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Abstract
We describe the design and prototype implementation of a dialect
of Java, XJ, that supports both closed and open nested transac-
tions. As we have previously advocated, open nesting most natu-
rally attaches to the class as the primary abstraction mechanism of
Java. The resulting design allows natural expression of layered ab-
stractions for concurrent data structures, while promoting improved
concurrency for operations on those abstractions. Moreover, we de-
scribe our approach to constructing a prototype implementation of
XJ that runs on standard Java virtual machines, by grafting sup-
port for transactions onto both application code and library code via
load-time bytecode rewriting, for full execution coverage. We rely
on extensions to the javac compiler, a JVMTI run-time agent to
intercept and rewrite Java classes as they are loaded into the virtual
machine, and a run-time library that tracks and manages all trans-
action meta-data. The resulting prototype will allow further explo-
ration of implementation alternatives for open and closed nested
transactions in Java. Our design also addresses the issue of inter-
nal deadlock caused by accessing the same data in both closed and
open nesting fashion by carefully disallowing such access.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features—Concurrent
programming structures

General Terms Design, Languages, Performance

Keywords transactional memory, nested transactions, open nest-
ing, abstract locks

1. Introduction
Transactional memory (TM) is a paradigm for programming con-
current applications that allows programmers to designate sections
of code as atomic transactions. Transactions appear to execute
atomically: no thread executing an atomic section sees the interme-
diate states of other transactions executing in other threads. Trans-
actional memory is more abstract than using Java synchronized
blocks and methods that lock a specific object, and avoids prob-
lems encountered with locks, such as deadlock, priority inversion,
convoying, pre-emption, and reduced concurrency.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPPJ’14, September 23–26, 2014, Cracow, Poland.
Copyright c© 2014 ACM 978-1-4503-2926-2/14/09. . . $15.00.
http://dx.doi.org/10.1145/2647508.2647525

There have been a number of proposals to support TM abstrac-
tions in programming languages, including a standardization effort
for C++ [21], and several proposals for Java [1, 2, 5, 9, 11, 12].
Most allow nesting so that an atomic block or method can be used
by another atomic block or method, but ignore the internal structure
and simply group them into one large transaction. However, some
systems support nested transactions, typically in closed form [14].
We have also advocated for open nested transactions [15, 17] as a
powerful extension to closed nesting, allowing improved concur-
rency, at the cost of some programmer effort to program the neces-
sary concurrency control to achieve the desired concurrency seman-
tics, and compensating actions to handle transaction abort. Our ap-
proach extends the language for transactional memory [4, 11, 12],
rather than exposing a programmatic API [5, 7–9, 16, 20], allowing
full integration of transaction semantics for both application code
and external/legacy libraries.

Contributions. We present the design and implementation of our
prototype extension of the Java programming language that sup-
ports both open and closed nested transactions, producing Java
bytecode that will run on an unmodified Java virtual machine. We
refine our earlier proposal for open nesting constructs [17] to com-
bine open nested classes with a rich range of abstract locks, used
to represent the abstract resources acquired by open nested trans-
actions as they commit. For example, when an open nested trans-
action commits physical insertion of a particular element into a
Java HashMap it must abstractly lock the presence of that ele-
ment to prevent other transactions from observing that element un-
til its outermost parent transaction commits. We provide a number
of lock abstractions for use by programmers of transactional data
structures, and illustrate their use with examples. We give a full de-
scription of the new language features for open and closed nesting,
describe how those extensions propagate through the source code
compiler to be represented in bytecode class files, how to dynami-
cally inject operations into the bytecode to track memory read/write
conflicts, and the run-time library enabling transactional execution.

Earlier approaches to adding open nesting to a programming
language were vulnerable to a kind of internal deadlock that could
prevent both forward progress of a transaction and successful undo
to abort and remove the transaction. The design presented here
solves that problem, overcoming a key reliability concern.

Since open nesting requires additional programmer effort, and
incurs a bit more run-time overhead, it will likely find greatest use
in selected places in any given program, places that would other-
wise be concurrency bottlenecks. Our design makes it straightfor-
ward to extend an existing non-atomic or closed nested version of
a class with an open nested subclass. One simply adds the abstract
locking and operation undo information in “wrapper” methods that
invoke the superclass version of the same methods. This makes it
easy to refine a program to overcome concurrency bottlenecks as
they are identified.



2. Principles and approach
Transactions are usually described in terms of read and write oper-
ations performed against disjoint memory locations. Hardware and
software transactional memory work in terms of either hardware
memory units such as bytes, words, or cache lines, or, when incor-
porated into a programming language, in terms of variables/fields
or objects. Regardless of the memory units in play, the transaction
mechanism tracks reads and writes of those units to detect con-
flicts (two transactions access the same unit and at least one of them
writes it) and manage atomicity (either all of a transaction’s writes
occur, or none of them, and they appear to occur at a single instant
in time).

Here we will describe a design for Java that performs conflict
detection on the unit of objects, and that tracks writes at the level of
object (and static) fields. We adopt pessimistic concurrency control
for objects modified by a transaction (i.e., writing requires acquir-
ing a lock) and handle atomicity of update by allowing updates in
place and undoing a transaction’s uncommitted writes if the trans-
action aborts. Thus we will use an undo log. In principle any of
these decisions could be varied; some would have a degree of visi-
ble impact on the language design, though much would remain the
same. While we agree that no particular transaction management
policy offers the best performance under all workloads, this seems
to be a reasonable “middle of the road” choice. Nevertheless, we
have designed our prototype implementation to allow future exper-
imentation with alternative approaches.

What we just described briefly characterizes flat, non-nested,
transactions. Here is a correspondingly short description of closed
nesting. A closed nested transaction is either top-level, or a child
subtransaction nested within a parent transaction. Logically, trans-
actions accumulate read and write sets, which determine conflicts
as well as what writes become visible upon commit.

Updates become globally visible only when a top-level transac-
tion commits. When a transaction reads a value, it sees the value in
its own read or write set (if there is one), otherwise the value seen
by its parent. A top-level transaction will see the latest (globally
committed) value, subject to subsequent overriding of the parent’s
values when the child commits, as follows.

When a nested transaction commits, its read and write sets
merge with its parent’s, the child’s writes overriding any previ-
ous value in the parent. When a top-level transaction commits, its
writes become permanent. When a transaction aborts, its read and
write sets (and associated updates) are discarded or rolled back.1 A
transaction can succeed only if it has no conflicts with other trans-
actions. Nested transactions refine the earlier definition of conflict
(two transactions both accessing the same unit, at least one of them
writing it) to say that there is conflict only when neither transaction
is an ancestor of the other. In case of conflict, either or both must
abort to prevent violation of transaction semantics, in which a le-
gal execution is equivalent to a serial execution of the committed
transactions (only), in some order (i.e., serializability [18]).

