benh patches) in single-user mode.
We compiled the benchmarks using gcj 3.2.3, and ran the BDW
collector in its out-of-the-box STW configuration, varyingonly the
free-space-divisor (FSD), and adding prefetching for PG and BP
using the PowerPCdcbt “data-cache-block-touch” instruction to
prefetch into L1. Because memory latency for current machines
is less than what we simulated, we found that tuning the prefetch
buffer for size 4 (BP-4) produced best results.

Speedups with FSD 3 (the BDW default used in our simulations)
for PG and BP-4, and with FSD 10 for PG and BP-4, are shown
in Figure 9. The FSD parameter to the BDW collector controls the
rate of GC by stating the ideal free-space that a given GC should
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Table 6: Speedup without tracing pollution (%)
STW GEN INCGEN

treeadd 2 1 2
voronoi 4 3 3
bh 7 1 4
javac 5 3 4
jess 7 5 3
perimeter 2 2 2
mst 4 2 4
em3d 1 1 1
raytrace 1 1 2
db 1 1 1
jack 2 2 1
bisort 0 0 0
tsp 0 0 0
power 0 0 0
compress 0 0 0
mpegaudio 0 0 0
GeoMean
GC-intensive 3.2 2.0 2.4
Overall 2.1 1.4 1.7

Table 7: Live hardware parameters
Processor PowerPC 970 (Apple G5), 1.8GHz, 8-way issue, 200 max-

imum instructions in flight
Caches 64KB direct-mapped instruction L1, 32KB 2-way associa-

tive data L1, 512KB 8-way unified L2, 8 L1 and 8 L2
MSHRs

Memory 512MB
Prefetch Prefetch into L1 usingdcbt instruction

obtain after each collection cycle as a fraction of total heap size.
Thus, FSD 3 (the BDW default) states that GC should free up a
third of the heap at each GC, expanding the heap as necessary only
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Figure 9: Speedup: live runs

to achieve this goal. The higher the FSD, the more frequentlythe
collector will run. In effect, the FSD parameter controls the trade-
off of space (smaller heap sizes) for time (more frequent collec-
tions). Any benefits obtained from prefetching while marking will
be more pronounced with more frequent invocations of the collec-
tor (ie, higher FSD).

The superior performance of BP over PG is evident in Figure 9.
Indeed, slowdown predominates for PG at both FSD 3 and FSD 10
(first and third bars), showing marginal mean slowdown at FSD3
(-0.19% for GC-intensive benchmarks and -0.08% overall) and no-
ticeable slowdowns for FSD 10 (-0.79% GC-intensive and -0.58%
overall). In stark contrast, BP-4 (second and fourth bars) shows
noticeable mean speedup for both GC-intensive benchmarks and
overall, with marginal speedup for FSD 3 (1.57% GC-intensive
and 1.17% overall) but significant speedup at FSD 10 (6.25% GC-
intensive and 4.47% overall).

Detailed comparisons between PG and BP-4 for normalized ex-
ecution times appear in Figure 10. Again, we highlight the fraction
of total execution time spent in the marking phase of GC on which
prefetching has impact. The first three bars give results with FSD 3
for the base, PG and BP-4 configurations, while the fourth through
fifth bars show results for FSD 10. For all benchmarks, BP-4 al-
ways improves mark time over the base case, though in some cases
we see increased total execution time (ie, slowdown) despite the
reduction in mark time. We attribute this to pollution effects of
marking on sweeping and the mutator, in contrast to our simulation
results. Note that this observation is consistent with the simulation
results in Section 5.5 which show some benchmarks gaining upto
7% improvement when pollution is avoided.

