
TRANSPARENT DISTRIBUTION FOR JAVA APPLICATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Philip McGachey

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2010

Purdue University

West Lafayette, Indiana

ii

To all those who have supported me over the years.

iii

ACKNOWLEDGMENTS

I’d first like to thank my PhD committee: Jan Vitek and PatrickEugster for agreeing to

serve, and Eliot Moss for his input both at the start and the end of the process. I particularly

thank my advisor, Tony Hosking, for his years of guidance andsupport; during my career

he has acted as a mentor, a colleague, a boss and a friend.

A great many people have helped and influenced me over the years at graduate school,

making any list necessarily incomplete. I’d like to thank Greg Wright at Sun and Rick

Hudson at Intel for supervising me during my various internships and giving me a valuable

insight into life beyond academia. While at Purdue, I maintained my sanity largely with

the help of Michael Richmond, Darrin and Karen Cox, Mike Steinhour, Joe Auffermann,

Samuel Adams and the second Earl Grey. I’d particularly liketo thank Dennis and Petra

Brylow for their encouragement, help and bad TV, Adam Welc forhis constant friendship,

advice and beer, and Nicki Barker for her kindness and moral support during the last year

of my degree.

I’d finally like to thank my parents for their unwavering support over what turned out to

be a long process. Their enthusiasm and continual encouragement through the good times

and bad gave me the confidence to see things through to the end.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

1 Introduction . 1
1.1 Overview. 2
1.2 RuggedJ. 3

1.2.1 Target Applications. 4
1.2.2 System Design. 5
1.2.3 Class Transformation. 7
1.2.4 Run-Time Infrastructure. 9
1.2.5 Partitioning . 10
1.2.6 Summary . 11

1.3 Contributions . 12

2 Background . 14
2.1 Transparent Distribution. 14

2.1.1 J-Orchestra . 14
2.1.2 Terracotta . 17
2.1.3 Addistant . 18
2.1.4 AIDE . 19

2.2 Java Distributed Shared Memory. 19
2.3 Language-Based Distribution. 21
2.4 Other Java Distribution Systems. 23
2.5 Work Related to Key RuggedJ Features. 25

2.5.1 Object Model . 25
2.5.2 Whole-Program Transformation. 26
2.5.3 Application Partitioning. 27

3 Class Transformation. 28
3.1 Terminology . 31

3.1.1 System and User Classes. 31
3.1.2 Transformation . 32

3.2 The RuggedJ Object Model. 33
3.2.1 Generated Classes. 34
3.2.2 Referring to Transformed Objects. 35

v

Page
3.2.3 Inheritance. 36
3.2.4 Arrays . 37
3.2.5 Static Data. 39
3.2.6 Hand-Coded Classes. 40

3.3 Method and Field Transformations. 40
3.4 System Classes. 44

3.4.1 Barriers to Transformation. 44
3.4.2 The RuggedJ JVMTI Agent. 46
3.4.3 Templates for Rewriting. 48
3.4.4 Subtyping . 53
3.4.5 Classification . 54
3.4.6 System Class Static Singletons. 56

3.5 User Classes. 57
3.5.1 Rewriting . 57
3.5.2 Native and Reflective code. 58
3.5.3 Base Classes. 59
3.5.4 Classification . 60

3.6 Classification Evaluation. 60
3.6.1 Static Singletons. 64

3.7 Contributions . 65
3.8 Concluding Remarks. 66

4 Run-Time Support. 67
4.1 The RuggedJ Network. 69

4.1.1 Network Configuration . 69
4.1.2 Communication. 70

4.2 Run-Time Primitives. 71
4.2.1 Object Management. 71
4.2.2 Immutable Objects. 72
4.2.3 Migration . 74

4.3 Java Semantics. 76
4.3.1 Object Identity. 76
4.3.2 Reflection . 77
4.3.3 Static Data. 78
4.3.4 Threading and Synchronization. 80
4.3.5 Exception Handling. 87

4.4 Application Partitioning. 88
4.5 Contributions . 93

5 Distributed Application Development. 95
5.1 Distributability . 95

5.1.1 General Distributability. 96
5.1.2 Designing for RuggedJ. 100

vi

Page
5.2 Partitioning Strategies. 104
5.3 Applications . 106

5.3.1 Monte Carlo Simulation. 108
5.3.2 Molecular Dynamics. 112
5.3.3 DNA Database Matching. 115
5.3.4 SPECjbb2005. 119
5.3.5 Clue . 124

5.4 Contributions . 126
5.5 Concluding Remarks. 127

6 Summary and Future Work. 128
6.1 Summary. 128
6.2 Future Work . 129
6.3 Conclusion. 131

LIST OF REFERENCES . 132

VITA . 138

vii

LIST OF TABLES

Table Page

3.1 Subclassing between templates. 53

viii

LIST OF FIGURES

Figure Page

1.1 The RuggedJ System Architecture. 6

1.2 The RuggedJ object model. 7

3.1 User and system classes. 32

3.2 Transforming classes. 33

3.3 The RuggedJ object model. 34

3.4 Inheritance between transformed classes. 36

3.5 Generated array types. 37

3.6 Multi-dimensional arrays with interfaces. 38

3.7 Handling static data for distribution. 39

3.8 Classloading in the Java Virtual Machine. 45

3.9 Wrapping class hierarchy. 49

3.10 Extending class hierarchy. 50

3.11 Promotable class hierarchy. 51

3.12 Direct class hierarchy. 52

3.13 Classification for system classes. 55

3.14 Classification of user classes. 61

3.15 Percentages of system vs. user classes. 62

3.16 Classification of user classes. 63

3.17 Classification of system classes. 64

3.18 Elimination of static singletons. 65

4.1 Communication between RuggedJ nodes. 70

4.2 Problem:synchronized deadlock. 82

5.1 Monte Carlo application structure. 110

5.2 Monte Carlo speedup (normalized to untransformed). 111

ix

Figure Page

5.3 MolDyn application structure. 113

5.4 MolDyn speedup (normalized to untransformed). 115

5.5 DNA database matching application structure. 117

5.6 DNA database matching speedup (normalized to untransformed) 118

5.7 SPECjbb2005’s main database structure. 119

5.8 Rewritten SPECjbb2005 application’s main database structure 120

5.9 Comparing the original SPECjbb2005 and rewritten JBB benchmarks . . . 121

5.10 Re-implemented version of SPECjbb2005 performance. 123

5.11 Clue application structure. 124

5.12 Partitioning the Clue application. 126

x

ABSTRACT

McGachey, Philip Ph.D., Purdue University, May 2010. Transparent Distribution for Java
Applications. Major Professor: Antony L. Hosking.

Cloud computing and falling hardware prices today offer unprecedented access to cheap

and flexible computer clusters. Unfortunately, developingthe distributed applications that

are needed to take full advantage of this extra capacity is still a daunting task. Application

programmers must concern themselves not only with application logic, but also with the

mechanics of distribution: tracking remote data, global synchronization, network configu-

ration and so forth.

RuggedJ is a transparent Java distribution framework that relieves much of the burden

from distributed programming. We inject distribution logic into standard Java applications,

and we deploy the rewritten code across a dynamic run-time infrastructure. This way,

we maintain the semantics of the original application whileproviding powerful distribu-

tion capabilities such as dynamic application partitioning, object location transparency and

replication of immutable state.

This dissertation describes the design and implementationof our prototype RuggedJ

transparent distribution infrastructure. It discusses both the bytecode rewriting techniques

that allow us to distribute code and the run-time infrastructure that manages the distributed

application. We investigate the properties ofdistributableapplications (those that benefit

from distribution), and describe techniques to optimize performance for the RuggedJ plat-

form. Finally, we demonstrate that the system can distribute several realistic applications,

and show that these applications exhibit scalability when running on a cluster beyond that

possible on a single machine.

1

1 INTRODUCTION

Transparent distribution can allow distributable standard Java applications to execute

across multiple machines with minimal programmer overhead.Transformed applications

can show minimal performance degradation on a single host, while demonstrating

significantly improved performance on a cluster.

With the increasing availability of affordable commodity clusters and cloud computing

infrastructures, consumers have access to more computing power than ever before. Data

sets and workloads are increasing to employ these resources; the growing internet econ-

omy requires that servers scale to handle ever-increasing levels of traffic, while scientific

infrastructure produces massive amounts of raw data to be processed. The result is that de-

velopers today can no longer rely onverticalscaling, waiting for the rising tide of processor

speed to improve single-threaded application performance. Rather, applications must scale

horizontallyby distributing across multiple loosely-connected computing resources and so

leveraging the available computing capacity.

Developing applications that effectively take advantage of this capacity requires signif-

icant programmer effort. Systems must be designed to distribute across multiple machines,

transferring data and accessing remote objects over network connections. Using commod-

ity frameworks such as Java Remote Method Invocation (RMI) andserialization, program-

mers must explicitly track objects across disparate memoryspaces, handle remote objects

specially, and ensure that data is correctly synchronized.Further, obtaining good perfor-

mance often requires implementing unsupported functionality such as object migration or

replication to minimize remote invocations.

Transparent distribution removes much of this overhead from developers. Rather than

writing an application with explicit distribution code, programmers use the familiar shared-

2

memory abstraction to developdistributablemulti-threaded systems. The transparent dis-

tribution framework takes this application and dynamically inserts distribution logic, trans-

forming the code at run time to run across multiple machines.A run-time system operates

on each machine and maintains mappings between remote objects.

Such a system offers substantial advantages over manual distribution. The program-

ming model is significantly simpler; developers do not need to explicitly handle the mech-

anisms of distributed execution. The distribution infrastructure can analyze the application

to optimize object placement, replicating immutable data.Further, it can provide means

by which objects can migrate from one machine to another, taking advantage of shifting

data access patterns. Finally the developer does not have tofind and track remote objects

or global data, as the run-time system maintains this information.

A transparent distribution system requires several features to appeal to developers. It

must offer significant savings in development effort when building distributed applications,

allowing developers to focus on the specific functionality of their systems rather than the

mechanism by which they are distributed. Additionally, thedistributed application should

not be tied to a specific network configuration; an application that scales horizontally must

be able to deploy on an arbitrary network that may change between invocations. Finally, the

system must not be a source of significant performance degradation, and must not present

a barrier to the application’s scaling across multiple machines.

1.1 Overview

We have developed a transparent distribution system for Java that meets these criteria.

The RuggedJ system takes bytecode emitted from any standard Java compiler and uses

a rewriting class loader to transform the application’s code. The rewritten code integrates

with a distributed run-time system that manages the global execution of the application. We

have implemented and evaluated a prototype RuggedJ system, and have found that certain

classes of applications can show significant performance improvements when run across

multiple machines.

3

The dissertation is structured as follows:

• The remainder of this Introduction chapter gives an overview of the RuggedJ system,

and enumerates the contributions of this work.

• Chapter 2 discusses the prior work in this area, and summarizes some closely related

fields.

• Chapter 3 details the bytecode transformations by which we rewrite the classes of

an application. This includes a comprehensive discussion of how we integrate Java

library classes into our system.

• Chapter 4 outlines the run-time management system that oversees the execution of

a distributed application. We first discuss some of the features of this infrastructure,

such as remote object tracking and data replication. We thenindicate how we build

upon these underlying systems to support some of Java’s morecomplex semantics.

• Chapter 5 provides a full discussion of distributable applications in Java, including

those data structures and design features that lend themselves to distribution. We

discuss a number of realistic applications that we have distributed using our prototype

system, detailing the program structure and distribution strategies for each, as well

as performance evaluations where appropriate.