Nested transactions allow decomposition of a large transaction
into smaller subtransactions, each of which can attempt some por-
tion of work, and possibly fail (and perhaps be retried) without
aborting work already accomplished by the parent. However, the
parent still accumulates the read and write sets of all of its commit-
ted children (so writes by a child become visible to other unrelated
transactions only when the top-most ancestor commits). Thus, as
large transactions accumulate ever larger read and write sets from
their children they will become more prone to failure due to higher

1 If the system performs updates in place and keeps an undo log, on commit
of a child transaction the child’s undo log is appended to the parent’s.
Thus, abort of the parent will remove the effects of the child and any other
preceding effects recorded earlier in the parent’s undo log.

probability of conflict. These failures reduce system throughput
(the effective degree of concurrency).

Open nesting allows further increases in concurrency [17], by
releasing concrete resources (e.g., memory reads and writes) earlier
and applying conflict detection (and roll back) at a higher abstrac-
tion level. For example, transactions that increment and decrement
a shared memory location would normally conflict, since they write
to the same location. But, since increment and decrement commute
as abstract operations, they can be implemented correctly with open
nesting. An increment (say) does: read, add-one, write. The open
nested transaction would be over and the updated field would not
be part of the parent transaction’s read or write set. However, if the
parent later aborts, it needs to run a compensating decrement to roll
back the logical effect of the committed open nested transaction.

The only difference between open and closed nesting in terms
of the read/write set execution model concerns what happens when
a transaction commits. When an open nested transaction commits,
it discards its read set, and commits its writes globally at top level.2

To support moving conflict detection from the concrete to the
abstract level, when the committing open nested transaction re-
leases its concrete memory resources (i.e., its memory reads and
writes), it must typically claim some (set of) abstract resource(s)
(“abstract locks”) and provide a corresponding abstract compensa-
tion operation (e.g., the decrement in the earlier example) for use
by its ancestors if they need to abort and roll back.

Prior work [17] showed that in some cases open nesting can
greatly increase concurrency. However it does place more of bur-
den on programmers who use it, since they (a) need to get the com-
pensating actions right, and (b) likewise need to provide suitable
abstract concurrency control. It has also been observed that if open
and closed nesting are ever applied to the same object, deadlocks
can occur that block both the completion of an open nesting action
and a compensating action needed to abort the ongoing transaction.

If we view transaction conflicts and rollback in terms of op-
erations, we can see greater similarity between closed and open
nesting and highlight better the essential difference. Closed nesting
works in terms of read and write operations, with the usual con-
flict rules on those operations. The undo of a write is a write that
installs the original value of the memory unit. In the open nest-
ing case we have a programmer-defined set of operations, with
programmer-defined conflict rules and programmer-supplied roll-
back operations for each forward operation. So the essential dif-
ference when viewed from “outside” the transaction is the set of
operations over which the transaction operates.

However, the more abstract3 transactions provided by open
nesting—which offer increased concurrency because abstract con-
currency control captures the essential semantic conflict while
read/write level conflict detection over-estimates conflicts—must
be built from something, and the individual operations must still
appear to execute atomically. More precisely, they must be lin-
earizable [10]: they must appear to occur at a single instant of
time. Transactions are one way to achieve that linearizability, so it
is natural to implement an open nested transaction using much the
same mechanism as for closed nesting.4

2 It further discards its written data elements from the read and write sets of
all other transactions. Given the conflict rules, these can only be its ances-
tors (it cannot commit unless those other unrelated conflicting transactions
also abort). Well-structured programs respecting proper abstraction bound-
aries (not manipulating the same state at different transaction levels) will
avoid this situation, but the rule makes the commit global, as intended.
3 We mean “abstract” in that conflicts don’t occur at the physical level.
4 Transactional boosting [6], however, recognizes that how that linearizabil-
ity is achieved does not matter, and thus naturally supports an approach
where existing non-transactional code is extended with transactional wrap-
pers. It still needs abstract concurrency control of some kind, etc.



3. Language design
We now present details of our extensions to the Java language
that add transactions, with both open and closed nesting, to the
language. While closed nesting need not be associated only with
classes, we connect open nesting with classes. In order to avoid
deadlock internal to the transaction system, the design prevents any
given static or instance field from being accessed by both closed
and open nested transactions. Associating open nesting with classes
also facilitates this segregation.

3.1 Atomic actions
A block (or method) may be designated atomic, by writing
the keyword atomic where the keyword synchronized is
permitted. A block (or method) cannot be both atomic and
synchronized.5 Each execution of an atomic block (which
includes method bodies) occurs as an atomic (trans)action.6 An
atomic action has three possible outcomes:

• It can succeed, in which case its effects are committed.
• It can abort, in which case its effects are undone, and the action

will be retried from the beginning.
• It can fail (complete abruptly), in which case its effects are

undone specially (§3.1.5) and the action is not retried. Action
failure results from throwing of exceptions.

The effects of an atomic action include assignments to (shared)
instance and static fields, and (unshared) local variables and formal
method parameters and exception handler parameters (i.e., all de-
clared variables), as well as the effects of nested atomic actions that
it executes (see §3.2 for consideration of the case of open atomic
actions).

In addition to designating atomic methods individually, one
may write atomic as a class modifier. This causes all methods
of the class to be implicitly atomic. Any class that extends an
atomic class is implicitly also atomic, unless the extending
class is explicitly marked openatomic (see §3.2).

3.1.1 Effect logging
It is helpful to consider the run-time system as (conceptually)
associating with each thread a log of all the thread’s assignments.
Each record in the log indicates the variable that was assigned
and the variable’s previous value (§3.2.3 extends this model to
include other kinds of log records). Undoing the effects of an
atomic action requires processing each of the log records since
the action started, from last to first, restoring each variable to its
logged prior value.7 Undoing also discards each log record after it
is processed. Likewise, committing a top-level action discards that
thread’s log records. Committing a non-top-level action appends its
log to its parent’s log.

3.1.2 Concurrency control
If a thread reads a variable while executing an atomic action, the
variable is said to be a member of the action’s read set. Likewise,
if a thread writes a variable while executing an atomic action, the
variable is said to be a member of the action’s write set. An action’s
accessed variable set is the union of its read set and its write set.
If the write set of an action has a non-empty intersection with the
accessed variable set of another thread’s action, the actions are said
to conflict. If two concurrent actions conflict, then at least one of
them must abort.

5 We may propose to remove synchronized entirely.
6 We use the term atomic action for brevity, to refer to the execution of an
atomic block/method as a transaction.
7 Undoubtedly many optimizations are possible!

3.1.3 Retry statement
The retry statement allows explicit programming of abort. It is
useful in implementing open atomic concurrency control (§3.2.6),
etc. When a thread executes a retry statement, the atomic ac-
tion aborts immediately, and will be retried from the beginning of
the action’s block. Executing a retry statement when not in an
atomic action causes a run-time error exception to be thrown.

RetryStatement:
retry;

Syntactically, a retry statement can appear anywhere a return
statement can appear.

