
X10 on the Single-Chip Cloud Computer
Porting and Preliminary Performance

Keith Chapman Ahmed Hussein Antony L. Hosking
Purdue University, West Lafayette, Indiana
{keith,hussein,hosking}@cs.purdue.edu

Abstract
The Single-Chip Cloud Computer (SCC) is an experimental pro-
cessor created by Intel Labs. SCC is essentially a ‘cluster-on-a-
chip’, so X10 with its support for places and remote asynchronous
invocations is a natural fit for programming this platform. We report
here on our experience porting X10 to the SCC, and show perfor-
mance and scaling results for representative X10 benchmark appli-
cations. We compare results for our extensions to the SCC native
messaging primitives in support of the X10 run-time, versus X10
on top of a prototype MPI API for SCC. The native SCC run-time
exhibits better performance and scaling than the MPI binding. Scal-
ing depends on the relative cost of computation versus communi-
cation in the workload used, since SCC is relatively underpowered
for computation but has hardware support for message passing.

1. Introduction
The Single-Chip Cloud Computer (SCC) experimental processor
is a 48-core ‘concept vehicle’ created by Intel Labs as a platform
for many-core software research [MARC; Mattson et al. 2010].
This processor explores a scalable many-core architecture that dis-
penses with hardware support for cache-coherent shared memory.
SCC uses a mainstream x86 instruction set, runs Linux, and has
compilers supporting C, C++, and Fortran. It also supports a sim-
ple message-passing API called RCCE, allowing point-to-point
synchronous communication over an on-die mesh connecting the
cores. Each core boots its operating system independently of the
other cores so that, in concert with the mesh network, the processor
can be programmed as a ‘cluster on a chip’. Messages over the net-
work coordinate processes running on the cores, and communicate
data among those processes.

SCC is a natural platform for the X10 language [Charles et al.
2005]. X10’s places are a direct abstraction for SCC’s distributed
cores and for communication among them. X10’s data distribution
constructs naturally support partitioning of work among SCC cores.
Supporting X10 on SCC can be achieved in a number of ways.
The X10 run-time can be deployed as either native code (using the
C++ backend) or as Java bytecode (using the Java backend). The
C++ backend is currently more mature (though the Java backend is

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee.
X10’11, June 04 2011, San Jose, CA, USA
Copyright c© 2011 ACM 978-1-4503-0770-3/11/06. . . $10.00.

rapidly gaining), which suits our porting effort because of SCC’s
established support for C++.1

For transport, the X10 run-time already supports various op-
tions, including sockets and MPI. Unfortunately, X10’s sockets
transport is built above SLURM (Simple Linux Utility for Re-
source Management), which is not currently available on SCC so
we cannot use that. Intel provided us with a prototype of an MPI
API for SCC, which proved capable of running some X10 pro-
grams (but not all reliably). However, we were also interested in
exploring direct use of SCC’s native message passing API known
as RCCE (pronounced “rocky”). Indeed, we have had good suc-
cess with RCCE, though we have made significant changes and
extensions to it to match the needs of the X10 run-time which we
call RCCE-X10. We describe our experiences with both the MPI
on SCC prototype and with RCCE-X10 and compare their perfor-
mance running several X10 benchmark applications.

The rest of this paper is organized as follows. We review the
features of SCC in Section 2, then describe our port of X10 to SCC
in Section 3 including the details of our RCCE-X10 extensions to
the RCCE native message passing API for SCC. Section 4 presents
the results of running several X10 benchmark applications on SCC,
comparing both the MPI and RCCE-X10 transport layer bindings,
and replicating the results on a stock Linux cluster as a sanity
check. These applications demonstrate good scalability for some
input workloads, though we note that other inputs do not yield such
good results. Section 5 offers conclusions and directions for further
work.

2. SCC
The SCC chip is a many-core CPU comprising 24 dual-core x86
tiles connected via a 2D-grid on-die network. The tiles are arranged
in a 6 by 4 mesh with each tile containing two blocks. Each block
implements a Pentium P54C processor core, 16-Kbyte L1 caches
for instructions and data, and a unified 256-Kbyte L2 cache. Each
tile has a mesh interface unit (MIU) which allows the mesh and
the interface to run at different frequencies. Each tile also has a
16-Kbyte message passing buffer (MPB) for fast communication
between tiles, and two test-and-set registers (one per core) for
synchronization among cores.