• Finally, Chapter 6 summarizes the dissertation, and indicates some areas in which

this work could be continued in the future.

1.2 RuggedJ

In this section we introduce RuggedJ, a specification-based,transparent distribution

framework for Java. RuggedJ automatically (based on conciseprogrammer specifications)

transforms standard multi-threaded Java applications to run across a cluster of unmodified

Java virtual machines (JVMs), removing the burden of explicit distributed programming

from the developer. Our framework gives Java developers access to powerful distribution

4

mechanisms for minimal additional effort, while maintaining the semantics of the original

application.

RuggedJ offers significant novel benefits. It allows distributed applications to scale

out to clusters of arbitrary size and configuration without additional developer effort, and

without hard-encoding the network and its topology within the application. This simpli-

fies development and maintenance. Further, the developer need not worry about objects

that may be local under some network configurations and remote under others, and need

not explicitly handle references to migrating objects. Finally, RuggedJ transforms stan-

dard Java applications, with no additional annotations or dependencies upon specialized

libraries.

1.2.1 Target Applications

RuggedJ can transform and distribute most standard Java applications (with minor ex-

ceptions; we do not support some Java features such as user-level class loading and certain

aspects of reflection). However not all Java programs benefitfrom distribution. We tar-

get a class of applications that we refer to asdistributable: those that can be broken into

multiple discrete units, each of which is operated upon by a dedicated node. Thesedistri-

bution unitsare located on different nodes in the network, allowing scalability by adding

additional nodes to operate over more units. To maximize performance, there should be

little cross-talk between multiple distribution units. Interactions between distribution units

on different nodes are performed via remote method invocation which carries with it an

inherent performance penalty.

In addition to these properties, distributable applications should be long-running. Es-

tablishing a RuggedJ network incurs a startup cost that must be amortized across the exe-

cution of the application. Additionally, there is some workrequired to create threads and

copy initial data. Thus, small applications (having execution times less than two or three

minutes) will never see the benefits of distribution.

5

Finally, distributable applications should minimize their dependence on native code,

reflection and static data. The presence of native or reflective code can tie the instances

of a given class to a single node in the network, destroying any potential distribution (an

issue that is discussed in depth in Chapter 3). Static data generally does not limit the

distributability of an application, but can lead to increased network traffic, since static data

must be globally unique within the system.

We discuss the characteristics of distributable applications more fully in Chapter 5.

1.2.2 System Design

RuggedJ runs across an interconnected network of JVMs that werefer to asnodes.

Each physical machine (ahost) within the cluster can contain one or more nodes. RuggedJ

is implemented entirely at the bytecode level (we do not modify the JVM), and we make no

requirements on the capabilities of the hosts, save that they each run a fully-featured Java

virtual machine with compatible versions of the Java class libraries. This VM-agnosticism

provides us with several advantages. First, our implementation is not tied to a specific VM

distribution, making porting between VMs and versions of the Java specification trivial.

Additionally, a given RuggedJ network can integrate heterogeneous hosts; an application

can be distributed across multiple architectures running diverse operating systems, so long

as they provide a compatible JVM. Figure 1.1 shows the construction of a RuggedJ net-

work.

RuggedJ is designed to allow maximum flexibility in the platform upon which it runs.

Thepartitioning of an application (the allocation of the application’s dataand work across

multiple hosts) is determined at run-time, so an application need not be modified to account

for every new network upon which it runs. This is achieved through our partitioning plug-

in system: when targeting RuggedJ for distribution, the application developer supplies a

partitioning strategy, encapsulated as a Java class. This class has access to the run-time

state of the RuggedJ network and, guided by this information,indicates how the application

6

TRANSPARENT DISTRIBUTED APPLICATION

X

NETWORK

Java
classes

(bytecode)

Linux JVM

transformed
classes

runtime library

transforming
classloader

Java

application

sources

J
a
v
a

c
o
m
p
ile
r

class
loading

Windows JVM

transformed
classes

runtime library

transforming
classloader

OS X JVM

transformed
classes

runtime library

transforming
classloader

Solaris JVM

transformed
classes

runtime library

transforming
classloader

Java class

libraries

J
A
R

re
a
d
e
r

Figure 1.1.: The RuggedJ System Architecture

should be partitioned, and makes dynamic decisions about allocation, migration and so

forth.

Each node in the RuggedJ system comprises two major components: a bytecode-

rewriting class loader, and a run-time library. Classes loaded into the JVM are first pro-

cessed by our class loader to inject distribution logic. These rewritten classes then in-

teract with the run-time library on their local node. The run-time library itself manages

the higher-level aspects of distribution. Among other functions, it tracks remote objects,

handles threading and locking, maintains static data and coordinates remote method invo-

cations. The run-time libraries of each node within the RuggedJ network interact with one

another to coordinate global data, monitor the state of the network and propagate dynamic

object information.

One node in the RuggedJ network is designated as thehead node. This node performs

some globally unique tasks in addition to its responsibilities as a standard node. For exam-

ple, it invokes themain method that launches the application, it acts as a canonicalsource

for network information (such as the locations of shared objects), and it maintains a termi-

nal connection for the standard input, output and error streams. The head node is specified

as part of the network configuration. The remaining nodes automatically organize them-

7

Original
Application

Transformed Application

Class X

Interface X

Class X$local Class X$stubClass X$proxy

Figure 1.2.: The RuggedJ object model

selves into a tree hierarchy (with the head node at the root),allowing efficient broadcasting

of data and a simple lookup mechanism for network state.

1.2.3 Class Transformation

Key to distribution of applications within RuggedJ is the bytecode transformation li-

brary. RuggedJ transforms the classes that make up an application to implement its object

model [McGachey et al., 2009a], as shown in Figure 1.2. Each class from the original ap-

plication spawns creation of three new classes and one interface. The interface represents

the class’sprotocol: the original method names and signatures, and additional get/set meth-

ods for every field in the class. Object references within RuggedJ are typed exclusively by

interface; abstracting out the protocol allows the concrete implementation of a class to vary

without altering client code that refers to instances of theclass. We rewrite method bodies

within the class to refer to transformed objects, includingredirecting method and field ac-

cesses through interfaces, modifying the types of objects to account for the object model,

and so on.

The three classesX_local, X_stub andX_proxy provide these concrete implementa-

tions. A local object contains the fields and method implementations of theoriginal class;

it can be thought of as the canonical representation of the object. Local objects have a1 : 1

relationship with objects in the original application, so only one local object exists in the

RuggedJ system for every object in the original application.The second class, thestub, im-

plements the interface by providing remote method calls to the local object. Stubs have an

8

n : 1 relationship to local objects. Each node in the network (excluding the node that con-

tains the local object) may have up to one stub per object in the original application. This

way, any node can refer to any remote object in the system. Finally, theproxyobject allows

objects to migrate. Should an object be migratable (see Section 4.2.3), a proxy object will

be allocated as well as the appropriate local or stub. The proxy holds a single reference to

the local or stub object, and all references to that object pass through the proxy. This way

if an object should migrate it is necessary only to update thereference within the proxy to

refer to the new implementation. Since the majority of objects within an application never

migrate, and we allocate proxies only for those thatmaymigrate at some point, the majority

of accesses do not incur this indirection.

Additionally, we extract the static parts of the original application from their rewritten

counterparts. Static data is be unique within the system; individual nodes must not maintain

their own, possibly inconsistent, versions of static state. To this end we create astatic

singletonobject for each class that contains static data. These singletons are managed by

the run-time library, and are guaranteed to be globally unique. We discuss this further in

Section 4.3.3.

The second aspect of class rewriting involves copying and transforming the contents

of the original class to the new local class. All object references must be re-typed to refer

to rewritten interfaces rather than to the original classes. Additionally, field accesses are

transformed to call get and set methods on the interface, rather than directly reading and

writing fields. Finally, the method bodies are modified to call out to the run-time library

to perform any additional functions required for distribution. These transformations are

discussed in depth in Section 3.3.

When the RuggedJ class loader has rewritten a class, it presents only the transformed

version for loading into the Java VM. The VM never sees the original class, which elimi-

nates the possibility of conflicts between modified and unmodified classes.

9

1.2.4 Run-Time Infrastructure

The second component of a RuggedJ node is the run-time infrastructure. The run-time

provides library functionality to rewritten bytecode, andis responsible for coordinating the

activities of each node’s rewritten classes to execute the application as a whole. The various

functions of the run-time are performed per-node, minimizing the network traffic generated

by the system itself.

The first task of the run-time library is to simplify rewritten bytecode. Some function-

ality is best hidden behind an abstract API, avoiding the need to generate complicated and

implementation-specific bytecode sequences inlined in transformed application code. As

an example, our messaging system relies upon Java’s TCP sockets. Managing these sockets

within rewritten bytecode would be a complex and error-prone task. Rather we present a

simple interface to the run time library, and so can implement the socket interactions as

Java source. Additionally, abstracting communication as library functionality made it sim-

ple for us to change the underlying networking infrastructure from an MPI library to Java

sockets when we determined that communication was a bottleneck (see Section 4.1.2).

The run-time library is also responsible for tracking remote objects. As we will describe

in Section 4.2.1, shared objects in RuggedJ are tracked by unique identifiers (UIDs). Each

node must track those shared objects to which it has a reference, as well as the node upon

which that object is located. This ensures that we do not create spurious stubs, and allows

us to connect a stub to the correct remote implementation. Additionally, RuggedJ allows

objects to migrate to maximize data locality. The run-time library coordinates migration,

moving objects from node to node and updating references within proxies. It also coordi-

nates with other nodes to ensure that all references go to thecorrect node. RuggedJ allows

for replication of immutable state (discussed in Section 4.2.2). The run-time library fetches

immutable content on demand when required by the local node,creates local replicas of

such state, and ensures that each immutable object is represented by a single local replica.

Finally, each node’s run-time library coordinates with corresponding libraries through-

out the network to perform globally synchronized actions, to disseminate network state

10

information and to cache RuggedJ’s metadata in order to minimize network traffic. For

example, RuggedJ maintains static singletons for those classes with static data. These sin-

gletons are created as required on the first node that refers to them, spreading the singletons

across the network to minimize bottlenecks and improve locality. The creation of a static

singleton requires coordination between run-time libraries to ensure that the singleton is

globally unique. Once the singleton is created, its location is propagated through the net-

work using the tree-based communication hierarchy, and is recorded on each node. This

reduces communication with the head node when each node firstrefers to the singleton.

1.2.5 Partitioning

In order to distribute an application across a RuggedJ network, we must determine

which objects are to be allocated upon which nodes. We refer to this process aspartition-

ing the application. RuggedJ provides a partitioning interfaceto which developers provide

an application-specific policy. We believe that the application developer is in the best po-

sition to provide an optimal partitioning, guided by the output of our whole-program static

analysis.

Application developers provide a partitioning plug-in class that extends RuggedJ’s ab-

stractPartitioning class. Each node has its own instance of the partitioning policy, al-

lowing most decisions to be made locally and so reducing network communication. The

partitioning policy has access to the local node’s run-timelibrary, allowing it to make de-

cisions based on the dynamic state of the network. Additionally, partitioning policies have

access to RuggedJ’s communication infrastructure, allowing messages to be passed be-

tween instances of the policy.