3.1.4 Require statement
The require statement supports conditional atomic actions:8

RequireStatement:
require Expression ;

The Expression must be boolean-valued. The effect of evaluat-
ing

require exp ;

is similar to evaluating

if (!exp) retry ;

However, an implementation may be able to use knowledge of the
required condition to avoid retrying if the condition’s value cannot
have changed.9

3.1.5 Exceptions
If an exception is thrown and not caught within an atomic action
(i.e., the atomic action would complete abruptly), the atomic action
fails, and is undone in a special way, as follows. Exception objects
that are constructed and thrown, and new objects reachable from
them, should not have effects related to them undone. If those
effects were undone, the objects would have their fields reset to
the value before any initializers were run (i.e., zero). Therefore, an
implementation must not undo effects on fields of objects created
since the action began. Moreover, at the time of an exception,
this enables programmers easily to capture and communicate the
state of previously existing objects using cloning or other copying
of state into the corresponding exception object. This state will
survive the failure of the enclosing action.

3.2 Open atomic classes
A class can be declared with the (new) modifier openatomic.
This indicates that the open atomic instance or static fields of
the class can be accessed only during execution of open atomic
instance or static methods of the class.

Commentary: As noted with our principles (§2), open-
atomic is a property of a class because all operations of
the abstract data type implemented by the class need to
cooperate in providing suitable abstract concurrency control
and recovery.

The openatomic modifier is independent of the other usual
class modifiers (abstract, final, etc.), and applies equally

8 We considered calling this wait or await, but its semantics are different
enough from Java’s current wait/notify model that we prefer to emphasize
that it is different.
9 We considered as an alternative the watch statement of Atomos [4], but
felt that because it is so low level, it might overly constrain implementation
strategies. Also, if a programmer mentions too small a watched variable set,
then the program can surprisingly wait forever.



to enumerations and nested classes. Of course, a class cannot
be both atomic and openatomic. Any class that extends
an openatomic class is implicitly also openatomic. An
openatomic class can extend an atomic class, but an atomic
class cannot extend an openatomic class. We detail the reasons
for this in §3.2.4.

Interfaces cannot be declared openatomic (which is a seman-
tic and implementation property, not affecting signature or usage).

3.2.1 Open atomic fields
All private or protected instance fields of openatomic
classes are open atomic. Only private static fields of open-
atomic classes are open atomic. All accesses to open atomic
fields are statically guaranteed to occur during the execution of
an open atomic action. All other fields are not open atomic, and a
warning will be emitted at their declaration in an openatomic
class.10 Any field with the final modifier is treated as open
atomic irrespective of its access modifier (this allows a final field
to be accessed by open atomic methods and also from elsewhere,
according to its access modifier).

3.2.2 Open atomic methods
A method is open atomic if it has at least one of the follow-
ing clauses attached: onabort, oncommit, onvalidate,
ontopcommit, or locking. (The first four are introduced
in §3.2.5; locking clauses are described in §3.2.6.) Only an
openatomic class can have open atomic methods. Moreover,
all public or package access methods of an openatomic class
are implicitly open atomic; they cannot be atomic.

Commentary: These rules are intended to prevent calls from
outside the class that access open atomic instance fields
other than during execution of an open atomic method on
that instance, and likewise to prevent access to open atomic
static fields other than during execution of an open atomic
static or instance method. We assume that open atomic
instance methods that directly or indirectly access open
atomic static fields provide suitable class-level concurrency
control and recovery.

Private or protected methods of openatomic classes can still
be non-atomic. They can also be atomic, allowing a method
that atomically composes invocations of two or more open atomic
methods, for example.

3.2.3 Open atomic method execution
An open atomic method always executes as an atomic action. How-
ever, if it completes successfully (commits), its writes are made
permanent (globally visible), and its log is discarded. Moreover, if
the open action is also nested then it has the following effects on its
parent’s log:

• Its handler clauses (onabort, oncommit, onvalidate,
and ontopcommit, whichever exist) take effect (are logged).
Clauses in effect may later be executed, under certain condi-
tions.

• It acquires abstract locks, as described in its locking clauses
(if any), which are logged.

Discarding its log means that any clauses in effect from open
atomic actions on other instances or classes, committed during this

10 Because public and package access fields can be accessed directly
from outside of the class, we cannot restrict them to be accessed only during
execution of open atomic methods. Similarly, protected static fields can
be accessed directly from subclasses, so we cannot restrict their access to
occur during execution of open atomic methods.

open atomic action, become no longer in effect. Discarding its log
also means releasing locks held from such actions.

Because the open atomic public/package methods of an open-
atomic class are its only external entry points, each of which
begins an open atomic action on entry, all methods of an open-
atomic class are guaranteed to execute in the dynamic context
of an open atomic action, or nested within one. There are occa-
sions when one open atomic method may internally call another
open atomic method in the same class (or superclass), in which
case their effects are aggregated, merging the open atomic callee
into the caller’s action. This avoids the need to duplicate internal
subtransaction handlers in their parent’s handlers.

For example, if a linked list class has open atomic add and
remove methods, one might write an open atomic move method
to move an item from its current position to the end of the list. If
move is written as remove followed by add, then the onabort
actions for both move and add accrue to move, instead of being
discarded when move commits. Otherwise, one would be forced to
duplicate them in the onabort clause for move.

Commentary: One might implement aggregation as follows.
For each open atomic method m create a corresponding
non-open “internal method” mInternal having the same
signature and body, but not open atomic. Rewrite internal
calls of m to call mInternal.

When an open atomic method completes successfully, its open
atomic clauses and locks, some of which may come from aggre-
gated calls, are logged at that time to its parent. Thus the log de-
scribed in §3.1.1 also contains records for onabort, oncommit,
onvalidate, ontopcommit, and locking clauses.

Undoing an atomic action (because of abort or failure), pro-
cesses its portion of the log in reverse order (as in §3.1.1). Pro-
cessing ignores oncommit, onvalidate, and ontopcommit
records. It also ignores records corresponding to locking clauses
(these are released as described in §3.2.6). When undoing encoun-
ters an onabort record, it executes the corresponding onabort
block as an open atomic action. Notice that undoing of writes and
execution of onabort clauses are interleaved (but not concur-
rent): all occur in reverse log order. The processed log records are
discarded, as described in §3.1.1. Finally, control resumes at the be-
ginning of the aborted action, if it is to be retried, or the exception
causing failure is propagated.

Committing an atomic action processes its portion of the log in
forward order from the beginning to the end. Processing first runs
the onvalidate records to ensure the transaction is in a state that
can be committed. It then processes the oncommit records. If the
committing action is a top level transaction it then processes the
ontopcommit records. Processing these handler records causes
their corresponding clauses to be executed as open atomic actions.
Log records for writes, and onabort and locking records, are
ignored when committing. Committing then discards the processed
log records and releases all of the committing action’s abstract
locks (see §3.2.6). Control then continues normally.

3.2.4 Inheritance, overriding, and nesting
An openatomic class can extend a class having public/package
atomic methods, but inheriting those methods without overriding
them in the openatomic class is dangerous because it allows
accessing fields of the open atomic instances in both open and
closed execution modes. Mixing access modes in this way can lead
to deadlocks [17].