The cores are second-generation P54C Pentium processors,
which execute in-order. The P54C does not support the SSE in-
structions available on later Pentium processors. Each tile connects
to a router via the MIU, which packetizes data to and from the
mesh. The MIU handles data cache misses by translating the 32-bit
memory address of the core to a wider system address that al-
lows access to up to 64 Gbytes of (non-coherent) off-chip memory,
accessible via four DDR3 memory controllers. A router is also con-

1 SCC does run stock Java virtual machines, so in future we plan to focus
on the Java backend.

nected to an off-package FPGA which translates the mesh protocol
into the PCI Express protocol so that the chip can interact with a
PC management console. Voltage and frequency can be controlled
per-tile and on the mesh, for a total of 25 frequency domains.

The MPB is in fast on-die SRAM, as opposed to the system
memory accessed through the four DDR3 controllers. Pages in the
P54C’s page table have a special reserved bit to mark MPB data,
which is cached in L1 but bypasses L2. A new instruction allows
invalidation of all MPB lines in the L1 to force subsequent accesses
to memory.

A common system configuration (and the one we use) views the
address space of a core in three regions:

1. Private off-chip DRAM regions associated one per core. The
system is configured so that each of these regions are accessible
only by one core. This corresponds to the main memory in a
conventional system. On the SCC machine we have access to
these private memories are configured to be around 322 Mbytes
per core.

2. Shared off-chip DRAM configured as uncacheable to avoid
consistency issues, used for direct access to each core’s register
file by SCC’s monitoring and configuration tools.

3. Shared on-chip SRAM mapped by all cores as MPB (so any
core can see another’s MPB) and marked as MPB data so it can
be cached in L1. On our SCC machine we have 8 Kbytes of
MPB per core.

As previously noted, each core also has a test-and-set register to
support inter-core locking for synchronization.

A TCP/IP driver also permits communication among the cores
over the mesh via the usual TCP/IP stack and to provide access to a
console for each core. This also allows the cores to access a shared
memory-mapped NFS file system.

2.1 RCCE native message passing API
The RCCE native message passing API is based on one-sided put
and get primitives which move data from private memory through
the L1 cache of the sending core via the MPB to the L1 cache of the
receiving core, without having to go off-chip with the data. While
the MPB is physically distributed among the tiles, it is logically
a single shared address space so any core can access any address
in the MPB. The MPB is logically divided into 8 Kbyte contiguous
blocks, one per core, created by equally dividing the 16 Kbyte MPB
on each tile. A portion of each 8 Kbyte segment can be devoted to
flags for coordinating communication between cores, while the rest
is available for sending and receiving messages. Because there is no
coherence, the flags must be used for explicit synchronization.

RCCE also provides a pair of two-sided synchronous send and
receive functions that support two-sided communication. These
functions block until matching calls on both sides complete exe-
cution. A private memory buffer on the sending side is packetized
through the MPB to a private memory buffer on the receiving side.
Whereas in MPI one can use asynchronous communication to avoid
deadlock, RCCE’s synchronous communication requires that dead-
lock be avoided by design.

3. X10 on SCC
Running X10 on SCC is relatively straightforward. We use the X10
C++ backend and compile using the SCC C++ cross-compiler. Be-
cause the SCC does not support SSE we disable SSE instructions
in the X10 build. Because X10 already has an MPI transport imple-
mentation we are able to take advantage of a prototype MPI API
provided by Intel, and run some X10 applications ‘out-of-the-box’.
Unfortunately, X10 seems to tickle some residual bugs in the MPI

0 1 2 47…

0 1 2 47…

48 MPB areas of 8 Kbytes per core

48 MPB write sections per core of 160 bytes

Figure 1: MPB allocation for SCC MPI over MPB

0 1 2 47…

send[n] recv[n] msg

48 MPB areas of 8 Kbytes per core

message region of 8 Kbytes - 2n flags per coreflags

Figure 2: MPB allocation for RCCE-X10

API, which we are trying to resolve with help from Intel. As a re-
sult, our experiments using this transport are not complete.

In addition, the X10 C++ backend uses the Boehm garbage
collector, which we have yet to enable successfully on SCC (be-
cause of C/C++ library incompatibilities). As a result we must run
without garbage collection, which means the range of applications
we can run is limited by the available memory on the SCC. Our
SCC machine allocates 322 Mbytes of private DRAM per core. Of
course, limited memory also means that we can often not run work-
loads that provide sufficient work to keep all cores occupied. This
means that we must strike a fine balance between work and mem-
ory footprint to demonstrate useable scaling.

Our primary interest in X10 on SCC was to explore how best
to make use of the underlying hardware support for messaging
between cores using the on-die SRAM MPB, the integrated per-
tile MIUs, and the mesh. While the MPI API provided by Intel
does use this underlying hardware support, we wanted to tailor the
hardware-supported messaging to X10’s run-time conventions as
best we could. Because the SCC hardware does not map to the MPI
communication mechanisms directly, it makes sense to implement
a native SCC-based transport that better fits the X10 run-time. We
first describe the SCC MPI library implementation, and then our
own RCCE-X10 native implementation.