We will discuss the interface to, and capabilities of, the partitioning system in Sec-

tion 4.4, and cover some of the strategies that we employ whendeveloping a partitioning

policy in Section 5.2. We generally find that simple policiesperform well: we identify

the root of a distribution unit (typically theRunnable object that encapsulates the work

of a single thread) and allocate instances of this class on remote nodes. By default, any

11

subsequent allocations are performed locally, so objects related to that distribution unit are

automatically placed on the same node. We determine the nodes upon which to allocate

distributable units by their capacity (the number of cores available to the node, determined

by introspecting at run-time) and by the load level of the network (the ratio of the number

of distributable units to the total capacity of the network). The majority of policies that we

have developed for the benchmarks discussed in Section 5.3 have been expressed in a few

dozen lines of Java.

1.2.6 Summary

Developing applications that perform well on RuggedJ requires little programmer ef-

fort beyond that needed to develop single-machine horizontally-scaling applications (as

we discuss in Chapter 5). However, the RuggedJ framework offers significant benefit to

application developers over manual distribution:

Standard Java. Applications that target RuggedJ are written in standard Java, with no ad-

ditional libraries, language features or annotations. Developers do not need to learn

new syntax, and applications are not tied to one specific infrastructure. Additionally,

legacy code (such as scientific computation packages) that were not written with dis-

tribution in mind can be integrated into distributed applications without modification.

Deployment on arbitrary networks. RuggedJ applications are not tied to a specific net-

work configuration. Our partitioning system allows developers to write dynamic par-

titioning strategies that adapt their application’s partitioning to the current network.

Caching and migration. RuggedJ automatically caches immutable data and allows devel-

opers to specify object migration through the partitioningpolicy. Hand-coding such

behavior would be tedious and error-prone, and is unlikely to produce the same level

of performance.

12

Object tracking. Developers need not implement the mechanics of object location man-

agement such as looking up the location of objects, maintaining their sources and

destinations during migration, and customizing code for local or remote objects.

Simple remote invocation. Remote method invocations in RuggedJ are transparent to the

developer. Applications are not explicitly aware of the object locations, and so do

not need to handle calls to remote objects. This is particularly useful in the presence

of migration; developers need not determine at run-time whether an object is local or

remote at a given point in the program.

Immutability control. Partitioning policies give developers the ability to labelclasses as

functionally immutable. Instances of such classes may not be statically determinable

as immutable (they may contain non-final fields that are modified outside the con-

structor), but the developer knows that they will never be modified after an initial

set-up phase. This allows the developer to control replication more precisely.

Finally, applications developed for RuggedJ can make use of standard tool chains and

development methodologies. Since RuggedJ operates only when the application is de-

ployed, programmers can use any Java development and debugging tools.

1.3 Contributions

While the concept of transparent distribution is not in itself novel, our approach to the

problem differs in several key ways from previous work (as wewill discuss in Section 2).

This dissertation presents several main contributions:

Novel infrastructure. We present a user-level infrastructure that transparentlydistributes

large Java applications running on standard JVMs. This is the first transparent Java

distribution system that dynamically adapts to arbitrary network configurations, us-

ing a programmer-defined partitioning strategy rather thana static partitioning.

13

Object model. Our object model allows virtualized access to the objects throughout a sys-

tem, enabling us to interpose arbitrary code that tailors the functionality of the appli-

cation executing on that system.

Whole-program transformation. We enumerate the major barriers to transforming appli-

cations, specifically the presence of native code and systemlibrary code that cannot

be rewritten. We offer transformation templates that allowsuch classes to conform to

our object model, and discuss of how transformed classes caninteroperate with un-

modified code. We have developed a classification algorithm that determines which

source classes should be transformed in which ways.

Run-time mechanisms.We demonstrate how immutable data can safely be replicated in

a distributed system, and how objects can be migrated and tracked transparently to

the developer.

Distributed semantics. We maintain Java’s original semantics in the face of distribution,

including an elegant remote monitor implementation, a system to maintain global

uniqueness for static data and an infrastructure for managing exceptions.

Partitioning interface. We describe the interface to our partitioning system that gives de-

velopers the flexibility to take full advantage of the RuggedJinfrastructure. Our

partitioning framework is designed so that plug-ins can be extensively tailored to the

individual application, while simple policies can be implemented in a few lines of

code.

Application properties. We characterize the properties ofdistributableapplications, indi-

cating classes of applications that will perform well when distributed and the design

features that can lead to poor performance. We discuss optimizations that improve

distributed performance, both in the general case and when targeting RuggedJ in

particular.

Performance study. We demonstrate scalability for realistic benchmark applications on a

large-scale cluster of 48 cores over 3 machines.

14

2 BACKGROUND

RuggedJ draws inspiration from a number of prior systems thathave explored Java distri-

bution. In this chapter we will survey the major systems thatwe have learned from, and

discuss some alternative strategies to distribution.

2.1 Transparent Distribution

Transparent distribution (distributing an application with little or no input from the

original developer) is a promising approach to developing distributed applications. Several

systems have implemented transparent distribution for Java in the past, developing some of

the techniques that we have used in RuggedJ.

2.1.1 J-Orchestra

J-Orchestra [Tilevich and Smaragdakis, 2002, 2009] is a transparent Java distribution

system that formed part of the inspiration for RuggedJ. Indeed, J-Orchestra influenced

many of RuggedJ’s early design decisions. However, J-Orchestra’s fundamental goal is

different from RuggedJ’s: We distribute applications dynamically across arbitrary network

configurations, while J-Orchestra aims for “resource-driven distribution,” where one shares

an application between a small, fixed set of machines with specific capabilities. For ex-

ample, a transformed system may perform calculations on a back-end server, while dis-

playing its user interface on a PDA. The design of each systemreflects these differing

objectives. J-Orchestra uses a static design to execute fixed client-server applications or

for rapid prototyping [Liogkas et al., 2004]. The overall design of J-Orchestra fits well for

the applications that they target, which generally consistof client/server communication

or applications with a UI running on a separate host than the main processing work [Tile-

15

vich et al., 2005]. The primary goal is to take advantages of specific resources on different

machines, rather than to distribute a large processing job across multiple back-ends.

The RuggedJ object model is partly derived from J-Orchestra,which relies upon a sim-

ilar if somewhat more simple model. Classes within J-Orchestra are determined by the

user to beanchoredor mobile[Tilevich and Smaragdakis, 2002]; mobile classes are those

that can be remotely referenced or can migrate, while anchored classes must remain fixed

on a single machine. Mobile classes are replaced by rewritten proxyclasses that allow for

local or remote access, and any direct data accesses (getting and setting fields) are redi-

rected through accessor methods. These proxies provide thesame location-hiding function

as our interfaces. A proxy instance can refer to either a local or to a remote object, re-

quiring no special modifications when referring to such objects. The proxy class assumes

the original name of the class, meaning that it cannot be elided when an object must be

remotely-referenceable but does not migrate (an optimization that has proven effective in

RuggedJ). J-Orchestra handles unmodifiable (system) code bywrapping. It creates proxy

classes that encapsulate a reference to an associated system class which can then be re-

ferred to by rewritten code [Tilevich and Smaragdakis, 2006]. This approach is the same

as ourWrappingsystem code template (discussed in Section 3.4); we found that wrapping

and unwrapping incurred a performance overhead, and so developed additional techniques

to handle system code.

J-Orchestra partitions applications at the class level; instances of anchored classes are

always allocated on the same machine. This simplifies the object model, since they can

predict ahead of time which references will be local and which will be remote (classes

can beco-anchoredto ensure that all their references are local). However thismeans that

instances of anchored classes cannot exist on multiple machines, limiting the partitioning

strategies available to developers. J-Orchestra’s rewriting system is static and performed

offline before the application is deployed. Each class is rewritten as Java source code

according to its designation (anchored or mobile), compiled to bytecode and delivered in

a per-sitejar file to each machine in the cluster. This collection of classes represents the

transformed version of the application appropriate to thatnode, which runs it as a regular

16

application. This strategy works well for J-Orchestra; it removes the need for load-time

rewriting, and their fixed-network partitioning does not suffer for the lack of dynamism. In

contrast, RuggedJ’s dynamic partitioning system allows per-instance decisions, allowing us

to allocate instances of a given class on arbitrary nodes within the network. Not only does

this let us take advantage of current network conditions that cannot be predicted ahead of

time, but it also allows us to perform load-balancing by distributing key objects of a given

class across the network.

J-Orchestra uses a run-time infrastructure that performs similar functions to that of

RuggedJ. A large part of the run-time’s functionality is creating remote objects. J-Orchestra

uses an RMI-based distributed object factory that runs on each node and reflectively creates

instances of mobile objects. This differs from RuggedJ’s object creation approach where

the majority of instances are created locally using Java’s standardnew operation, with only

those few objects that are explicitly determined to need remote allocation incurring the

expense of reflective creation. The run-time also contains support for threading and syn-

chronization. J-Orchestra uses RMI for remote execution, and so cannot implement the

thread affinity-based synchronization approach that we discuss in Section 4.3. Instead they

implement a separate run-time library that mimics the actions of monitors, extending RMI

calls to include a global thread equivilance class identifier that determines which thread

should acquire any monitors during a method’s execution. They found this mechanism to

incur an overhead of 5.5-12% [Tilevich and Smaragdakis, 2004].

The J-Orchestra run-time system does not manage exception handling, rather allowing

the user to supply custom error recovery blocks within the proxy. This approach offers

more flexibility than the automatic exception handling thatwe describe in Section 4.3 but

lessens the transparency of the system. The run-time also does not intercept the majority of

reflective calls. While the system designers argue that fullycorrect support of reflection is

possible using a mechanism similar to that discussed in Section 4.3.2, they do not expand

on the claim; it is unclear how they would handle such issues as reflective access to wrapped

objects.

17

2.1.2 Terracotta

Terracotta [Terracotta Inc.] is an open-source JVM-level clustering system. It has sev-

eral similarities to RuggedJ, requiring no specific API for developers to implement, and

using bytecode-rewriting to allow mostly-transparent distribution. Terracotta also targets a

similar class of applications to RuggedJ: where J-Orchestrawas optimized for applications

that distribute across small, fixed networks, Terracotta targets large distributable applica-

tions that can run on large clusters. However, the Terracotta approach differs from that of

RuggedJ in several key aspects.

Users define Terracotta’s shared object graph as a closure ofobjects reachable from

distribution roots. All objects that can be reached from these roots are considered to be

shared. By contrast, RuggedJ considers all objects to be potentially remotely-referencable,

and so does not distinguish between shared and non-shared objects. Terracotta root objects

have different semantics from regular Java objects: the value of a root field may not be

changed, as doing so would affect the shared object graph. Objects reachable from a root

are referred to asclustered. Such objects have a cluster-wide identifier and so can be re-

motely referenced. Terracotta also uses this shared graph for persistence; clustered objects

can be persisted without additional specification.

The Terracotta run-time system uses a client-server approach that differs strongly from

that of J-Orchestra or RuggedJ. A central server (which can bedistributed to reduce the

bottleneck that it presents) manages all clustered objects(that are located on this central

server) as well as global activities such as locking. Terracotta uses a transaction mechanism

to perform work on the client systems. A remote thread locks aclustered object on the

server, starting a transaction. Any necessary data is replicated on the client node, which

performs local work on the safely-locked object. Once the transaction is complete, the

client releases the lock and updates the cannonical object on the server, which propogates

the changes to any remote replicas. This transactional, client/server approach differs from

RuggedJ’s peer-to-peer system, where cannonical versions of objects are spread throughout

the system.