To avoid this, we can either require that all inherited atomic
methods be explicitly overridden with open atomic methods in
the openatomic class, or implicitly “copy down” the inherited
method as an open atomic method. The latter may save some typing



by the programmer, but the former has the advantage of forcing
her to think through the abstract locking protocol for all the open
atomic methods of the openatomic subclass. Our inclination
is toward forcing the programmer to provide explicit overrides.
Invoking the atomic superclass method with a super call from
the body of the overriding open atomic method (or elsewhere in the
subclass) is always safe, because instance field accesses will always
occur in the context of an open atomic action.11

Conversely, an atomic class cannot extend an openatomic
class. Otherwise, calls using super would enable the subclass to
access fields in both open and closed modes.12

Similarly, a nested class (either static or non-static), which can
directly manipulate the open atomic fields of its outer class or
instance, is implicitly openatomic if its outer class is open-
atomic. This ensures that external entry points via the nested
class also preserve the open atomic nature of the enclosing class’s
open atomic fields.

One additional piece of mechanism is necessary to ensure
proper handling of open atomic fields. It is possible for an open
atomic method on instance o to call methods on some other objects,
resulting in a call chain that comes back to calling a method on o.
Unlike aggregation to construct larger open atomic actions from
smaller ones operating on the same object, where the
call chain does not leave the scope of the instance, in this case the
call chain is re-entrant after leaving the instance. In such cases, the
re-entrant open action cannot safely release its physical updates,
since the outer open action on that object is still active. Thus, we
also formulate an additional run-time restriction, as follows. For
any given object accessed in an open atomic way, indirect (non-
aggregating) re-entrant calls to open atomic actions run instead as
closed atomic. The requirement is analogous to the tracking of re-
entrant nesting depth for Java synchronized blocks/methods,
where the lock is released only when exiting the outermost lock
level.

3.2.5 Open atomic method suffix clauses
We now give the syntax for the handler clauses that may be at-
tached to the end of an open atomic method, namely onabort,
oncommit, onvalidate, and ontopcommit clauses. A given
method may have at most one of each kind of clause attached.
Moreover, because the handlers may wish to use values computed
at the beginning of the action, an optional list of local variable dec-
larations can be evaluated before the method body proper. These
pre-declarations (PreDecls) evaluate at the same level as the
method body, in the scope of the formal parameters, and are delim-
ited syntactically by square brackets []. The variables they declare
are in scope for both the method body and the handler clauses.

MethodDeclarator:
Identifier ([FormalParameterList]) [PreDecls]

PreDecls:
[{LocalVariableDeclarationStatement}]

MethodBody:
Block {OpenAtomicClause}
{OpenAtomicClause} ;

OpenAtomicClause:
onabort Block
oncommit Block
onvalidate Block
ontopcommit Block

11 It may not be correct, however, unless the overriding method adds suit-
able locking and onabort clauses, etc.
12 Alternatively one could have it mean something like “copy down all the
methods, removing all their open atomic clauses”.

public interface LockTable
<S extends LockSpace, M extends LockMode> {
public S getSpace();
public void
add(Lock<S> space, M mode, TxnDescriptor

desc) throws TxnException;
}

public interface LockSpace<T> {}

public interface Lock<S extends LockSpace> {
public S getSpace();

}

public interface LockMode<T> {
public boolean conflictsWith(T m);

}

Listing 1: Lock tables, spaces, and modes

Supporting these constructs, and supporting use of method pa-
rameter values and pre-declarations, requires generating code that
saves the necessary values and makes them available to the handler
clauses if and when they run.

3.2.6 Open atomic method locking clause
We provide a framework for users to construct their own abstract
locking protocols, along with several pre-defined abstract lock
libraries. The basics of this framework rely on the declarations
shown in Listing 1.

An instance of an open atomic class will have one or more lock
table instances (implementing LockTable) for representing ab-
stract locks held on the open atomic instance. A lock table com-
prises a lock space (LockSpace) instance and a lock mode type
(LockMode). An open atomic method invocation can try to ob-
tain one or more abstract locks. These are specified via locking
clauses associated with the method, and return or throw state-
ments in its body. An abstract lock needs to:

1. indicate the lock table instance in which to request the abstract
lock;

2. indicate the specific lock shape requested (and any parameters
needed for that shape) within the table’s lock space; and

3. indicate the specific lock mode instance to use.

As an example, consider an open atomic class Ordered-
Set<T> implementing java.util.SortedSet<T>. A suit-
able lock space would be the one dimensional set of all possible T
instances, ordered by the total order being used. Within this space
we can imagine a number of shapes:

Point(x): single “point” objects, associated with a particular T
instance x, which mathematically could be considered the range
[x,x];

GT(x): upward “rays” starting at x, meaning (x,∞]

LT(x): downward “rays” starting at x, meaning [−∞,x)

Range(x,y): ranges defined on values x and y where x ≤ y in the
total order, meaning (x,y), etc.

Example lock modes might include reader/writer locks, as il-
lustrated in Listing 2: reads conflict only with writes, and writes
conflict with both reads and writes.

Another example implements modes “pin” (reading a value
“pins” it, so that any change to it conflicts), and “change” (changing



enum RW implements LockMode<RW> {
Read {
public boolean conflictsWith(RW other) {
return other == Write;

}
},
Write {
public boolean conflictsWith(RW other) {
return true;

}
}

}

Listing 2: Read/Write lock modes

enum PinChange implements LockMode<PinChange> {
Pin, Change;
public boolean conflictsWith(PinChange other) {
return this != other;

}
}

Listing 3: PinChange lock modes

openatomic class OrderedSet<T> ... {
private LockTable<LockOneD<T>,RW> eltLocks =

new LockTable<...>();
private LockTable<Points<T>,PinChange>

statsLocks = new LockTable<...>();
...

}

Listing 4: OrderedSet lock tables

a value by incrementing or decrementing it commutes with other
changes, but not with reads). These modes are captured in Listing 3.

An OrderedSet<T> might then have two lock tables, one for
the set of elements and one for statistics (current size, total number
of insertions/deletions, etc.), as in Listing 4.

In addition to the suffix clauses, an open atomic method may
acquire abstract locks before it can complete successfully. The
locking clause is attached to the method’s header, revising the
syntax of MethodDeclaration:

MethodDeclaration:
MethodHeader [LockingClause] MethodBody

LockingClause:
locking [+]( LockExpressions )

LockExpressions:
LockExpression {, LockExpression}

LockExpression:
LockTableExp : LockShapeExp : LockModeExp

LockTableExp:
Expression

LockShapeExp:
Expression

LockModeExp:
Expression

A locking clause is syntactic sugar for acquiring a lock from a lock
table.

The LockTableExp must have a type that implements the
LockTable interface; it indicates the lock table in which to re-
quest the abstract lock denoted by the locking clause. A Lock-
Table encapsulates a LockSpace instance and a LockMode

type. These are defined in a standard library as shown in Listing 1.
An open atomic class will typically have one or more LockTable
instances for representing abstract locks held on itself or its in-
stances. The LockShapeExp must return a Lock, by invok-
ing the indicated method on the lock table LockSpace, itself
obtained using getSpace(). It indicates the specific shape re-
quested (and any parameters needed for that shape) within the ta-
ble’s lock space. The LockModeExp must be of a type that imple-
ments the LockMode interface; it indicates the mode in which to
acquire the lock. A locking clause has the same scoping behav-
ior as the suffix clauses.