3.1 SCC MPI library
The SCC MPI API is an effort to provide lightweight MPI in
support of MPI applications running out-of-the-box on SCC. It
has been implemented to support message passing over multiple
transports:

mpi-mpb: direct use of the MPB and MIU to communicate be-
tween cores;

mpi-sock: using sockets through the TCP/IP stack (which commu-
nicates via the TCP/IP driver for the mesh);

mpi-shm: using shared memory to pass messages.

We are unable to use the mpi-shm transport because it depends on
a kernel patch that is not yet available to us. Thus, our experiments
include only mpi-mpb and mpi-sock.

3.1.1 SCC MPI over MPB
Each core on the SCC has 8 Kbytes of MPB. In the MPI over
MPB (mpi-mpb) implementation each core divides its 8 Kbytes of
MPB into 48 sections of 160 bytes for direct use by other cores to
write incoming messages as shown in Figure 1. Thus, a core can
simultaneously communicate with multiple cores. When sending a

0 1

Process P0 Process P1

P0 section 1

0 1

P1 section 0

Local read

Remote write:
Send to P1

Local read:
Receive from P0

Remote write

Figure 3: Sending and receiving a message with SCC MPI over
MPB

send[n] recv[n] msg send[n] recv[n] msg

Process P0 Process P1

1: Local write

2: Set remote send[0]

3: Remote read

4: Clear local send[0]

5: Set remote recv[1]

6: Clear local recv[1]

Figure 4: Sending and receiving a message with RCCE-X10

message a core writes to the exclusive write section reserved for
it on the receiving core (see Figure 3). The receiver then reads the
message locally. This permits both sends by writing to the remote
target and receives by reading locally. The per-core test-and-set
registers support synchronization of actions on the MPB sections.

3.1.2 Limitations of SCC MPI
Of course, each of the MPI implementations constrains clients to
use the MPI API, which may not be a good match for application
needs. Directly accessing the hardware via the RCCE APIs exposes
the limitations (and efficiencies) of the hardware messaging support
that should enable better performance so long as applications can
use the RCCE APIs effectively.

3.2 RCCE-X10: A native X10 run-time for SCC
RCCE-X10 is our extension to the RCCE API optimized for the
X10 run-time. It introduces new functionality not present in RCCE
and tailors existing functionality to suit X10 better.

Unlike SCC MPI, RCCE-X10 does not define exclusive write
sections. Instead, the sender deposits a pending message into its
local MPB and the receiver reads it remotely. We use instances
of RCCE_FLAG for explicit synchronization between cores. Each
core has n send and n receive flags in its MPB, where n is the
number of cores participating in the computation. The remainder
of the MPB is used for each outgoing message. The send flags
notify a receiver that a message is pending from the corresponding
sender, which it can read remotely from the sender’s MPB. The
receive flags let the receiver acknowledge receipt of the message to
the sender. In this way, while a sender is waiting for its message
to be delivered it can still probe for any incoming messages. This
organization is illustrated in Figure 2.

RCCE allows the programmer to specify whether each flag
occupies a whole MPB 32-byte cache line, or only a single bit
within a line to save space for increased bandwidth. However, using
a single bit requires implementing atomicity of flag access using the
test-and-set register of the core, resulting in higher latency. Thus,

in our experiments we use a whole cache line per flag to optimize
for latency. Thus, the space allocated in the MPB for each core’s
outgoing message is 8 Kbytes minus 32× 2n bytes for n cores.
Messages larger than this must be broken down and sent in chunks.

3.2.1 Limitations of RCCE
From the perspective of the X10RT layer the default RCCE API
has some limitations. RCCE-X10 was designed to mitigate these
limitations, as follows:

• The RCCE_send call blocks until a matching receive has been
posted. X10RT requires sends not to block receipt of incoming
messages or else deadlocks can occur, so we implemented a
send call that probes for incoming messages while waiting for
the send to finish.

• The RCCE_recv function requires specifying the node from
which to receive the message. In contrast the X10RT layer is
not aware of which place it wants to receive a message from
and simply probes for an incoming message from any place.

• The X10RT layer sends and receives several kinds of messages.
When a message arrives the kind of message dictates which
callback will be used to handle the message. Also, X10RT
uses put/get operations to transmit data from/to a predetermined
memory location. This requires probing for the details of the
message payload. To support both of these cases we add a
message header to distinguish the kind and size of the message.