6. RELATED WORK
We focus discussion of related work on software-based prefetch-

ing techniques for linked data structures, noting also the existence
of a vast literature on hardware prefetching and array prefetch-
ing that is not directly related to our work. Prior work for linked
data structures has focused on general techniques for improving ac-
cesses bygeneralprograms. Some applyjump-pointertechniques,
which place prefetch hints in the form of object pointers within the
linked data structures [16, 17, 18, 7]. Thus, for example, a linked
list node might contain additional pointers to nodes beyondsimply
the next node in the list, in addition to its own data payload.When
traversing the list, it is then possible to prefetch some setof nodes

Table 8: GC statistics: live runs
Time Max. heap non-mark GCs
(s) (MB) time (count)

overhead
(%)

Base PG BP-4 PG BP-4 PG BP-4
treeadd 0.4 20 20 1 21 5 5
voronoi 2.1 21 20 0 -2 8 8
bh 8.1 11 11 0 -5 58 58
javac 27.9 24 24 0 -1 19 19
jess 7.2 8 8 0 -2 63 63
perimeter 0.5 15 15 0 6 4 4
mst 0.1 2 2 0 4 1 1
em3d 0.6 8 8 0 0 3 3
raytrace 6.8 9 9 0 -1 24 24
db 0.7 10 10 0 -1 3 3
jack 184.8 6 6 0 0 40 40

F
S

D
3

bisort 1.2 3 3 0 0 2 2
tsp 0.9 2 2 0 0 1 1
power 8.8 3 3 0 0 8 8
compress 1.7 13 13 -1 -1 5 4
mpegaudio 3.8 4 4 0 0 2 2
treeadd 0.8 18 18 0 18 16 16
voronoi 3.5 16 16 0 -2 29 29
bh 11.0 3 3 0 -5 314 270
javac 30.2 15 14 0 0 59 67
jess 10.1 3 3 0 -1 300 301
perimeter 0.8 15 15 0 6 15 15
mst 0.1 2 2 0 0 5 5
em3d 0.7 8 8 0 0 11 11
raytrace 8.9 4 5 0 0 125 117
db 0.7 10 10 0 -1 8 8
jack 185.4 3 3 0 0 110 115

F
S

D
10

bisort 1.2 2 2 0 0 6 6
tsp 1.0 1 1 0 -1 5 5
power 9.1 1 1 0 0 40 40
compress 1.7 14 14 0 0 6 6
mpegaudio 3.8 4 4 0 0 2 2

ahead of the current node. Automatic derivation of jump-pointers
and placement of prefetch instructions by optimizing compilers are
important contributions [16, 7]. Other software techniques have not
relied on such support [15, 19, 14, 23].

In comparison with jump-pointer prefetching approaches that
use a queue to remember application data-access orders and then
construct a prefetch order from the queue, with our approachwe
use a queue to remember the prefetch order and then later construct
the data-access order from this queue. The reason is that in agen-
eral pointer-based program one cannot change the data-access or-
der, but only the prefetch order. Here, we change both data-access
order and prefetch order, giving us more control over timing. Thus,
in contrast to prior work that addresses general programs, we obtain
detailed analysis of prefetching for a particular algorithm, namely
tracing GC, and use that analysis to drive redesign of the algorithm
for significant performance improvement.



7. CONCLUSIONS
Memory accesses made during garbage collection (GC) exhibit

significantly less locality than typical programs and incurconsid-
erable overhead due to cache misses. Using simulations of stan-
dard Java benchmarks on a projected hardware platform, we found
that as much as 60% of program time may be spent in tracing
in the Boehm-Demers-Weiser (BDW) garbage collector. While
Boehm’s prefetch-on-grey technique for BDW reduces this over-
head by 16% on average with incremental/generational GC forGC-
intensive benchmarks, our results showed that prefetch-on-grey is
less than ideal. Further analysis revealed that prefetch-on-grey suf-
fers from lack of timeliness – many prefetches are too early or too
late with respect to the corresponding access. The key reason is
that while prefetch-on-grey issues prefetches in FIFO order the ac-
cesses occur in LIFO ordering, causing prefetches to be separated
from accesses by arbitrary amounts of time. By processing a small
FIFO window at the top of the LIFO BDW stack we successfully
control the timing between prefetch and access. Our simulation re-
sults show that this approach achieves 27% average speedup and
up to three times the speedup of prefetch-on-grey for GC-intensive
benchmarks, virtually eliminating misses in tracing accesses for
some benchmarks. Moreover, buffered prefetching producessig-
nificant speedup on current hardware of 6% on average for a GC
configuration that tightly controls heap growth, whereas Boehm’s
prefetch-on-grey yields no noticeable improvement.
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