Here is a useful guide to writing an abstract.
Annotated example taken from the Nature Guide to Authors.
One or two sentences providing a basic introduction to the field,
comprehensible to a scientist in any discipline.
Two to three sentences of more detailed background, comprehensible
to scientists in related disciplines.
One sentence clearly stating the general problem being addressed by
this particular study.
One sentence summarizing the main result (with the words “here we
show” or their equivalent).
Two or three sentences explaining what the main result reveals in
direct comparison to what was thought to be the case previously, or how
the main result adds to previous knowledge.
One or two sentences to put the results into a more general
context.
Two or three sentences to provide a broader perspective, readily
comprehensible to a scientist in any discipline, may be included in
the first paragraph if the editor considers that the accessibility of
the paper is significantly enhanced by their inclusion. Under these
circumstances, the length of the paragraph can be up to 300
words. (This example is 190 words without the final section, and 250
words with it.)
During cell division, mitotic spindles are assembled by microtubule
based motor proteins1,2.
The bipolar organization of spindles is essential for proper segregation
of chromosomes, and requires plus-end-directed homotetrameric motor
proteins of the widely conserved kinesin-5 (BimC)
family3. Hypotheses for bipolar spindle formation include the
‘push-pull mitotic muscle’ model, in which kinesin-5 and
opposing motor proteins act between overlapping
microtubules2,4,5.
However, the precise roles of kinesin-5 during this process are unknown.
Here we show that the vertebrate kinesin-5 Eg5 drives the sliding of
microtubules depending on their relative orientation.
We found in controlled in vitro assays that Eg5 has the remarkable
capability of simultaneously moving at ~20 nm s-1 towards the
plus-ends of each of the two microtubules it crosslinks. For anti-parallel
microtubules, this results in relative sliding at ~40 nm s-1,
comparable to spindle pole separation rates in vivo6.
Furthermore, we found that Eg5 can tether microtubule plus-ends,
suggesting an additional microtubule-binding mode for Eg5.
Our results demonstrate how members of the kinesin-5 family are likely to
function in mitosis, pushing apart interpolar microtubules as well as
recruiting microtubules into bundles that are subsequently polarized by
relative sliding.
We anticipate our assay to be a starting point for more sophisticated
in vitro models of mitotic spindles. For example, the individual
and combined action of multiple mitotic motors could be tested,
including minus-end-directed motors opposing Eg5 motility. Furthermore,
Eg5 inhibition is a major target of anti-cancer drug development, and a
well-defined and quantitative assay for motor function will be relevant
for such developments.