An overriding method inherits the overridden method’s lock-
ing clause. If an overriding method supplies its own locking
clause, then the overridden clause is not inherited. If a method
needs to extend an inherited locking clause, it can use the op-
tional + sign with its locking clause.

At the time an open atomic method execution accumulates
locks, one evaluates each LockExpression in turn, in textual
order. To evaluate a LockExpression, one first obtains the
LockSpace from the LockTable. One then calls the method
described by the LockShapeExp; this results in a Lock type.
The next step is to attempt acquiring the abstract lock. This is done
by calling the add method on the LockTable instance specified
by the LockTableExp. If the add call completes successfully,
then we say that the current transaction holds a lock on the specified
object in the specified mode. The call may fail due to lock conflict.
In this case the current transaction aborts and will be retried.

When a transaction completes (successfully or unsuccessfully)
and releases its locks, it no longer holds them.13

3.2.7 Acquiring locks at return or throw
Sometimes, throwing an exception indicates something about an
object’s state. For example, calling remove() on an empty
Queue throws NoSuchElementException. Arguably, this
should lock the fact that the queue is empty. However, our inter-
pretation of exceptions as causing abort prevents remove() from
acquiring such an abstract lock on the queue’s state. Hence, we
allow one to attach a locking clause to a throw statement:

ThrowStatement:
throw Expression [LockingClause] ;

The indicated locks are acquired as the exception is thrown, and are
logged as part of the containing action. If execution is not within
an atomic action (open or not), the locking clause has no effect.

Similarly one can have a locking clause attached to a
return statement and the locks are acquired as the result is re-
turned and logged as part of the containing action:

ReturnStatement:
return [Expression] [LockingClause] ;

A LockingClause attached to the MethodDeclaration is
inherited by all return and throw statements by default. A
return or throw statement may choose to override the inherited
LockingClause by providing its own. If it wants to extend the
inherited LockingClause it must use the optional + sign with
its LockingClause.

3.2.8 Open atomic concurrency control
To define open atomic action concurrency control we introduce a
conceptual device we call the augmented log. In addition to record-
ing writes and open atomic clauses, the augmented log records

13 Since release might be implemented in batch in a variety of ways, we do
not specify the interface here. Since each lock is associated with a given
transaction, and is held until the transaction completes, one always releases
all of a transaction’s locks at the same time.



reads of shared variables. An action’s current read set is those vari-
ables that have a read record in the action’s log, and its current write
set is those variables that have an assignment record in the action’s
log. In the presence of open atomic actions, read and write sets can
shrink as well as grow, as nested open atomic action commit and
discard their related portion of the log. Beyond that, conflict is as in
§3.1.2, with the addition of explicit locking specified in locking
clauses and associated conflicts. (Notice that in this log-based view
of concurrency control, the locks that an action holds are exactly
those recorded in its log.)

3.2.9 Open atomic actions and new
When an atomic action aborts, what happens to objects it allocated?
In the absence of open atomic actions, it is clear that no other ac-
tion can have seen, or will see, the newly allocated objects, so there
is no issue. However, in the presence of open atomic actions, an
open atomic action can publish to a globally accessible variable a
reference to an object allocated in a containing action. If the con-
taining action aborts, and the published reference remains, to what
does the reference refer? (The situation is similar to abrupt com-
pletion of constructors as discussed in the Java Language Specifi-
cation (Sections 12.4 and 12.5 in the Third Edition).) We require
that the compiler and run-time system guarantee that the reference
refers to a type-safe instance (of the class indicated in the new ex-
pression). However, the instance may be partially or completely
unconstructed, i.e., fields (including final fields) may have their
default initial values. In other words, the situation may be as if the
constructor has not yet run.

It is helpful if we consider instance creation to consist of alloca-
tion followed by initialization (constructor execution), as occurs in
the Java Virtual Machine. We require that allocation be effectively
an open atomic action. Constructor execution then proceeds with
a type-safe instance of the class being allocated, each of its fields
having the default value for their type. Thus, if a constructor aborts,
it unwinds the instance to this default state. We observe that, as per
the Java Language Specification, it is not a good idea to publish a
reference before the referent is fully constructed.14

3.2.10 Concerning volatile and synchronized
Given the power of atomic actions, and open atomic actions in
particular, there seems little additional value to volatile fields
when used for synchronization. When used for applications such
as access to memory-mapped I/O device registers, in the pres-
ence of atomic actions volatile fields may best be used within
oncommit clauses. The same might be said concerning invoca-
tions of library routines and operating system calls.

Concerning Java synchronized blocks and methods, we be-
lieve that they, along with wait and notify support, can be imple-
mented using open atomic actions in stylized ways. This would
replicate their semantics faithfully. The same field should not be ac-
cessed in both atomic and synchronized code, since atomic code’s
undo, retry, and oncommit are somewhat unpredictable as to
whether and when they occur.

In the long run, code using synchronized could be con-
verted to atomic or openatomic. We note that openatomic
can be used to build any ordering and signaling mechanism desired.

4. Example: An open atomic Map
We illustrate using the new open nesting features by fleshing out the
example that served in our earlier work [17]. Listing 5 shows how
an open atomic implementation of the Map interface can be defined

14 It may also be useful to view constructors as being open atomic, with no
onabort or locking clause, though adjustment may need to be made
for their effects on other objects and on any static fields.

as a concurrency-safe wrapper for unsynchronized Map implemen-
tations: OpenMap is declared as an opanatomic class imple-
menting the Map interface, and permits safe concurrent access to
the wrapped map, with get, put, remove, and size operations
defined as openatomic methods.

Generally, onabort handlers are needed only for methods that
mutate the abstract state of the map. The put operation returns the
previous value associated with the given key in the map, or null
if there was none. Thus, the onabort handler for put must either
revert the map to contain that previous association if there was one,
or simply remove the new association. Likewise, remove returns
the previous value if any, so its onabort handler must restore that
previous association.

The example uses three lock modes: SHARED, EXCLUSIVE,
and INTENTION_EXCLUSIVE, with compatibility defined by their
conflictsWith methods. Shared locks are compatible since
multiple readers can operate on the same data item (i.e., key) at
the same time. On the other hand, one cannot write a data item
while it still has readers, nor read a data item while it has a writer.
Intention locks reveal, at a coarser granularity, that some writer
is modifying some portion of a larger data item—in this case the
map itself: this. Thus, to put/remove an association for some
key in the map requires an intention lock on the map as a whole
(this). Two requests to put/remove an association for different
keys do not conflict. However, to put/remove an association for
any given key does conflict with requests that read the state of the
map as a whole, such as the size operation. The necessary con-
straints are recorded for put/remove by acquiring an exclusive
lock on the key, to prevent others from changing that association,
along with an intention exclusive lock on this to prevent oth-
ers needing shared mode access to the whole map (such as size
requires).