18

2.1.3 Addistant

Addistant [Tatsubori et al., 2001] enables the distribution of “legacy” Java applications

(the developers define legacy as any Java software written without distribution). The system

makes use of load-time bytecode rewriting using the Javassist transformation tool, and

provides a run-time system. It requires no modification to the Java VM. Developers specify

the locations of objects at the class level in a separate policy file; the authors claim that it

is not realistic to individually specify where each object is located. The Addistant run-time

system has the interesting feature that it automatically delivers rewritten source code to the

respective nodes, simplifying application deployment.

The major contribution of the Addistant system is its objectmodel. Like RuggedJ, Ad-

distant uses proxies to forward remote references to the appropriate objects. They develop

a classification that allows system code to integrate into distributed applications, based on

two properties.Modifiability refers to the capacity of their tool to rewrite bytecode; we

discuss a similar concept in the differentiation between user and system code.Heterogene-

ity refers to the references that a class holds; a heterogeneousclass can refer to both local

and remote objects. Based on these two criteria, they define four approaches to developing

proxies. TheReplaceapproach is usable when a class is modifiable and non-hetrogeneous.

It assigns the class to one node and generates a proxy with thesame name on all remote

nodes. TheRenameapproach is used when the class is unmodifiable, but is referred to only

by modifiable classes. In this case the system creates a proxywith a different name, and

rewrites all references to point to this proxy. TheSubclassapproach allows heterogeneity:

the proxy is a subclass of the base class. References pointingto the base class can instead

refer to the proxy. Finally theCopyapproach is used for primitive and immutable objects,

with replicas passed around the network.

Addistant takes the same approach to object equality as RuggedJ; equality is guaranteed

by ensuring that exactly one proxy object per host refers to any given master object. It

also uses a similar thread affinity system to RuggedJ, ensuring that callbacks from remote

methods are handled by the same thread.

19

2.1.4 AIDE

The AIDE system [Messer et al., 2002] proposes “offloading” of work from low-power

computational devices such as PDAs. Monolithic applications are transparently distributed

to make use of available remote resources. AIDE is implemented in Java using a modified

version of HP’s Chai virtual machine. It uses a class-level partitioning system where all

instances of a given class are colocated. The partitioning is determined at run-time through

VM instrumentation; a weighted execution graph is built up from instrumentation data.

A graph partitioning is computed at periodic or resource-based trigger points. Lightly-

connected components are considered candidates for offloading, while strongly-connected

components have frequent interactions and so should be colocated.

AIDE bypasses some of the rewriting issues that RuggedJ facesby increasing the func-

tion of the head node. All native methods are executed on the original JVM, and while static

functions can be executed anywhere, static data remains on the original VM. This simplifies

the implementation of static data, but could cause a bottleneck at the original, presumably

low-power, VM. This overhead is difficult to determine; while an implementation of AIDE

was built, the authors report numbers from an emulator.

2.2 Java Distributed Shared Memory

Distributed Shared Memory (DSM) systems use a cluster of modified Java VMs to im-

plement a single shared-memory image. While this does not directly compare to RuggedJ’s

transparent distribution approach (as it involves VM modification), such systems can run

similar applications in a distributed manner.

A number of Java DSM systems use the Homebased Lazy Release Consistency model

(HLRC) [Iftode, 1998, Samanta et al., 1998]. HLRC is a page-based virtual memory con-

sistency model that assigns a “home” node to each shared page. It computes difference

maps (diffs) for each dirty page at the end of a specified interval (such asduring a release

operation) which are immediately applied to all other versions of the page. This model al-

20

lows Java VMs to cache local updates while ensuring that memory is consistent at defined

points.

Java/DSM [Yu and Cox, 1997] was the first distributed shared memory implementation

for Java. It was built on top of the Treadmarks system [Keleher et al., 1994], a DSM im-

plementation that uses a a homeless LRC protocol to provide a shared memory abstraction

for Unix applications. The Java/DSM heap is allocated in theTreadmarks shared memory

area. Data is shared per-page, and types are modified to account for hardware differences

such as endianness. MultiJav [Chen and Allan, 1998] is modified Java VM that implements

a Java DSM. MultiJav differs from Java/DSM in the unit of sharing: sharing in MultiJav

is per-object, with synchronization performed by release-consistency. Shareable objects

are detected by the VM, with no programmer annotations necessary, and are referenced

through handles mapped to machine memories.

cJVM [Aridor et al., 1999, 2000] is a cluster-aware Java Virtual Machine implemen-

tation that uses an optimized object model to improve performance. A master object is

located at the node where an object was created. All other nodes in the cluster have proxies

that refer to the master. A proxy can have multiple implementations, with the most efficient

chosen at class-load time. The cJVM object model supports object and thread migration,

caching through replication and remote method invocation.

cJava [da Silva et al., 2003] is a Java DSM based on HLRC in whicheach node executes

an instance of a modified VM. It runs unmodified multi-threaded programs in a distributed

manner with no additional programmer input. Each JVM contains a Distributed Object

Manager that allocates objects and manages the global thread space, an Event Manager

that controls communication between JVMs and a Thread Manager that oversees synchro-

nization and thread creation. When running on multiple VMs they observed sub-linear

speedup, which they attributed to a mismatch between the HLRCmodel and Java’s lan-

guage semantics. The Cooperative Java Virtual Machine (CoJVM) [Lobosco, 2003, Lo-

bosco et al., 2005] is a similar Java DSM that uses the HLRC model. It uses selective

diffing to update only those pages that contain dirty Java objects, and lazy home allocation

to minimize bottlenecks.

21

2.3 Language-Based Distribution

RuggedJ distributes Java applications, maintaining the semantics of the original lan-

guage in a distributed context. This approach has its advantages: developers are largely

familiar with Java, and efficient implementations of the Java Virtual Machine are widely

available. However a different approach would be to design anew language from the

ground up with distribution in mind. This would allow for extra flexibility in language

concepts than was available to us, and could greatly simplify implementation by imposing

distribution concepts into the language, compiler and run-time systems.

The Emerald programming language [Black et al., 1986, 2007] implements many of

the same concepts as Java. It is an object-oriented languagewhere data is encapsulated as

object state, including primitive data such as integers or booleans. Classes implement ab-

stract types, similar to Java’s interfaces, and objects mayhave an optional process attribute

that allows them to execute code in a concurrent thread. Unlike Java, however, Emerald

contains direct support for distribution. Instances have an explicit location attribute and

unique name (similar to RuggedJ’s unique object identifiers)that allow them to be tracked

across the network. Objects can be declared immutable by thedeveloper, allowing them to

be replicated across multiple nodes, and objects can be migrated from node to node.

Emerald’s object model presents an advance over earlier distributed languages such as

Argus [Liskov et al., 1987] or Eden [Black, 1985] in that it uses a single representation for

local and remote objects. Previous systems had required that developers implement two

versions of a given object if it was to be used in a local and remote context. In Emerald

developers supply a single object specification that is transformed by the compiler into one

of three representations:Global objects are reachable from remote nodes,Local objects

are colocated with another object, andDirect objects are inlined into an enclosing object.

Each implementation inherits from a common abstract type, allowing developers to refer

to them in a uniform manner.

While the Emerald object model makes locations transparent during invocations, de-

velopers can explicity obtain object location information. Each object implements several

22

operations: a developer canLocatean object (tracked by a run-time system that uses for-

warding references to resolve migrations, falling back to abroadcast system if the infor-

mation is unavailable [Jul et al., 1988]),Fix or Unfix an object (anchoring it to a particular

node), andMovean object from one node to another. Parameters to remote method invo-

cations are generally passed by reference, with developersable to specify arguments to be

migrated to the invoking node.

X10 is a modern object-oriented distributed programming language that was designed

to enable large, scalable applications to run across clusters of high-end computers [Charles

et al., 2005]. X10 introduces the concept ofplaces: an execution environment with a

finite number of threads and a bounded region of shared memorythat is accessible with

uniform time to the local threads. Accesses to remote placesare performed usingfutures.

An asynchronous request is spawned by the local thread and returns immediately, with the

result of the access supplied later. This allows X10 to hide some of the latency of remote

data accesses. Computation is performed usingactivitieswhich can execute synchronously

or as part of a future.

Synchronization in X10 is implemented usingclocks. A clock represents a global bar-

rier with which activities can register. Activities reaching the end of a specific clock phase

must wait until all registered acivities havequiescedby indicating that they are ready to

proceed. X10 clocks generalize the concept of barriers by allowing a given activity to

synchronize on multiple clocks, while still guaranteeing such programs to be free of dead-

locks [Agarwal et al., 2007].

Fortress [Steele, 2006] is a high performance language designed to offer the same porta-

bility properties as Java. Fortress is designed to be highlyparallel, with language constructs

that make parallelism the natural mode of development. Multiple operands to an operator,

or expressions within a tuple, can be executed in parallel using any resources available.

Fortress uses a work-stealing technique first developed forCilk [Blumofe et al., 1995] to

distribute work between idle threads; expressions to be evaluated are placed on a work

queue from which other threads may scavenge work when idle. Fortress was designed to

23

eventually execute across clusters of nodes, but that direction is not currently being pur-

sued.

2.4 Other Java Distribution Systems

There have been a number of different approaches taken to distributing Java applica-

tions, with varying degrees of transparency to the developer. We provide here a summary

of the major systems.

The standard mechanism for distributed computation withinJava is Remote Method

Invocation (RMI) [Sun Microsystems, Inc., a]. Java RMI provides an API that allows

programmers to create and manipulate remote objects directly. Classes that may be used

remotely implementremote interfacesthat define the operations that can be performed

by remote clients. Remote objects are represented by stubs that forward any accesses to

the original object. Java RMI makes distribution fully explicit; developers must track the

locations of objects and must be aware of object location when designing their applications.

JavaParty [Philippsen and Haumacher, 2000, Philippsen andZenger, 1997] is a a source-

level transformation system that adds support for remote objects to Java. Classes in Java-

Party can be declared asremote (using a newly-defined modifier) and so are visible and ac-

cessable from any other node in the network. The run-time system takes care of placement

and communication, and removes the need to register shared objects; a remote object is

globally visible upon creation. JavaParty is implemented on top of RMI as a pre-processing

step to a Java compiler. It transforms theremote keyword into RMI stubs, providing a sim-

pler interface to Java distribution. JavaParty introducesseveral features that were imple-

mented in J-Orchestra, and later in RuggedJ. It generates interfaces for shared classes with

different implementations for local and remote version. Italso separates the static parts of

classes into a new generated class that can be managed by the run-time system. JavaParty

supports object migration for spatial locality.

Do! [Launay and Pazat, 1998a,b] transforms annotated parallel Java programs into dis-

tributed Java programs. It uses a preprocessor to create newclases, and a run-time system

24

that manages actual distribution, remote object creation and so forth. Original programs are

developed in terms ofTASK objects that operate overCOLLECTION objects that represent the

application’s data. This explicit Single Intruction, Multiple Data (SIMD) model ensures

that applications are distributable and provides ready distribution points.

Doorastha [Dahm, 2000a,b] is an extension of Java RMI that allows fine-grained opti-

mization while preserving standard Java semantics. It allows a per-object determination of

argument passing semantics, whether an object should be passed by reference or by copy.

A given object can be passed using different semantics at different times, with passing by

reference the default. The system also supports object migration as an additional optimiza-

tion, allowing objects that are not explicitly passed as arguments to move between nodes.