• The X10RT layer uses x10rt_probe to probe for a mes-
sage and receive it without blocking. We implement a new
RCCE_X10_iprobe operation to do this. When probing de-
tects a message we use our own receive function to retrieve
the message. We cannot use the existing RCCE operation
RCCE_recv_test because it is similar to RCCE_recv in
needing to know the sending node from which to test for an
incoming message.

3.2.2 Sending and receiving
Figure 4 shows the sequence of steps required to deliver a message
in RCCE-X10. A sender notifies a receiver that a message is pend-
ing by setting its corresponding remote send flag in the receiver.
A receiver acknowledges receipt of a message by setting its cor-
responding remote receive flag in the sender. Senders wait for ac-
knowledgment by busy-waiting on the corresponding local receive
flag. Receivers poll the corresponding local send flag for incoming
messages.

Sending. Sending involves the following steps:

1. Write the message into the local MPB.

2. Set the send flag corresponding to this sender in the remote
MPB of the receiver. This indicates to the receiver which pro-
cess has a message for it.

3. Busy-wait on the receive flag corresponding to the receiver in
the local MPB, until it has acknowledged receipt of the message
by remotely setting the flag. At each iteration the sender checks
its local send flags to see if it has any messages pending from
other processes. If there is an incoming message then read it
into a local buffer but defer passing it to the corresponding X10
callback. Only release the message to the callback when the
X10 run-time executes an x10rt_probe call.

4. Clear the receive flag corresponding to the receiver in the local
MPB.

Large messages require repeating these steps as many times as
necessary to send each chunk of the message.

Receiving. When x10rt_probe is called we must check all the
send flags in the local MPB. If any of them are set then the corre-
sponding senders have messages that should be retrieved. Having
detected an incoming message, the receiver executes the following
steps:

1. Read the message from the sender’s remote MPB.

2. Clear the send flag corresponding to the sender in the local
MPB.

3. Set the receive flag corresponding to this receiver in the remote
MPB of the sender.

4. If all the chunks of the message have been received then re-
turn. Otherwise busy-wait on the send flag corresponding to the
sending process until it deposits the next chunk into its MPB,
then repeat the steps.

3.2.3 Limitations of RCCE-X10
There are a number of limitations of this implementation of RCCE-
X10. First, sending a message takes full control of the local MPB to
hold the message, and this cannot be relinquished until the receiver
has read the message. We use a lock around the send function,
which prevents multiple threads at the same process from sending
messages concurrently.

Second, the X10 RT specification recommends that the x10rt-
_probe function should not block waiting for network traffic to
arrive, or else performance can be affected. We do not buffer mes-
sages in RCCE-X10, so once a node starts receiving a message it
must wait until the whole message has been received. If a message
is larger than the available MPB space then x10rt_probe will
block until all the chunks have been received and processed. Thus,
bulk transfers of large amounts of data using put/get operations can
degrade the latency of other messages. In future we plan to use
shared memory to transmit large messages to avoid this bottleneck.

4. Experiments
Our experiments explore the performance of several X10 bench-
marks running on the SCC using our native RCCE-X10 message
passing run-time, the default X10 sockets run-time, as well as us-
ing the prototype SCC MPI implementation. The current choice
of benchmarks is constrained by the current X10 port. We are un-
able to run with garbage collection enabled (the garbage collector
used by the X10 C++ backend currently crashes on SCC because of
incompatibilities with SCC’s rather old C library). Thus, the work-
load must operate within the constrained 322 Mbytes per core of
memory available on the SCC. In tension with this constraint, to
achieve scalability we must also use workloads that perform suf-
ficient work on each core to justify the overheads of communica-
tion. But larger workloads tend to require more memory. Thus, we
currently have only two benchmarks running on the SCC, but we
plan soon to have results for others, especially as we are able to get
garbage collection to work.

4.1 Platforms
On the SCC we disable SSE instructions in the X10 build, and
run without garbage collection. For all our experiments the SCC
cores were running at 533 MHz and the mesh at 800 MHz with 800
MHz DDR3. Each core has 322 Mbytes or private memory. We
use SCC Linux version 2.6.16-Rev13 unchecked, libc version
2.3.6, cross-compile X10 using gcc version 3.4.5 configured as
i386-unknown-linux-gnu, use the GNU Scientific library libgsl
version 1.14, and base our implementation on RCCE trunk revision
69. We use X10 revision 19448 post-2.1.1 trunk, dated January 13,
2011.