5. STM implementation
Our implementation approach is similar to that of the McRT soft-
ware transactional memory (STM) system [19]. McRT associates
with each object (or word, the granularity being determined on a
per-type basis) a transaction record. This record contains either a
version number (for an object/word that does not have uncommit-
ted writes) or a (pointer to) the transaction descriptor of the writing
transaction. A transaction (atomic action) accumulates two lists of
transaction records, one for items it reads (and the version number
seen) and one for items it writes (including the old version number
and the old value). It updates fields in place. When a transaction
desires to commit, it must first validate its read set: each item must
either contain a version number that is equal to what the read set
recorded, or must point to the descriptor of the committing transac-
tion (i.e., be later written by this transaction).

In the presence of nesting, open atomic actions commit by
validating reads and installing new version numbers for written
items. Commits of non-open atomic actions simply append their
read and write set lists to those of the containing action, first
updating written item transaction descriptors to refer to the parent
(or we can introduce an additional level of indirection). They need
not validate read sets, since the read sets need to be validated upon
commit of an open atomic or top-level ancestor anyway. (Validating
on nested action commit might detect conflicts earlier, but is extra
work for successful transactions.)

We need an additional mechanism to group write entries so that
appropriate batches of them are undone before invoking onabort
clauses when undoing. This can be done by starting a new (closed)
nested action after the commit of an open atomic action.

Our STM library’s API is designed to support a range of pos-
sible STM implementations. Transactions read and write fields via
accessor functions. We can change the code we generate for the



1 public openatomic class OpenMap implements Map {
2 private final Map map;
3

4 private
5 LockTable<Points<Object>, LockModes> keyLocks
6 = new LockTable<Points<Object>,
7 LockModes>(new Points<Object>());
8 private
9 LockTable<Points<Map>, LockModes> mapLock

10 = new LockTable<Points<Map>,
11 LockModes>(new Points<Map>());
12

13 public OpenMap(Map map) { this.map = map; }
14

15 public Object get(Object key)
16 locking (keyLocks:point(key):LockModes.SHARED)
17 { return map.get(key); }
18

19 public Object put(Object key, Object val)
20 [ Object result; ]
21 locking (
22 keyLocks : point(key) : LockModes.EXCLUSIVE,
23 mapLock : point(this) :
24 LockModes.INTENTION_EXCLUSIVE)
25 { return result = map.put(key, val); }
26 onabort
27 {
28 if (result == null) {
29 map.remove(key);
30 } else {
31 map.put(key, result);
32 }
33 }
34

35 public Object remove(Object key)
36 [ Object k = key; Object result; ]
37 locking (
38 keyLocks : point(key) : LockModes.EXCLUSIVE,
39 mapLock : point(this):
40 LockModes.INTENTION_EXCLUSIVE)
41 { return result = map.remove(key); }
42 onabort
43 { if (result != null) map.put(k, result); }
44

45 public int size()
46 locking (
47 mapLock : point(this): LockModes.SHARED)
48 { return map.size(); }
49

50 // ... other methods of the Map interface
51

52 enum LockModes implements LockMode<LockModes> {
53 SHARED {
54 public boolean conflictsWith(LockModes m) {
55 return m != SHARED;
56 }
57 },
58 INTENTION_EXCLUSIVE {
59 public boolean conflictsWith(LockModes m) {
60 return m != INTENTION_EXCLUSIVE;
61 }
62 },
63 EXCLUSIVE {
64 public boolean conflictsWith(LockModes m) {
65 return true;
66 }
67 }
68 }
69 }

Listing 5: OpenMap class

accessors in order to deploy different strategies. Further, any given
transaction must “open” an object before accessing it. An object
may be opened for reading only, or for writing (and reading), and
may be upgraded from reading to writing. Accessing an open for
reading (writing) requires having the object open for reading (writ-
ing). Thus the “open” functions and the accessors are “hooks” that
can be used to create almost any policy. The current prototype per-
form concurrency control on whole scalar objects and on chunks of
arrays. Further, its atomicity strategy is to update in place, saving
previous values in a write log, and to undo when necessary.

6. XJ: A portable reference implementation
Our portable XJ reference implementation has three primary com-
ponents: an extended Java source code to class file compiler based
on OpenJDK’s javac, a run-time bytecode rewriting tool imple-
mented as a JVMTI agent, and the XJ run-time library. The XJ
compiler accepts our extended syntax for closed and open atomic
actions, performs compile-time checks, and compiles the language
extensions to standard Java class files. Most of the work it does
is to provide the structure needed to represent atomic actions in
Java bytecode, supporting transaction abort and retry, and to rep-
resent the suffix clauses of open nested actions. It provides only
a framework for atomic action execution, with the remaining sup-
port for transactions injected into the bytecode by the JVMTI agent
to make the transformations complete. The bytecode is then ready
to run with the XJ library that keeps track of the transactions as
they execute and supports the run-time functionality for concur-
rency control, and transaction abort and roll-back.

6.1 XJ compiler
Our implementation of the XJ compiler is based on version 1.7.0-
ea-b19 of OpenJDK’s javac. This has been extended to accept the
new XJ syntax and generate compliant Java bytecode that will run
on any standard Java virtual machine (though transaction support
comes only when combined with the XJ run-time rewriter and XJ
run-time library). We modified the parser to accept the new syn-
tax, the annotation processor to statically check the new constructs,
the abstract syntax tree (AST) to represent handlers and lock ex-
pressions, and the lowering phase to transform the high-level XJ
constructs into a standard Java AST. We had no need to modify the
bytecode generation parts of javac.

We focus our explanation of the compile-time transformations
on those needed for open nested methods, which subsume those
for closed atomic methods and blocks, illustrated for the remove
method of the OpenMap example shown in Listing 5. The XJ
compiler produces Java bytecode for this method equivalent to the
Java source shown in Listing 6, as follows.

• The PreDecls in a MethodDeclarator transform into
local variable declarations in the method body, allowing the
capture of state at the beginning of the open nested action, as
seen at line 3.

• Lock expressions can be inherited by overriding methods. To fa-
cilitate this we transform lock expressions into protected meth-
ods of a class and invoke the method at the point the lock needs
to be acquired (line 45).

• The body of the method moves into a collapsed version of the
method as seen at line 42.

• Suffix clauses are encapsulated as anonymous instances of inner
classes that capture their unbound variables from the enclosing
scope as final variable declarations as described in detail below.



6.1.1 Handlers on open atomic methods
If an open atomic method runs to completion then its handlers need
to be logged. In the case that it fails it must retry from the begin-
ning. To allow retry we wrap the method body in a try/finally
block (line 6 of Listing 6) nested within an infinite loop (line 5). The
outer try/finally block is used to detect the successful comple-
tion of the method. In the case that it does complete successfully
we then create a new instance of a TxnHandler class overriding
the corresponding method defined in the handler, and log the han-
dler (line 25). We then commit this open atomic transaction. If a
TxnException occurs while trying to log the handler, we abort
the transaction and retry it from the beginning. Inside of the main
try/finally block is another nested try/catch block. This
is used to run the corresponding collapsed method body (line 12).
Prior to running the method body we create a new nested transac-
tion (line 8). If the collapsed method throws a TxnException
we abort the transaction and retry the transactional method. In the
case where an Error is thrown we abort the transaction and throw
the Error. In either of these cases we avoid logging the handlers;
they are logged only when the method completes successfully.