Annotations allow the developer to specify how much of an object’s transitive closure is to

be copied. Doorastha is implemented using specially-formatted comments as annotations

that are read by a custom compiler. The system also includes acustom run-time layer that

exists on top of RMI.

Java// (pronounced “Java Parallel”) [Caromel and Vayssière, 1998, Caromel et al.,

1998] is a set of library classes that allow code to be executed on single-processor, multi-

processor, or cluster machines. Java applications that aredeveloped using these libraries

intantiate the appropriate version at run-time. Objects that are set asactivethrough method

calls have proxies created on remote machines, and method calls automatically redirected.

The Java// system supports transparent futures, allowing multiple outstanding calls that

hide network latencies. Java// uses an abstract concept of anodeto refer to partitioning

units; multiple nodes can represent machines in a cluster orcan be colocated on a single

multiprocessor. This way partitioning choices are built into the application whether it runs

in a distributed manner or not.

Javanaise [Hagimont and Louvegnies, 1998] is a library-based Java distribution system

that does not perform bytecode rewriting or rely on a modifiedJava VM. The developer

defines clusters of related classes, which are colocated to minimize communication. Each

application class has a set of proxies that serve as an entry point to the Javanaise run-time

system:proxy_in (located on the same machine as the object) andproxy_out (located on

25

remote machines). Proxies are provided by the developer, and implement Javanaise marker

interfaces. The run-time system provides synchronizationand coherence between threads,

and communication between proxies.

Object Request Brokers (ORBs) are middleware systems that allowprograms to call

one another across a network. The ORB provides a standard set of call semantics that allow

systems running on different platforms and coded using different languages to interoperate.

The Common ORB Architecture (CORBA) [OMG, 1992] defines a standard interface and

set of features that are implemented by many ORBs.

2.5 Work Related to Key RuggedJ Features

There are several projects with goals other than distribution that use similar techniques

to those in RuggedJ. In this section we discuss such related work, focusing on the similari-

ties and differences from our implementation in RuggedJ.

2.5.1 Object Model

TheInfer Typerefactoring [Steimann, 2007] aims to increase the reusability of code by

typing fields as interfaces rather than as classes. The refactoring takes an object reference

and generalizes it to the minimal interface that encapsulates its protocol. By retyping field

references using this new interface, which is then implemented by the original referred

class, Infer Type allows references to be specified by the minimum set of operations re-

quired, reducing the effort needed to reimplement this functionality at a later time. A key

feature of the Infer Type refactoring is producing the minimal set of functionality required

of a reference; while RuggedJ generates interfaces for each class in the original application,

it does not modify their protocols.

Java introduced dynamic proxies as part of the standard language specification’s reflec-

tive API version 1.3 [Sun Microsystems, Inc., b]. Such proxies allow developers to inter-

pose arbitrary code around method invocations by redirecting accesses through proxy ob-

jects. Java’s dynamic proxy mechanism works only for fields typed as interfaces, severely

26

limiting the usefulness of such techniques. Uniform dynamic proxies [Eugster, 2006] ad-

dresses this limitation by extending support to allow proxies for class-typed objects. This

is implemented using a series of bytecode transformations that produce a unified object

model, redirecting field accesses through accessor methods.

The Automatic Test Factoring system [Saff et al., 2005] produces “mock” versions of

objects which return memoized results from a previous measuring run, allowing developers

to speed up the testing of individual application components. Their system uses the same

interface technique that allows us to refer to proxy and local stubs transparently; in their

case the interfaces allow them to switch real classes with their mock equivalents, determin-

ing which parts of an application are to be tested. The Test Factoring system differs in the

way it handles system code. Rather than redirecting through wrappers or extending classes,

they directly rewrite the system library to include mock objects. This is not feasible in our

system, due to the limitations of visibility between class loaders. Such rewrites are possi-

ble only if classes are not renamed, and any referenced libraries are stored in the boot class

path.

2.5.2 Whole-Program Transformation

The issue of rewriting system code has been considered in thepast. The Twin Class

Hierarchy (TCH) approach [Factor et al., 2004] copies relevant system classes into a user-

level package, which can then be rewritten and referred to byrewritten user code. Because

the original system classes remain unchanged, any instrumentation inserted into the rewrit-

ten versions can safely refer to system classes without affecting the statistics gathered or

causing an infinite loop. The TCH system does not allow rewritten system classes to in-

teract with the original classes, making it too limited for our needs. Additionally, the TCH

approach requires custom wrappers for all native methods. This approach does not scale,

and could require that separate wrappers be written for different implementations of the

standard class libraries, compromising ease of deploymentover heterogeneous Java VMs.

27

2.5.3 Application Partitioning

Pangaea [Spiegel, 2000, 2002, 1999] acts as an automatic partitioning front-end to sev-

eral distribution systems (including Java RMI, JavaParty, CORBA and Doorastha). It func-

tions over distributable applications designed as a single-machine concurrent program, and

performs a guided static analysis to determine distribution policies. The developer pro-

vides a starting point to the analysis; boundary objects areassigned to particular machines,

and used as the base for determining distributable units. The static analysis optimizes the

partitioning using whole-program knowledge, such as immutability, dynamic scope and

phase behavior leading to object migration [Busch, 2001]. Pangaea could conceivably be

used as a front-end to RuggedJ, generating a partitioning policy based on its static analysis.

However RuggedJ’s partitioning interface allows for significantly more flexible policies

than would be generated by Pangaea. For example, we can take advantage of program-

mer knowledge to mark statically-mutable classes as functionally immutable, and we allow

the developer to insert custom migration triggers to maximize locality. Thus, a Pangaea-

generated partitioning policy would not take full advantage of RuggedJ’s capabilities.

28

3 CLASS TRANSFORMATION

Class transformation is key to our distribution system. Injecting distribution logic into reg-

ular Java code allows classes to interoperate with remote objects and with the RuggedJ

library without modifying the underlying Java virtual machine. We perform extensive

transformations on each of the classes that make up the original application: we gener-

ate an interface that encapsulates the protocol of the classand three implementations of

this interface to represent local, remote and migratable objects. Additionally, for classes

with static data we create a static singleton that represents this content, generating a further

interface and three classes. Finally, we rewrite the contents of the original classes to be

aware of these new classes and to work within a distributed environment.

We define an additional two goals in the transformation process. First, we aim to keep

the rewritten bytecode as simple as possible. This stems from the practical difficulties in-

herent to debugging bytecode; the simpler the rewritten bytecode the more straightforward

the debugging process. Additionally, overly-verbose bytecode transformation sequences

are more likely to lead to complex interactions where generated bytecode sequences are

accidentally modified by subsequent transformations. The second goal is to optimize trans-

formed code for local execution. This is a result of two constraints: the vast majority

of object accesses in the distributed system should be to local objects, and the overhead

of remote invocations is such that optimizing bytecode willdo little to affect the overall

performance penalty in these cases.

We perform class transformation at the bytecode level, using a custom Java class loader.

Bytecode transformation offers several advantages over source-level modification. We

transform our modified classes on-demand, without consideration of inter-class dependen-

cies. Modified Java source code would have to be compiled, which would require that the

whole program was rewritten ahead of time; we take advantageof incremental transfor-

mation to optimize classes for their location in the network. Additionally, bytecode is a

29

significantly less complex representation of an application, since Java constructs and vari-

ables are collapsed to stack and register operations. This makes the transformation process

simpler, as there are fewer cases to handle.

There exist several strategies to rewrite bytecode. Aspectoriented programming (AOP)

is a design methodology that aims to separate cross-cuttingconcerns from the main logic

of an application [Kiczales et al., 1997]. Anaspectis a transformation that is inserted at

specific, well-defined points in an original application (known aspointcuts), augmenting or

replacing the existing code. This way, aspects can be used toimplement features such as

logging or error handling separately from the main application. The most commonly-used

implementation of AOP is AspectJ [Kiczales et al., 2001a,b]which includes both a source-

level and bytecode-level aspect weaver that rewrites original classes. AOP suffers from a

lack of low-level control; aspects are specified in terms of the classes that they modify, and

allow adviceto insert or modify code that corresponds to specific pointcuts. This matching

process makes it difficult to design general aspects that perform specialized context-specific

rewrites on arbitrary classes. MetaAspectJ [Huang and Smaragdakis, 2006] aims to remedy

this issue by providing an aspect-generating framework that can create specific aspects

programatically. However, even with this additional tool,AOP is capable only of modifying

existing classes; it cannot be used to generate the new classes required by a system such as

RuggedJ.

A similar but more flexible, approach is that of Javassist [Chiba, 2000, Chiba and

Nishizawa, 2003], where on specifies code transformations in Java syntax, which is then

compiled with a custom compiler. This offers a lower-level interface to rewriting than

AOP. However, we found that its on-demand compilation approach made whole-program

modification difficult. Jinline [Tanter et al., 2002] is a related project that allows load-

time rewriting of bytecode. It provides a version of AOP at the bytecode level, inlining a

specified method body at a given bytecode location. Jinline provides static and run-time

information to user-defined listeners, which are called whenever a matching bytecode se-

quence is encountered. JMangler [Austermann et al., Kniesel et al., 2001] intercepts and

rewrites bytecode at load-time. It is able to work with user-level class-loaders by providing

30

a modified version of theClassLoader class. JMangler is currently limited to Java 1.4,

making it unsuitable for our needs. Barat [Bokowski and Spiegel, 1998] loads either byte-

code or Java source and builds a complete AST. It performs name and type analysis on the

code, making the results available for use in other rewriting systems. While the analyses

provided by Barat would have been useful in developing RuggedJ, the system is currently

limited to analyzing Java 1.1 class files.

Ultimately, we determined that ASM [Bruneton et al., 2002] supports a good balance

of direct access to method bytecode while hiding awkward details such as management of

constant pools and the selection of instructions with hard-coded local variable slots. These

two abstractions vastly simplified the design of transformations and generated bytecode,

making ASM more useful to us than the similarly-featured BCEL [Dahm, 2001]. Addi-

tionally, ASM supports the class file extensions specified inJava 6, allowing us to make

use of the latest language features. As a result, we performed the vast majority of our trans-

formations using ASM, with some minor additional modifications performed by a custom

C library (see Section 3.4.2).

When transforming an application, we must account for Java system code. A user-

level class loader cannot rewrite classes from the Java standard libraries, and so we cannot

transform them in the same way as we would any other code. In accordance with our goal

of simple bytecode transformation, we use a combination of four different techniques to

handle library classes, removing the need for special treatment in rewritten bytecode:

Direct classes.We classify immutable and purely local objects asDirect, and refer to them

without modification. Immutable direct objects can be replicated on each node in

the network, and so are never remotely referenced. This means that they need not

implement the RuggedJ object model.

Promotable classes.System classes that are not referred to by other system classes within

an application are referred to asPromotable. Since all references to these classes

exist in rewritable code, we can create a copy of the system class that we are free to

rewrite.

31

Extending classes.For many system classes we can generate anExtendingset of classes

that implement the RuggedJ object model. This allows the object to be referenced by

remote nodes in the same way as any other transformed class.

Wrapping classes.Finally, we can generateWrappingclasses that implement the object

model without extending the original system class. This technique allows any system

class to be remotely referenced, at the cost of wrapping and unwrapping overheads.