In addition to the SCC platform, we also run the benchmarks
on our AMD Opteron cluster as a means of validating our experi-
ments and setup. The AMD cluster comprises three 16-way multi-
processors connected via private Gigabit Ethernet, each with eight
dual-core AMD Opteron 865 processors running at 1.8 GHz and
32 Gbytes of RAM. On the AMD cluster we compile the X10
benchmarks and run-time using gcc version 4.4.0. We use library
libgsl version 1.13-3 and are able to run with the garbage col-
lector library libgc version 7.1. We use X10 revision 20089 post-
2.1.1 trunk, dated February 13, 2011. It is configured to use the
MPI transport layer on the cluster.

On both the AMD cluster and SCC we set X10_NTHREADS=1
so that every core has only one worker thread.

4.2 Benchmarks
We were able to run two representative X10 benchmarks on SCC.
One is a molecular chemistry application, and the other is a social
networks application.

4.2.1 ANUChem HF
Milthorpe et al. [2011] have implemented the Hartree-Fock (HF)
method in X10 as part of a suite of X10 benchmarks [Australian
National University]. Hartree-Fock is used in quantum chemistry
to solve the pseudo-eigenvalue problem FC = εSC, where F , C and
S are the Fock, molecular orbital Coefficient and Overlap matrices,
respectively [Szabo and Ostlund 1989]. The dimensions of these
matrices depend on the number of basis functions used to represent
the molecular system, and so indirectly on the number of atoms
in the system. HF solves for C, with a known constant matrix S.
Because F is dependent on C, HF uses an iterative Self Consistent
Field (SCF) method. The bulk of the work in HF is setting up the
Fock matrix F :

Fi j = Hcore
i j +

N

∑
k,l

Pkl [〈i j|kl〉− 1
2
〈ik| jl〉]

where i, j,k, l denote atom centered basis function indices, 〈i j|kl〉 is
a four centered two-electron integral and Hcore is a matrix contain-
ing one-electron integrals. P is the density matrix and is obtained
from C.

In the X10 implementation, the density matrix is replicated at all
places by copying the array as part of the “active message” that ini-
tiates computation of the partial contribution to the F matrix. Load
balancing of the two-electron integral evaluations is the main con-
cern in HF. Milthorpe et al. [2011] consider several alternatives to
achieving this. One uses static load balancing, with a coarse gran-
ularity of work mapped using async and at over the available
places in an outer loop, and results gathered and reduced at the
end using finish. Another approach uses dynamic load balanc-
ing with a shared counter, as suggested by Shet et al. [2008], imple-
mented as a global atomic integer manipulated using futures. Each
of the places iterates over all work tasks. When the local iteration
counter matches the global counter, that unit of work is performed
at the current place, otherwise it is skipped. This method involves
frequent communication to the first place where the global counter
is maintained, which may degrade scaling.

Milthorpe et al. [2011] report results for HF running on a Blue
Gene/P with 850 MHz PowerPC 450 processors. They report only
results for the static load balancing technique, stating that this is the
only scheme that runs to completion and shows positive scaling.
In contrast, we are able to run with the dynamic load balancing
scheme and observe scaling, reporting our results below.

Our experiments use revision 939 of the 2.1.2 branch of
ANUChem dated January 25, 2011. We report results on SCC
for the Benzene STO-3G workload. We are unable to run the Ben-
zene 3-21G workload used by Milthorpe et al. [2011] on the SCC,

but we do report results for Benzene 3-21G on our AMD Opteron
Linux cluster.

4.2.2 BC
Betweenness Centrality (BC) [Anthonisse 1971; Freeman 1977] is
used in the analysis of social networks to rank actors according
to their prominence within the network. High centrality scores
indicate that a vertex in a graph can reach others on relatively short
paths, or that a vertex lies on considerable fractions of shortest
paths connecting others. Brandes [2001] shows that betweenness
can be computed exactly and efficiently, even for reasonably large
networks.

Brandes computes betweenness centrality by counting shortest
paths using Dijkstra’s algorithm for weighted graphs and breadth-
first search for unweighted graphs. Given a graph of vertices V and
edges E, a path from vertex s to vertex t is an alternating sequence
of vertices and edges beginning with s and ending with t, such
that each edge connects its preceding vertex with its succeeding
vertex. Let n and m represent the number of vertices and edges,
respectively. Let w be a weight function on the edges, such that
w(e) > 0 for every edge e. In an unweighted graph w(e) = 1.
The length of a path is the sum of the weights of all the edges in
that path. Let σst denote the distance between vertices s and t (by
convention σss = 1). Finally, σst(v) denotes the number of shortest
paths from s to t that some vertex v lies on. The centrality formula
used is:

CB(v) = ∑
s 6=v 6=t∈V

σst(v)
σst

Brandes describes an algorithm that requires O(m + n) space,
and runs in O(nm) and O(nm+ n2 logn) time on unweighted and
weighted graphs, respectively.