It is possible for a constructor of an open atomic class to have
handlers associated with it. The transformation described above
cannot be applied to constructors directly because the first state-
ment in a constructor should be a call to a superclass constructor
or another constructor in the current class. To get around this issue
we use a two phase transformation for constructors of open atomic
classes. The first phase is done by the XJ compiler while the byte-
code instrumenter completes the second phase. The XJ compiler
leaves the super or this call as it is in the constructor (even if it
has complex expressions as arguments to the other constructor) and
moves the rest of the statements to a get_$init method. A call to
this get_$init method is added to the constructor. The transfor-
mation done in the second phase is explained in Section 6.2.3.

6.2 Bytecode instrumenter
To add transaction support to classes we adopt an approach similar
to that of our previous work in transparent distribution for Java [13],
allowing mediation of all accesses to static and instance fields, as
well as elements of arrays. The transactional machinery needed by
objects (the lock word, etc.) reside in instances of TxnObject.
Ideally, all objects that are going to be read from or written to
inside a transaction extend this class. Also reads and writes inside
transactional methods and transactional blocks need to be logged.
We accomplish this by instrumenting classes at run time. The
instrumentation that needs to be performed on a class depends on
the classification of the class. We divide classes into two categories,
direct classes and wrapped classes. Direct classes are ones that
can be transformed to inherit from TxnObject and on which our
rewrites can be performed directly. Figure 1a shows the manner in
which direct classes are transformed.

There are a few classes in the JVM that cannot be rewritten
directly in this ideal manner. The JVM has intimate knowledge of
these classes; e.g., the offsets of fields in these classes are hard
coded into the JVM (java.lang.ref.SoftReference in
Oracle’s Hotspot JVM is an example), thus they cannot extend
TxnObject. In order to get the transactional machinery into these
classes we wrap them. We also wrap all classes that have native
methods.15 The manner in which wrapped classes are transformed
is shown in Figure 1b.

We preprocess all classes used by the application prior to run-
ning it. Preprocessing helps us classify classes beforehand. The
process used is similar to that of McGachey et al. [13].

15 This is safe, but it may not always be necessary, depending on how JNI
libraries are coded.

1 public Object remove(Object key) {
2 TxnDescriptor _$current_desc = null;
3 Object k = key;
4 boolean _$succeed = true;
5 while (true) {
6 try {
7 _$succeed = true;
8 TxnDescriptor.beginOpen(
9 _$current_desc);

10 try {
11 return
12 this.remove_$collapsed(key,

_$current_desc);
13 } catch (TxnException ex) {
14 TxnDescriptor.abortOpen(_$current_desc);
15 _$succeed = false;
16 continue;
17 } catch (Error ex) {
18 TxnDescriptor.abortOpen(_$current_desc);
19 _$succeed = false;
20 throw ex;
21 }
22 } finally {
23 if (_$succeed) try {
24 final Object _$k = k;
25 _$current_desc.getOpenLog()
26 .logHandler(new TxnHandler() {
27 public void _$abort() {
28 if (result != null) {
29 map.put(_$k, result);
30 }
31 }
32 }, TxnHandler.ON_ABORT_HANDLER);
33 TxnDescriptor.commitOpen(_$current_desc);
34 } catch (TxnException ex) {
35 TxnDescriptor.abortOpen(_$current_desc);
36 continue;
37 }
38 }
39 }
40 }
41

42 private Object remove_$collapsed(
43 Object key, TxnDescriptor _$current_desc)
44 {
45 this.remove_$locking(
46 key,_$current_desc);
47 result = map.remove(key);
48 return result;
49 }
50

51 protected void remove_$locking
52 (Object key, TxnDescriptor _$current_desc)
53 {
54 LockSpace space;
55 Lock shape;
56 space = keyLocks.getSpace();
57 shape = ((Points) space).point(key);
58 keyLocks.add(
59 shape, LockModes.EXCLUSIVE, _$current_desc);
60 space = mapLock.getSpace();
61 shape = ((Points) space).point(this);
62 mapLock.add(
63 shape, LockModes.INTENTION_EXCLUSIVE,
64 _$current_desc);
65 }

Listing 6: Transformed remove method of OpenMap
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Figure 1: Class transformations

Original Classes Transformed Array Types

S[ ]

T[ ]

Class gen.Array_of_S_1_XJ

Class gen.Array_of_T_1_XJ

Class TxnObjectArrayWrapper

Figure 2: Array type transformations

6.2.1 Statics
Object locking in XJ is done via a lock field in TxnObject. This
mechanism does not work for static fields, since they are not part
of an object. In order to use the same transactional machinery
on static fields we move the static fields and static methods of
a class to a generated class, where they become instance fields
and instance methods. We also generate get/set methods for these
moved fields. We guarantee that there is only one instance of this
generated class, which we call the static singleton of the original
class. The static singleton is initialized via the static initializer of
the generated class. When a static singleton is initialized it also
initializes its superclass, which would be the static singleton of
the original class’s superclass. Each static singleton class has a
static get_$singleton method to get the single instance. The
instrumenter rewrites getstatic and putstatic bytecodes
to first obtain the corresponding singleton for the field and then
invoke the appropriate get/set method on it. invokestatic is
also rewritten such that the invocation is on the static singleton
instance.

6.2.2 Arrays
We generate special “array classes” for array types. This helps us
get the transactional machinery into arrays. Arrays do not use the
same locking mechanism used by scalar objects. Having a single
lock word for the whole array would not perform well. Instead,
we allow customizing of the lock scheme used on arrays, having
a lock for each element or a lock for each portion of the array.
The TxnArray interface defines the API for obtaining locks on an
array. The XJ run-time library provides wrappers for each primitive
array type and for the object array type. Each generated array class
extends one of these wrapper classes, enabling it to gain access
to the transaction machinery. The structure of the generated array
classes is similar to that of McGachey et al. [13] for arrays. Figure 2
shows the transformation for array types.

6.2.3 Object creation
As mentioned before, constructors go through a two-phase trans-
formation. The second transformation is performed by the instru-
menter. The purpose of this transformation is to move all the code
from inside the constructor to the get_$init method. We do this
by adding a dummy constructor to each class. The dummy con-

structor is used purely for object creation. This enables us to create
an empty object for a given class. We then transform the construc-
tors such that any call to a superclass constructor is replaced with
a call to the dummy constructor in the superclass. Also, within the
corresponding get_$init method for that constructor we insert
a call to the corresponding get_$init method of the superclass
constructor. This transformation enables us to create an empty ob-
ject first, and then run all the code of the constructor within the
boundary of a transaction.