Classes in RuggedJ are transformed on demand, with a rewritingclass loader on each

node. This way we can transform classes differently on different nodes; if we know in

advance that a class will only ever be allocated upon a singlenode we can rewrite all

accesses from that node as purely local, and all accesses from any other node as purely

remote. In addition to the rewriting class loader, we also use a Java Virtual Machine Tool

Interface (JVMTI) agent to perform limited modifications toJava system code.

The remainder of this chapter is structured as follows: Section 3.1 outlines some of the

terminology that we use when discussing bytecode transformation. Section 3.2 outlines the

RuggedJ object model, while Section 3.3 discusses the bytecode rewrites that we use to

support the model. Section 3.4 discusses how we integrate system classes into the RuggedJ

object model, and Section 3.5 describes the implications these classes have on user code.

Finally, Section 3.6 gives some quantitative evaluation ofour system code support.

3.1 Terminology

We use (and extend) various terms to characterize Java classes, which we now briefly

define.

3.1.1 System and User Classes

Figure 3.1 gives a simplified overview of class loading within our system. We split

classes into two sets,systemanduserclasses, depending on the class loader that defines

them. System classes are those in the Java standard libraries, and so are loaded by the

32

System Boundary

java.util.HashMap

javax.swing.JPanel

sun.audio.AudioData

org.xml.sax.XMLReader

dacapo.jython.Main

org.eclipse.core.runtime.EclipseStarter net.sourceforge.pmd.PMD

spec.jbb.JBBmain

Bootstrap

Class Loader

User Classes

jbb.jar

dacapo.jar

...

System Classes

rt.jar

Classes.jar

...

System

Class Loader

Java Virtual Machine

Figure 3.1.: User and system classes

virtual machine’sbootstrapclass loader [Liang and Bracha, 1998]. User classes, produced

by the application developer, form the remainder of the application and are loaded by the

user-definedsystemclass loader. This distinction is vital when considering load-time trans-

formation, as a user-level class loader can modify only userclasses. We discuss Java’s class

loading mechanism, and its implications for our system, in Section 3.4.1.

Within the Java VM itself we define thesystem boundaryas a logical distinction be-

tween the two sets of classes; user classes exist above the system boundary, while system

classes exist below. This abstraction is convenient when considering interaction between

rewritten user and non-rewritten system code. We can enumerate the ways in which refer-

ences can cross the boundary, and so ensure that rewritten references are never passed to

system code.

3.1.2 Transformation

Figure 3.2 shows the implementation ofwrapping; one of our approaches to handling

system classes within a transformed application. In Figure3.2(a) we see one system and

one user class before applying any transformations. Figure3.2(b) shows the result of

wrapping each object. ClassSystemClassWrapper contains a reference to the unmodi-

fied SystemClass. Since the wrapper was not generated by the bootstrap class loader it

exists above the system boundary, with the reference crossing the boundary. In both cases,

we refer to the original classesSystemClass andUserClass as thebaseclass, while the

two generated classes arewrappers.

33

System Boundary

Java Virtual Machine

UserClass

SystemClass

(a) Before transformation

SystemClassWrapper UserClassWrapper

System Boundary

Java Virtual Machine

UserClass

SystemClass

(b) After transformation

Figure 3.2.: Transforming classes

Additionally, within our system we refer toSystemClassWrapper and UserClass-

Wrapper asnewtypes. They are generated at load-time by our rewriting class loader, and

thus can implement our object model. In contrast,SystemClass andUserClass areold

types, as they come from the original application. Both sets of types are necessary; new

types implement the uniform object model that allows all classes to be referenced in the

same manner, while old types can be passed safely to system ornative code that has not

been rewritten to be aware of the presence of generated code.We maintain a strict separa-

tion of the two sets of types. User code refers exclusively tonew types, while system code

refers exclusively to old.

3.2 The RuggedJ Object Model

The ability to distribute an application in RuggedJ stems from the uniform object model

that we apply to all objects. Figure 3.3 shows the transformation of a single user classX to

conform to the RuggedJ object model. We discuss here the instance parts of the transformed

class, and defer the static parts to Section 3.2.5.

34

class X

class X_local class X_stub class X_proxy

interface X

interface X_static

class
X_static_stub

class
X_static_local

Original Application Transformed Classes

class
X_static_proxy

Figure 3.3.: The RuggedJ object model

3.2.1 Generated Classes

For each class within the original application we generate three classes and one inter-

face. The generated interface,X, encapsulates the protocol of the original classX. It contains

the signatures of all the original instance methods, along with new accessor methods for all

the original instance fields. It uses the same name as the original class—this simplifies later

rewriting of classes that refer to the original classX, since we do not need to update type

names in method signatures, field definitions, or casts. InterfaceX is implemented by three

concrete representations of the original class. The first,X_local, contains rewritten imple-

mentations of the instance methods of the original class, plus implementations of the new

field accessor methods. In the rewritten application, an instance ofX_local corresponds

to an instance of classX from the original application: anX_local object holds all the data

present in an old instance ofX.

The second implementing class is used to refer to remote instances on other nodes:

X_stub contains remotely forwarding implementations of all the methods of the new inter-

faceX, which simply call the corresponding method on a remoteX_local instance. Within

a distributed application, the local and stub instances have a1 : n relation: any local object

can be remotely referred to and invoked by stubs from then nodes in the cluster.

35

The third (and final) new class isX_proxy. A proxy encapsulates a reference to either

a local or stub instance, and its methods simply forward all calls to the target local/stub.

Proxy indirection simplifies dynamic migration of instances to different nodes: a migrat-

able instance is referred to by proxy, so upon migration onlythe reference in the proxy

need be updated. Rewritten application code types all references to the three implementing

classes using interfaceX. However we can bypass the proxy instance for objects that are

known not to migrate. As all three classes implement interfaceX we can use them inter-

changeably without modification to any calling code. In RuggedJ we use programmer input

to determine how to partition an application across the network.

All of the classes in an application can be adapted to implement the RuggedJ object

model. As we shall see, we use several techniques to generatelocal classes. However

each implementation strategy produces a class that implements the corresponding interface,

allowing proxy and stub classes to interact with any style oflocal class in the same manner.

As the designs of stubs and proxies do not vary between implementation techniques, they

are so straightforward as to be uninteresting. We thereforefocus our attention on the local

classes.

3.2.2 Referring to Transformed Objects

Within rewritten code, we exclusively refer to values with generated interfaces using

that interface. This allows us to vary the implementations of these interfaces among several

alternatives (local, proxy, and stub classes) without impacting code elsewhere in the system.

Additionally, we use interfaces as a means of maintaining the class hierarchy from the

original application. While some of the transformations we present in Section 3.4.3 do not

maintain the original relationship between their local classes, we ensure that their generated

interfaces do. Thus, since we refer to such classes exclusively by interface, we can perform

subtype and instance checks correctly.

36

class X

class X_local

class X_stub

class X_proxyinterface X

Original Application Transformed Classes

class Y

Interface A Interface A

class Y_local

class Y_stub

class Y_proxy

interface Y

Figure 3.4.: Inheritance between transformed classes

3.2.3 Inheritance

As well as providing a mechanism by which we can reference different versions of

a class uniformly, RuggedJ’s generated interfaces maintainthe inheritance relationships

between original classes. Figure 3.4 shows the relationship between transformed classes

(omitting static parts).

The original application’s inheritance relationship between subclassY of classX appears

as the transformed interfaceY extending interfaceX. Since rewritten code refers to objects

exclusively by interface, this allows one to use any object that implementsY when the

original code required an instance ofX. Similarly, CheckCast or InstanceOf operations

operate over interfaces, and produce the same results in transformed code as in the original

application.

Each transformed classY_local, Y_stub andY_proxy extends the equivalent part of

classX. This is not necessary to preserve the inheritance relationships of the original ap-

plication. Other than when allocating instances, rewritten code never refers to these in-

dividual classes. Rather, this subclassing works to simplify the implementation of these

classes. Without it, each class would have to contain the fields and implementations for ev-

37

S[]

T[]
Interface gen.Array_of_T_1

Class gen.Array_of_T_1_local

Class gen.Array_of_T_1_proxy

Class gen.Array_of_T_1_stub

Interface gen.Array_of_S_1

Class gen.Array_of_S_1_local

Class gen.Array_of_S_1_proxy

Class gen.Array_of_S_1_stub

Original
Application

Transformed Application

Figure 3.5.: Generated array types

ery method of the superclasses of its unmodified version, which would lead to duplication

of code and overly-complex classes.

We do not transform interfaces from the original application (in general - see Sec-

tion 3.4.3 for some exceptions) as they have no state that maybe remotely accessed. How-

ever we must capture the relationship between a class that implements an interface; we

do this by extending the original interface in the generatedinterface. This maintains the

inheritance structure through generated interfaces in thesame way that we do for class

inheritance.

3.2.4 Arrays

We convert array types to new array classes, which allow us torefer to them as we

do any other transformed class. The new array classes conform to the RuggedJ object

model; we generate an interface, local class, stub class, and proxy for each, as shown in

Figure 3.5. A one-dimensional array typeT[] is represented by an interfaceArray_of_T_1,

while a two-dimensional array typeT[][] is represented byArray_of_T_2. An array type

comprises both an element type and the number of dimensions of the array, so we encode

both of these properties in the name of the new array types. Java defines subtyping among

array types having the same dimensions only if the element types are subtypes. We capture

38

Original
Application

Transformed Application

V[][]

Interface gen.Array_of_V_2

Class gen.Array_of_V_2_local

Class V

Interface I

Class U

Interface gen.Array_of_V_1 []Interface gen.Array_of_I_2

Interface gen.Array_of_U_2

Class gen.Array_of_U_2_local

Interface gen.Array_of_U_1 []

Figure 3.6.: Multi-dimensional arrays with interfaces

this by making any generated array class for a subtype directly extend the generated array

class for its supertype (both having the same dimensions).

We implement arrays using wrapping: the generated array class wraps a regular Java

array having the same component type as the wrapping array class. The implementation

also provides methods to obtain the arraylength and to perform the standard operations

that arrays inherit fromObject, such asclone.

Figure 3.6 expands on the handling of arrays, showing the classes generated for a two-

dimensional array typeV[][] whose element typeV extendsU and also implements an

interfaceI. We omit the new stub and proxy classes for clarity. This example highlights

some interesting features of our generated classes.

Looking at the wrapped array within the local class, we see that the component type of

the wrapped array is the same as that of the wrapper, with one less dimension. This mirrors

the Java definition of arrays as a single dimension of components, where each component

can be a sub-array. A useful consequence of this approach is that we do not place re-

strictions on the implementations of the components of the wrapped array, so long as they

implement the appropriate interface. Thus, in RuggedJ, sub-arrays can be distributed across

different nodes, regardless of the location of their enclosing array.

Figure 3.6 also illustrates that the old subtyping relationships between array elements

and interfaces must also be represented in the new types. Whenpassing array instances as

39

Original
Application

Transformed Application

Class X

Interface X_static

Class X_static_local Class X_static_stubClass X_static_proxy

Figure 3.7.: Handling static data for distribution

arguments it is necessary forArray_of_V_2 to implementArray_of_I_2. If an original

method signature expects an array argument whose elements implement a given interface

I, then in the rewritten new method we will expect an argument that implements some

interfaceArray_of_I_n (for some dimensionn), so capturing the proper type constraint.

Within that new method allAALoad operations are rewritten asget invocations on the

argument. The type constraint ensures that any argument passed to the new method will

have an appropriateget method to return a value implementingI.