The X10 implementation of this algorithm is available in the
X10 benchmarks repository. It generates directed, weighted, and
bipartite graphs as described by Chakrabarti et al. [2004]. In our
experiments we use the version of BC at revision 19602 of the X10
benchmarks trunk, dated January 18, 2011.

4.3 Results
On SCC we compare the performance of the prototype SCC MPI
implementation, using both MPB (mpi-mpb) and sockets transports
(mpi-sock), against our RCCE-X10 extended native transport and
the default X10 sockets runtime (recall that even sockets uses the
native TCP/IP driver for the mesh). Residual bugs in mpi-mpb
mean that we cannot run for a single place with BC. For HF we
cannot run less than eight places because of memory constraints
(we must distribute the work across eight or more places just to fit).
Moreover, because of the bugs in mpi-mpb we are unable to run for
the same numbers of places as for RCCE-X10 and mpi-sock, so we
fill in the results at places where we were able to run successfully.
In all experiments we report the mean of three separate benchmark
runs.

4.3.1 HF results
We use both the static and dynamic load balancing alternatives
for HF described by Milthorpe et al. [2011]. These are controlled
by parameter gmatype: dynamic is gmatype 4, and static is
gmatype 5.

Figure 5 shows speedup results when running HF for the work-
loads Benzene 3-21G (benzene molecule using the 3-21G basis
set) and Aspirin 3-21G (aspirin compound using the 3-21G basis
set) on the AMD Opteron cluster with dynamic and static load bal-
ancing. Aspirin 3-21G shows better scaling compared to Benzene
3-21G. Frequent communication to the first place and the compara-
bly smaller workload in Benzene 3-21G act to impede scaling with

 0

 2

 4

 6

 8

 10

 12

 14

1 4 8 12 16 20 24 28 32 36 40 44 48

sp
ee

du
p

places

benzene
aspirin

(a) Dynamic load balancing

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

1 4 8 12 16 20 24 28 32 36 40 44 48

sp
ee

du
p

places

benzene
aspirin

(b) Static load balancing

Figure 5: HF speedup on AMD cluster with MPI (Benzene 3-21G
and Aspirin 3-21G)

both dynamic and static load balancing, whereas the heavier work-
load of Aspirin 3-21G gets speedup scaling to 13× on 48 nodes
with dynamic load balancing. For static load balancing there is an
even more pronounced gap between the speedup of Benzene 3-21G
and Aspirin 3-21G; the peak for Benzene 3-21G is 6× at 12 places,
while Aspirin 3-21G reaches 31× at 44 places.

Because X10 does not run with garbage collection on the SCC,
and because of its smaller per-core memory, the workloads we can
run there are restricted. We had to strike the balance between having
sufficient work and fitting within the available memory. Benzene
STO-3G is the workload that both runs and shows scaling. Unfor-
tunately, it does not run for fewer than eight places due to memory
constraints. For this workload 576 work units are processed when
static load balancing is used.

Figure 6 shows elapsed times for running HF Benzene STO-3G
with both dynamic and static load balancing. Dynamic load bal-
ancing is costly for few places, but at 48 places it gives similar
performance to static load balancing. RCCE-X10 has superior per-
formance across the full range of places. It is worth pointing out
that our elapsed times for Benzene STO-3G running on SCC are an
order of magnitude slower than on the AMD Opteron cluster. Of
course, the unit cost of our cluster is approximately two orders of
magnitude greater than the cost of an SCC installation.

Scaling is better for RCCE-X10 with both dynamic and static
load balancing as shown in Figures 7a and 7b. Static load bal-
ancing is less smooth in distributing work, but it scales similarly
to dynamic load balancing (though static performs better gener-
ally), as shown in Figure 7c. This raises an interesting point regard-

 0

 200

 400

 600

 800

 1000

 1200

8 12 13 16 20 21 24 27 28 31 32 36 38 40 44 47 48

el
ap

se
d

tim
e

(s
)

places

RCCE-X10
mpi-mpb
mpi-sock

sockets

(a) Dynamic load balancing

 0

 100

 200

 300

 400

 500

 600

8 12 13 16 20 21 24 27 28 31 32 36 38 40 44 47 48

el
ap

se
d

tim
e

(s
)

places

RCCE-X10
mpi-mpb
mpi-sock

sockets

(b) Static load balancing

Figure 6: HF Benzene STO-3G elapsed time on SCC

Table 1: Parameters for BC benchmark workloads

(a) AMD Opteron cluster with MPI

n w a b c d verts. edges
low 14 1 0.55 0.1 0.1 0.25 16384 123258
high 15 1 0.55 0.1 0.1 0.25 32768 249842

(b) SCC

n w a b c d verts. edges
small 11 1 0.2 0.15 0.25 0.4 2048 16250
medium 14 1 0.65 0.1 0.1 0.15 16384 105353
large 14 1 0.55 0.1 0.1 0.25 16384 123258

ing the lack of built-in support for work-stealing across places in
X10, making load-balancing a difficult problem that the program-
mer must deal with explicitly. Note that the default X10 sockets
transport does not perform as well as the other transports for this
workload.