6.2.4 Java agent
Dynamic code rewriting is performed via a Java agent using
the Java Virtual Machine Tool Interface (JVMTI). In order to
rewrite all Java classes (including those loaded by the boot-
strap class loader) the agent creates a separate operating sys-
tem process for running the instrumenter. We use the ASM li-
brary [3] for instrumenting Java classes. The instrumenter pro-
cess is created in the Agent_OnLoad function. The agent uses
the ClassFileLoadHook callback to intercept classes loaded
by the JVM. Intercepted classes are then presented to the instru-
menter. The agent communicates with the instrumenter via pipes.
The result of this instrumentation process could be a single class
or multiple classes. If the result is a single class, the agent returns
the bytes received from the instrumenter as the bytes of the in-
strumented class. If the result consists multiple classes, the action
taken by the agent depends on the class loader of the class be-
ing loaded. If the original class is loaded by the bootstrap class
loader, any additional class files are written to a special directory
which happens to be on the bootstrap class loader’s class path (set
via the -Xbootclasspath VM option). If the original class is
not loaded by the bootstrap class loader, any additional class files
are injected into the VM via the DefineClass JNI function. In
both cases the bytes of the original loaded class are replaced by
the rewritten bytes. Calling the DefineClass function on the
additional classes inside the agent causes those class definitions
to be intercepted again (because of the ClassFileLoadHook),
but there is no need to call the instrumenter for them because the
agent already has their instrumented versions. To support this func-
tionality the agent keeps a local cache for any additional class
files obtained from the instrumenter (if not loaded by the boot-
strap class loader) and the agent passes an empty byte array to the
DefineClass function. When the agent intercepts the loading
of any class, it first checks if the class already has an instrumented
version in the local cache, and if so, it uses that version instead
of invoking the instrumenter and then removes the class from the
cache. Otherwise it sends the class to the instrumenter for instru-
mentation as usual.

6.2.5 Instrumenter process
The instrumenter runs in a infinite loop polling for messages by
the agent. The first byte of each message from the agent is a code
indicating the action requested from the instrumenter. This control



byte indicates the class loader of the object (the bootstrap class
loader or not), or that the VM has been initialized or is being
shut down. Once a request is received for instrumenting a class,
the instrumenter performs rewrites based on its classification. The
preprocessed information is used to determine the classification of
a class. Although we divide classes into two categories, the general
rewrites we perform on individual elements of these classes are
similar. We now describe those rewrites.

• Generate a static singleton for the given class
• Generate accessor classes for each field in a class. The accessor

classes are used for logging reads/writes as explained in Sec-
tion 6.2.6

• The first rewrite we do is to redirect to newly generated types.
This includes redirecting to wrapped versions of objects and
rewriting getstatic, putstatic, and invokestatic
to refer to static singletons. We also redirect to the newly gen-
erated array and accessor classes

• Transform constructors as described in Section 6.2.3
• Create transactional versions of all methods. This is done by

duplicating methods and adding a TxnDescriptor as the
last parameter to the method. We also add logging to reads and
writes (getfield, putfield, array loads and stores) in this
method.

6.2.6 Accessor objects
We generate accessor classes for each field of a class; each extends
org.ruggedj.xj.xjrt.runtime.Accessor, which has a
single abstract method restoreField used by the run-time li-
brary to perform undo operations. It takes a TxnWriteLog as an
argument and returns void. The generated accessor class also has
a set method for setting the value of the field and a get method
corresponding to its data type for getting the value of the field. The
set method pushes the object being updated into the write log
along with the accessor instance and the value been written. It also
sets the value of the field in the object. The corresponding get
method pushes the current object into the read log along with the
value being read, and returns that value.16 The generated acces-
sor class instances are created in the static initializer of a class and
held in new static final fields. During the instrumentation phase,
getfield, putfield, getstatic, and putstatic byte-
codes are rewritten to use the accessor object for setting and get-
ting a field. The restoreField method pops the object from
the write log and then pops a value of the corresponding data type
from it (one of the primitive types or Object). It then sets the field
of the class to the popped value (cast to the field’s declared type),
restoring its value. The run-time library provides accessor classes
for array types, one for each primitive array type, and one for object
arrays, so these do not need to be generated for each type.

6.3 Run-time library
The XJ run-time library provides the underlying support needed
to manage transactions at run time. It consists of logs needed
for logging reads, writes, and handlers (for open atomic trans-
actions), which capture handlers and abstract locks, and it sup-
ports conflict detection and rollback. It also consists of key classes
such as TxnObject, which holds the lock field for objects,
TxnArrayWrapper which holds the locks for array classes, and
TxnDescriptor, which represents a top-level transaction and
its subtransactions. The lock field in TxnObject is represented
as an int with its low 3 bits indicating a mode. If the mode is 000,

16 Our current system records only a version number of the whole instance,
but the API allows for a wide range of transaction management strategies.

the value stored in the lock field is a version number; mode 001 in-
dicates that the value stored is the id of a transaction that has locked
the object. The other modes are reserved for future use. All classes
used within a transaction are expected to extend TxnObject (di-
rectly or indirectly). The methods for acquiring and releasing locks
lie in the TxnObject class. This enables us to lock all objects
used (written) within a transaction. This also implies that we ob-
tain locks on a per-object basis.17 TxnArrayWrapper has an
int array whose elements are used as locks. As mentioned before,
depending on the configuration a lock can be allocated per element
or per group of elements.

The TxnDescriptor class represents transactions in our sys-
tem. It contains an int field used as the unique id of the transac-
tion, a read log (for logging reads (if needed by the transaction
management protocol)), a write log (for logging writes), and an
“open” log (for logging handlers of open atomic actions). It also
contains a stack for keeping track of nested transactions. Note that
we do not create a new TxnDescriptor for each nested trans-
action. Rather, we use the same TxnDescriptor for all nested
transactions with the TxnDescriptor instance keeping track of
nesting and the state of the transaction. TxnDescriptor pro-
vides methods for obtaining the logs and performing transactional
operations (begin, commit, abort) for both closed and open atomic
transactions. Each method running inside a transaction has access
to the current transaction descriptor via an argument to the method
that is injected by the bytecode instrumenter.

7. Future work
Our work is not finished. In particular, we will shortly have the im-
plementation tested and sufficiently functional to begin exploring
its performance characteristics, as well as opportunities to improve
performance, as others have done for closed nested transactions [2].
Naturally, our prototype approach will likely suffer from lack of as-
sistance from modifications to the underlying Java virtual machine.
We look forward to exploring what support the JVM can provide
via extended bytecodes or internal logging of variable reads/writes.
Ultimately, the JVM can also take advantage of recently-available
hardware transactional memory support to further reduce execution
overheads. We have recently also completed extensions to ASM in
support of generalized forward and backward data flow analyses
to support rewrite-time optimization of the placement of logging
and locking operations for transactions and removal of redundant
operations.

We look forward to feedback from others regarding the flexi-
bility and utility of open nested transactions as a means to gaining
improved concurrency for applications built using XJ.
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