3.2.5 Static Data

A class’s static state presents a complication in a distributed setting, since an application

must see just one version of the static state. Simply rewriting class fields as static fields in

the transformed application will result in each node havinga separate loaded class with that

field, whose states will not be coherent across the nodes. We approach this issue through the

use ofstatic singletons. We extract the static parts of each class to form a single instance,

which we handle as any other object within the system. The instance state of this singleton

object represents the static state of the original class, and can be accessed from any node.

Since static singletons are required only to maintain a canonical version of static data,

we do not need to create a singleton for a class that has no static fields. Our analysis shows

that static singletons are required in only 18% of classes inthe applications we studied.

Static singletons implement the RuggedJ object model as shown in Figure 3.7. Interface

X_static complements the instance interfaceX; it contains the static members of original

40

classX. We transform the static members of the original class into instance members of

X_static_local, and use the RuggedJ run-time library to ensure that only one instance

of that class is ever created. Thus, simply rewriting all static invocations to use the static

singleton ensures that the static data is indeed unique.

The stub classX_static_stub performs the same remote access function as its instance

counterpart. The final class in Figure 3.7,X_static_proxy, acts as a per-node cache for

the appropriate static local/stub object, and is never instantiated. Accesses to static data

in the original application (such as via theInvokeStatic bytecode) are handled by the

virtual machine, resolving the class name to access the appropriate data. In our rewritten

version, however, we need a static singleton object upon which to invoke methods. Obtain-

ing this reference through the library would be an expensiveoperation, requiring a hash

table lookup for every static access. Instead we store the reference as a static field in the

X_static_proxy class, which can be obtained through a regular static field access.

3.2.6 Hand-Coded Classes

A final, small, subset of classes within RuggedJ are hand-written and loaded unmodi-

fied into the Java VM. These are classes that require specific,customized implementations

within the RuggedJ network. For example,java.lang.System contains several methods

for which we define special semantics: we must redirect all references toSystem.out to

the head node, rather than to the local machine. Since performing such one-off transforma-

tions would be laborious and would complicate the transformation framework, we prefer

instead simply to load a hand-coded version of these classes.

3.3 Method and Field Transformations

The implementation for most of the generated classes withinRuggedJ follow simple

templates: the stub and proxy classes each implement every method of the interface, with

a standard bytecode sequence that performs a remote method invocation in the case of the

stub, or forwards the method call to a referent in the case of the proxy. We optimize the

41

stub in some cases to cache immutable values, as we will discuss in Section 4.2.2. The

remaining classes,X_local andX_static_local contain methods and fields copied from

the original class. We rewrite the bodies of all copied methods to refer to the RuggedJ

object model. This involves several rewrites:

Refer to new types.The first modification that we perform is to update copied method

bodies (as well as copied fields) to refer to new types. In mostcases this does not

require a change. We type values by interface, and have designed our object model

to re-use the original class’ name as the interface name. However, there are some

cases where we must update type names. As we will see in Section 3.4, we generate

user-level equivalents for some system classes. In rewritten code we refer exclusively

to these user-level types, and so we update any references incopied code. We also

generate wrapper classes for arrays that make them conform to the RuggedJ object

model. We similarly update references to arrays to correspond to these new types.

Call get and set methods.We generate get and set methods for the fields of each trans-

formed class, allowing us to hide the location of these fieldsbehind the interface.

We rewrite the bytecode in copied method bodies to call thesemethods rather than

directly access fields throughPutField andGetField instructions. When calling

these methods we take into account the different semantics of superclass methods

and fields: methods override, while fields hide. A naı̈ve implementation could ac-

cess the wrong field if a subclass had a field of the same name andtype. We avoid

this by naming get and set methods with both the field name and the containing class.

Update method invocations.Since we type references by interface, we update method in-

vocations fromInvokeVirtual toInvokeInterface. The state of the stack required

for these bytecodes is identical, so we need only change the operand. The exception

to this rewrite is where we have declared a class to be Direct (see Section 3.4.3), and

so do not indirect through an interface.

Convert array operations. Array operations pose some difficulty when rewriting. Unlike

field instructions (such asGetField), array instructions (such asAALoad) do not en-

42

code the type of the array being operated upon (beyond whether it contains objects or

primitives). The type of an object array’s contents are determined at run-time based

upon the contents of the stack, and so are not available to us when we rewrite the

class. Since we wrap arrays we need to know the type of the content in order to call

the correct get or set method. We determine this informationthrough a simple data

flow analysis that tracks the array type from its declaration. We use the same mech-

anism to convertArrayLength bytecodes to a method invocation on the wrapper

object.

Convert static references.Since we extract static data to static singletons, we also update

any references to static methods and fields to use these singletons. This transforma-

tion is similar to the method and field rewriting described above, but with the minor

complication that we must insert a reference to the static singleton before the call.

This requires obtaining the reference (which we do through the static proxy class)

and inserting it before any method parameters (which we pop to and then restore

from local variables).

Convert static methods to instance methods.We transform the bodies of static methods

themselves to account for their change to instance methods.Instance methods con-

tain a reference to the containing object in their local variable slot zero, while static

methods have no containing object, and so do not require thisreference. When con-

verting from static to instance, we increment the target slot for all local variable

accesses by one, creating space for thethis pointer. This could cause issues with

offsets in the bytecode stream, since Java contains shorthand bytecodes to load to and

store from low-numbered local variable slots. The toolkit we use to rewrite, ASM,

bypasses this problem by abstracting away the shorthand bytecodes until it produces

a final output sequence.

Rewrite monitor operations. Global synchronization in RuggedJ is handled in the li-

brary, and is discussed in Section 4.3.4. When rewriting method bodies we convert

43

all synchronization bytecodes (MonitorEnter andMonitorExit) to call out to the

library, which ensures that they are executed correctly.

Wrap and unwrap references. We make extensive use of wrapping both for arrays and

for system objects. When passing wrapped objects as arguments across the system

boundary from user to system code, or when returning them in the opposite direction,

we wrap or unwrap the reference to ensure that the correct object is seen on either

side of the boundary. Passing from user to system code requires a simple unwrap op-

eration to obtain the wrapped reference. Wrapping, on the other hand, requires that

we check whether the object has been wrapped before to avoid creating two wrappers

for a single object. We add a reference to the wrapper in system classes using the

JVMTI agent (discussed in Section 3.4.2) which allows us to re-use existing wrap-

pers. During the bytecode rewriting phase we identify thosepoints where references

pass from one side of the system boundary to the other, and perform compensating

wrapping or unwrapping operations.

Add partitioning callbacks. We also make use of the rewriting process to install callbacks

to the partitioning policy. These are discussed in more detail in Section 4.4; should

a partitioning author wish to perform some action (such as object migration) on a

trigger, the partitioning callback mechanism allows thesetriggers to be written into

the rewritten code.

A final function of the rewriting phase is to replace allocation sites with references to

our transformed classes. Allocation sites are the only occasion where we directly refer

to generated classes, rather than to interfaces. Where the original application allocates

an object of typeX (using theNew bytecode) the transformed version creates either an

X_local or X_stub object, depending on the node upon which the allocation occurs, and a

X_proxy object if the partitioning policy determines that the object may migrate. We can

useX_proxy, X_local, andX_stub objects interchangeably in this manner because each

implements the generated interfaceX. We make all method calls within rewritten code in

terms of the interface, and field accesses go through the generated get and set methods. By

44

calling methods through interfaces, we minimize the transformation necessary on calling

code, while maximizing flexibility in the types of objects used.

The decision whether to allocate an object locally or remotely, as well as whether to

allocate a proxy, is made by the partitioning policy, and will be explored in Section 4.4.

These decisions can be made statically (the classes to be allocated are hard-coded into

the method bytecode), or dynamically (the partitioning policy is queried at whenever the

allocation site is reached). The majority of allocations are performed statically, with local

objects generated without proxies.

3.4 System Classes

The transformations described to this point apply only to user code, which can be

rewritten by a user-defined class loader. The presence of system code within an appli-

cation complicates the implementation of the RuggedJ objectmodel. In this section we

discuss the issues involved when handling system code, and present the transformations

that allow us to integrate system code into our object model.In this chapter we focus only

on the rewriting aspect of integrating system code. We deferconsideration of semantics

(such as migration) to our discussion of partitioning in Section 4.4.

We examine the restrictions imposed upon our system before we consider the impact

of those constraints upon user code, because we find that system code is generally subject

to more constraints than user code. Thus, as we will see in Section 3.6, the majority of

constraints on transforming user code are caused by dependencies on system classes.

3.4.1 Barriers to Transformation

Java class loaders [Liang and Bracha, 1998] are organized hierarchically, as shown in

Figure 3.8. Thebootstrapclass loader forms the root of a tree structure, with thesystem

class loader as its only child. The bootstrap class loader isimplemented within the Java

VM, while the system class loader can be replaced with a user-defined class loader when

the VM starts up. Any other user-defined class loaders form a tree rooted at the system

45

Bootstrap Class Loader

Java VM

User Code

System Class Loader

User-Defined

Class Loader A

User-Defined

Class Loader E

User-Defined

Class Loader D

User-Defined

Class Loader C

User-Defined

Class Loader B

Figure 3.8.: Classloading in the Java Virtual Machine

class loader. A class loading request can explicitly specify the class loader by which it

is to be resolved (using the reflectiveClassLoader class). When the class loader is not

explicitly specified, the class is loaded by the class loaderresponsible for the invoking

class. By default, class loaders delegate all class loading requests to their parent in the tree.

Thus, a class requested from User-Defined Class Loader E in Figure 3.8 would be passed

through each parent node in the tree to be resolved by the bootstrap class loader. Should

the bootstrap class loader fail to resolve the class then therequest would be passed back

to the system class loader, and so on. If none of the class loaders on the path through the

hierarchy can load the class, aClassNotFoundException is thrown.

RuggedJ’s transforming class loader is loaded into the VM at boot time as the system

class loader. Thus, any class loading requests that are not fulfilled by the bootstrap class

loader are intercepted by our class loader, allowing us to rewrite all user code. Due to the

complexity incurred by composing multiple user-defined class loaders, we do not allow

applications to use custom class loaders.

This class loading structure poses two major problems for our transformation system.

The first is that all system classes will be loaded by the bootstrap class loader, meaning

that we do not have the opportunity to transform them. Further, while we could override

46

the delegation mechanism and transform the classes within RuggedJ’s system class loader,

Java’s security mechanism would not allow us to load the transformed versions. User-

defined class loaders may not load classes with reserved package names (such asjava.*).

The second, and more fundamental, problem is that the class loading hierarchy imposes

visibility constraints. A class can refer only to those classes loaded by the same class loader

as itself or by a parent class loader. Thus, classes loaded byany user-defined class loader

can refer to any system code (defined by the bootstrap class loader), but system code cannot

refer to user code. This means that, even were we able to load transformed versions of

system classes, they could not refer to user code such as the RuggedJ library.

A final barrier to transforming system classes is that some ofthese classes are effec-

tively hard-wired into the VM. The bytecode that representsclasses contains direct refer-

ences tojava.lang.String andjava.lang.Class; both appear in the constant pool of a

class file, and can be directly accessed using theLDC bytecode (that directly loads a constant

to the stack). Again, changing the representation of these classes would require modifying

the VM to understand the modified versions, which violates our goal for being able to run

on any (unmodified) Java VM.

Interestingly, native and reflective code do not present anydifficulty at the system level.