4.3.2 BC results
Table 1 shows the parameters for the BC workloads on the AMD
Opteron cluster and on the SCC. The parameter n controls the num-
ber of vertices in the graph, 2n. The parameter w = 1 indicates that
the graph is weighted. The parameters a, b, c, d control the genera-
tion of the graph using the model of Chakrabarti et al. [2004]. The
important graph attributes for our purposes are the size in number

 0

 1

 2

 3

 4

 5

 8 12 16 20 24 28 32 36 40 44 48

sp
ee

du
p

places

RCCE-X10
mpi-mpb
mpi-sock

sockets

(a) Dynamic load balancing (normalized to RCCE-X10)

 0

 1

 2

 3

 4

 8 12 16 20 24 28 32 36 40 44 48

sp
ee

du
p

places

RCCE-X10
mpi-mpb
mpi-sock

sockets

(b) Static load balancing (normalized to RCCE-X10)

 0

 1

 2

 3

 4

 8 12 16 20 24 28 32 36 40 44 48

sp
ee

du
p

places

static
dynamic

(c) Dynamic versus static on RCCE-X10 (normalized to static)

Figure 7: HF Benzene STO-3G speedup on SCC

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 4 8 12 16 20 24 28 32 36 40 44 48

el
ap

se
d

tim
e

(s
)

places

Figure 8: Elapsed time for BC on AMD Opteron cluster with MPI
for the low(cluster)=large(SCC) workload

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 4 8 12 16 20 24 28 32 36 40 44 48

el
ap

se
d

tim
e

(s
)

places

RCCE-X10
mpi-mpb
mpi-sock

sockets

(a) Elapsed time

 0

 5

 10

 15

 20

 25

1 4 8 12 16 20 24 28 32 36 40 44 48

sp
ee

du
p

places

RCCE-X10
mpi-mpb
mpi-sock

sockets

(b) Speedup (normalized to RCCE-X10)

Figure 9: BC on SCC with the large workload

of vertices and number of edges, since these reflect the memory
footprint when running on SCC. Note that the low workload for the
AMD Opteron cluster is the same as the large workload for SCC.
We ran three different workloads for BC on the SCC. We started
with a small workload and tried pushing it until it started failing
with memory errors.

Figure 9 shows execution of the large workload for the different
transports. For comparison, observe the elapsed times for execution
of BC on the AMD Opteron cluster, shown in Figure 8. In Figure 9a
we see the elapsed times for each transport, revealing that RCCE-

 0

 5

 10

 15

 20

 25

 30

 35

1 4 8 12 16 20 24 28 32 36 40 44 48

sp
ee

du
p

places

low
high

(a) AMD Opteron cluster with MPI

 0

 5

 10

 15

 20

 25

1 4 8 12 16 20 24 28 32 36 40 44 48

sp
ee

du
p

places

small
medium

large

(b) SCC with RCCE-X10

Figure 10: BC speedup for varying workloads

X10 has a slight advantage across the full range of places. In
Figure 10 we see that all the transports scale similarly, with RCCE-
X10 having smoother speedup and scaling further than the other
two. Both mpi-mpb and mpi-sock start to tail off at around 36
places, whereas RCCE-X10 continues scaling to 25× at 48 places.
Unlike HF, the default X10 sockets transport and the mpi-sock
transport seem to track each other rather closely for BC.

Figure 10 shows how speedup varies with workload. As ex-
pected the higher the load the better the speedup. Notice that the
large SCC workload, which is the same as the low AMD cluster
workload, scales similarly on both SCC and the AMD Opteron
cluster, except at 48 places where the cluster drops off significantly.

5. Conclusions
We have implemented a native run-time for X10 running on the
SCC experimental ‘cluster-on-a-chip’ processor. Our native RCCE-
X10 run-time has performance and scalability that is superior to
both a proprietary MPI API for SCC and default X10 sockets as
the transport layer for X10. Scalability for representative bench-
marks is good so long as sufficient work is available to partition
among the cores. One difficulty with SCC is coping with the mem-
ory constraints, because this can weigh against generating sufficient
work. Nevertheless, X10 and SCC are a good match. X10 eases the
task of the application programmer in developing cluster applica-
tions that scale, while SCC provides a cost-effective platform for
running such applications. X10 is a good fit for programming SCC
(and similar processors) as illustrated by the good scaling we see
for the benchmarks we used.

Acknowledgments
We thank Vijay Saraswat of IBM, and Josh Milthorpe and Daniel
Frampton of the Australian National University, for assistance with
X10 benchmarks and benchmarking. We also thank Intel for mak-
ing the SCC prototype available to us, and especially Ted Kubaska
for providing us with the SCC MPI implementation, and for an-
swering our many questions. This work is supported by the Na-
tional Science Foundation under grants Nos. CCF-0702240, and
CCF-0811691, and by Microsoft, Intel, and IBM. Any opinions,
findings, and conclusions expressed herein are the authors’ and do
not necessarily reflect those of the sponsors.

References
J. M. Anthonisse. The rush in a directed graph. Technical Report BN 9/71,

Stichting Mathematisch Centrum, Amsterdam, Oct. 1971. URL
http://oai.cwi.nl/oai/asset/9791/9791A.pdf.

Australian National University. ANUChem benchmarks. URL http:
//cs.anu.edu.au/˜Josh.Milthorpe/anuchem.html.

U. Brandes. A faster algorithm for betweenness centrality. Mathematical
Sociology, 25(2):163–177, June 2001.
doi: 10.1080/0022250X.2001.9990249.

D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for
graph mining. In M. W. Berry, U. Dayal, C. Kamath, and D. B.
Skillicor, editors, Proceedings of the Fourth SIAM International
Conference on Data Mining, Lake Buena Vista, Florida, Apr. 2004.
URL http://www.siam.org/proceedings/datamining/
2004/dm04_043chakrabartid.pdf.

P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-oriented
approach to non-uniform cluster computing. In Proceedings of the 20th
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 519–538, San Diego,
California, Oct. 2005. doi: 10.1145/1094811.1094852.

L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40(1):35–41, Mar. 1977. URL
http://www.jstor.org/stable/3033543.

MARC. Many-core applications research community. URL
http://communities.intel.com/community/marc.

T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe. The 48-core
SCC processor: the programmer’s view. In Proceedings of the 2010
ACM/IEEE International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1–11, New Orleans,
Louisiana, Nov. 2010. doi: 10.1109/SC.2010.53.

J. Milthorpe, V. Ganesh, A. P. Rendell, and D. Grove. X10 as a parallel
language for scientific computation: practice and experience. In
Proceedings of the 25th IEEE International Parallel and Distributed
Processing Symposium, Anchorage, Alaska, May 2011.

RCCE. A communication environment for the SCC processor. URL
http:
//marcbug.scc-dc.com/svn/repository/trunk/rcce.

A. G. Shet, W. R. Elwasif, R. J. Harrison, and D. E. Bernholdt.
Programmability of the HPCS languages: A case study with a quantum
chemistry kernel. In Proceedings of the 2008 IEEE International
Symposium on Parallel and Distributed Processing, pages 1–8, Miami,
Florida, Apr. 2008. doi: 10.1109/IPDPS.2008.4536191.

A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to
Advanced Electronic Structure Theory. McGraw-Hill, New York, 1989.

http://oai.cwi.nl/oai/asset/9791/9791A.pdf
http://cs.anu.edu.au/~Josh.Milthorpe/anuchem.html
http://cs.anu.edu.au/~Josh.Milthorpe/anuchem.html
http://dx.doi.org/10.1080/0022250X.2001.9990249
http://www.siam.org/proceedings/datamining/2004/dm04_043chakrabartid.pdf
http://www.siam.org/proceedings/datamining/2004/dm04_043chakrabartid.pdf
http://dx.doi.org/10.1145/1094811.1094852
http://www.jstor.org/stable/3033543
http://communities.intel.com/community/marc
http://dx.doi.org/10.1109/SC.2010.53
http://marcbug.scc-dc.com/svn/repository/trunk/rcce
http://marcbug.scc-dc.com/svn/repository/trunk/rcce
http://dx.doi.org/10.1109/IPDPS.2008.4536191

	Introduction
	SCC
	RCCE native message passing API

	X10 on SCC
	SCC MPI library
	SCC MPI over MPB
	Limitations of SCC MPI

	RCCE-X10: A native X10 run-time for SCC
	Limitations of RCCE
	Sending and receiving
	Limitations of RCCE-X10

	Experiments
	Platforms
	Benchmarks
	ANUChem HF
	BC

	Results
	HF results
	BC results

	Conclusions