Both types of code could break a system that transforms classes (and, indeed, must be

accounted for within user code). However, since we do not rewrite system code, native and

reflective operations perform as they would in an unmodified system.

3.4.2 The RuggedJ JVMTI Agent

The Java VM Tool Interface (JVMTI) specification [Sun Microsystems, Inc., c] pro-

vides a set of native interfaces that allow access to many aspects of the JVM’s operation. It

allows debuggers or profilers to interface with the VM. For example, an agent can extract

performance metrics, or could monitor the threads in a running VM. Of interest to us is

the bytecode modification functionality of the interface. There are two ways in which byte-

code can be modified using the JVMTI: at class-load time and atrun-time as a response to a

47

class rewriting event. Of the two, the former provides more flexibility. Run-time rewriting

is subject to more constraints than load-time, as the modified code must be compatible with

the running system.

While we cannot implement a custom class loader for system code, we are able to

perform limited rewrites on the majority of system classes.By implementing a JVMTI

agent we can intercept classes before they are loaded. However we cannot perform the

full range of transformations on these classes. For example, we can only modify existing

classes rather than generating multiple new classes. We do,however, make use of a JVMTI

agent to perform some minor modification to certain system classes within the application.

The implementation of some transformations, for example, is complicated by Java’s access

control mechanism; if we change the package to which a class belongs, we can no longer

access other classes with default access in the original package. Our JVMTI agent modifies

such classes to bypass these restrictions. Such a modification does not require reference to

any additional classes, and does not alter program semantics, because the access control

was checked statically at compile time.

Our JVMTI agent is implemented in C, using a custom bytecode modification library.

The bytecode rewriting must be implemented in C; simply calling back to our ASM-based

Java rewriting library would be tempting, but impractical.In order to rewrite a class this

way would require loading of the entire ASM framework, alongwith the system classes

upon which it depends. This would defeat the purpose of the agent, since it would miss

rewriting hundreds of system classes before ASM had fully loaded.

The agent is called by the VM after a class is presented for loading by a class loader,

but before it is actually loaded. We modify the class and return a new bytecode stream that

is then loaded to the VM. This interface represents the majorlimitation to rewriting with

JVMTI – we can modify classes but we cannot create or rename them.

A final limitation to class transformation is the presence ofprimordial classes. These

are approximately seventy classes (with the exact number varying between VM implemen-

tations) that cannot be modified at all. Primordial classes are intimately tied to the VM,

such asjava.lang.Object or java.lang.String. Depending on the VM implemen-

48

tation, these classes may be hard-coded or directly memory-mapped to optimize startup

times, and so cannot be intercepted.

3.4.3 Templates for Rewriting

Our strategy when handling system classes is to abstract away the distinction between

system and user code, allowing rewritten code to refer to either without special cases. Thus

we ensure that all system classes can be made to conform to theRuggedJ object model.

Our class transformations use four basic techniques to obtain new types:

• The local instance of aWrappingclass holds a reference to a paired instance of the

old type.

• Extendingclasses implement the object model through subtyping, withthe generated

local class extending the original system class.

• Promotableclasses are not referenced by native code or by any other system classes,

and so can be turned into user classes.

• Direct classes are not transformed, and so do not conform to the object model, solely

because it does not make sense to for the target domain (the other transformations can

be applied to such classes, but would result in unnecessary overhead). In a distributed

system, immutable objects such asInteger need not be transformed, as they can be

replicated on each node.

System Wrapping

Wrapping is the most straightforward of the transformation templates and is shown in

Figure 3.9. In this approach, a set of classes are generated above the system boundary, in

a special user-level package chosen to prevent name conflicts. For conciseness we refer

to this package asgen. The base class is loaded by the bootstrap class loader, and is not

modified. The local class contains new-type implementations of all the methods of the

49

Class S Class UClass T

Interface gen.S Interface gen.UInterface gen.T

Class gen.S_local Class gen.U_localClass gen.T_local

System Boundary

Figure 3.9.: Wrapping class hierarchy

base class, each of which translates the arguments from new to old, invokes the method

on the wrapped base object, then performs an old-to-new translation on the return value

if necessary. In this way a given object can be referred to by new type above the system

boundary, and by old type below.

Unwrapping objects when passing from user to system code is atrivial operation. How-

ever, we must be more careful when performing the inverse; wrapping objects that are

passed from system to user code. In this case we need to ensurethat a given object that

has previously been wrapped is reunited with its original wrapper; to do otherwise would

create two wrappers for a single base object, which would notpreserve identity. We avoid

this by inserting a reference to the wrapper within each wrapped system class, along with

get and set methods to access it. Since this involves the modification of system code, we

perform this rewrite using the JVMTI agent. The wrapper reference is typed asObject, as

a system class cannot refer to a user class. Finally, since wecannot add fields to primordial

classes, we maintain a hash table for these objects, againstwhich we check for existing

wrappers before generating a new one.

As with all classes that conform to the RuggedJ object model, wrapping classes main-

tain the inheritance hierarchy of the original through their generated interface. That the

local classes also subclass the relevant local class is merely a convenience—if they did

not, every wrapper would have to implement redirect methodsfor the methods of every

superclass, rather than just those in its base.

50

Class S Class UClass T

Interface gen.S Interface gen.UInterface gen.T

Class gen.S_local Class gen.U_localClass gen.T_local

System Boundary

Figure 3.10.: Extending class hierarchy

The System Wrapping template can be considered the “universal solvent” for system

classes. We can generate wrappers for any system class, which ensures that all objects

in the application can conform to our object model. Unfortunately, the System Wrapping

template also carries the highest overhead (as objects mustbe wrapped and unwrapped,

which can be expensive), making the other templates more desirable.

System Extending

The System Extending template is an alternative means of handling system classes that

eliminates the overhead of unwrapping. Under this technique, the generated local class

extends the original base class, as shown in Figure 3.10. Thegenerated interface and local

class conform to our object model, while the base class remains unchanged. Note that in

this case there is no inheritance relationship between the local classes; this is not important

because the interfaces maintain the class hierarchy above the system boundary, while the

base classes maintain it below.

An extending class can be passed to system or native code without any conversion

process, since it extends the unmodified base. However we cannot create a new instance of

an extending class within system code (as we cannot rewrite the allocation site to refer to

T_local rather thanT). This limits the applicability of this template to system classes that

are only ever allocated above the system boundary. Further,while we obviously cannot

extendfinal classes, we can also not overridefinal methods. This may be an issue

51

Interface gen.S Interface gen.UInterface gen.T

Class gen.S_local Class gen.U_localClass gen.T_local

System Boundary

Figure 3.11.: Promotable class hierarchy

if a final method includes an old type as an argument or return value; the object model

requires that such methods be overridden in order to be called by user code, which only uses

new types. Thus, while the System Extending template is preferable to System Wrapping,

due to its lower overhead it can be used only in limited cases.

Promotable

Promotable classes are a subset of system classes that are not referenced by any other

non-Promotable system class or by native code. In this case we know that any reference

to a Promotable class will either be in user code or in other Promotable classes. We can

therefore move Promotable classes above the system boundary (by renaming their classes

to form part of thegen package), and treat them as we do any other user class. Since we

can rewrite all references to the Promotable class we can ensure that the original class is

never referred to, and so is never loaded by the bootstrap class loader.

Promotable classes often exist in cliques within the systemlibraries, with no external

uses from other classes in the libraries. An example that we have encountered is the Java

XML processing library. If an application uses XML processing, much of the library is

loaded into the VM. However these classes refer only to one another. Thus, we canpromote

these classes en-masse.

The structure of a Promotable class is shown in 3.11. This is the most straightfor-

ward implementation of the object model, with each local class implementing its interface.

52

Class S Class UClass T

System Boundary

Figure 3.12.: Direct class hierarchy

While the inheritance hierarchy is maintained by generated interfaces, the local classes re-

tain the original relationship. In the System Wrapping and Extending templates the actual

method implementations were located in the base classes, Promotable local classes contain

complete implementations of all their methods. Thus, Promotable classes must extend their

parent so as to have their parent’s methods available.

The Promotable template is similar to the Twin Class Hierarchy (TCH) approach pro-

posed by [Factor et al., 2004], in that it loads system classes into the user space in order to

perform transformations. However there is one important difference: the TCH system al-

lows both modified and unmodified versions of the code to existwithin a VM. We promote

only those classes that are not used by other system code, so the promoted version is the

only one in the system.

System Direct

The final set of classes, System Direct, do not conform to the RuggedJ object model.

This template exists as an optimization; as we have seen, anyclass can conform to the

object model through the System Wrapping template. However there are classes for which

it is not necessary to conform to the object model. For example, when distributing an

application with RuggedJ, we do not want to transform immutable objects. If we know

that an object will never change, we can replicate it on multiple nodes, and eliminate the

53

Table 3.1: Subclassing between templates

Wrapping Extending Promotable Direct

Wrapping Can subclass
Cannot wrap Cannot wrap

No interface
superclass superclass

Extending
Cannot alter

Can subclass
Cannot alter

No interface
base hierarchy base hierarchy

Promotable
Cannot extend

Can subclass Can subclass No interface
wrapper

Direct No interface No interface No interface Can subclass

overhead of remote method calls. Similarly, there are classes that are closely tied to the

individual VM (such asjava.lang.Class) that do not make sense to reference remotely.

Those classes we designate to be System Direct are not transformed in any way (as

shown in Figure 3.12). As such they do not incur any overheads, and can be freely passed

between system and user code, as well as to native methods. However, since they do

not conform to the RuggedJ object model, they cannot be modified to extend the original

application’s functionality.

3.4.4 Subtyping

Since all of the transformation templates described above rewrite classes differently, we

cannot freely “mix and match” techniques between super- andsubclasses. Each rewriting

technique therefore imposes restrictions on the classes ofits hierarchy. The relationships

are shown in Table 3.1.

Since System Direct classes do not conform to the RuggedJ object model, we must

ensure that they have only other Direct classes in their hierarchy. To do otherwise would

violate our rule that inheritance is maintained through interfaces; a Direct class has no

interface, and so cannot fit into this scheme.

54

Likewise, System Wrapping classes can have only other Wrapping classes in their hi-

erarchies. A Wrapping class cannot extend an Extending or Promotable class in case it is

returned to user code from system code. There would be no way to produce a new-type

representation of the Extending or Promotable superclass.The argument as to why a Wrap-

ping class can only be extended by other Wrapping classes is similar. An Extending class

that extends a Wrapping class removes our ability to translate from an old type to a new.

In the case of a Promotable subclass, the local class would have to subclass the Wrapping

subclass (since a Promotable object does not have a base class). This relationship would be

lost when the base class was unwrapped.

A System Extending class can extend only another Extending class, since the local class

must directly extend the base, and we cannot change the superclass hierarchy of the base

class. However an Extending class can act as the superclass for a Promotable class; the

System Extending template does not require unwrapping, so aPromotable local class can

extend a System Extending local class without any loss of information should the object

be passed to system or native code. This further indicates the usefulness of the System Ex-

tending template over System Wrapping. Promotable classes offer more options when ex-

tending an application’s functionality, and by increasingthe number of Extending classes,

we likewise increase the number of potentially Promotable classes.

Our discussion of subtyping must also consider the originalinterfaces implemented by

classes (as opposed to those generated as part of the RuggedJ object model). We rewrite in-

terfaces in much the same way as classes: user-level interfaces contain signatures using new

types, while system-level interfaces contain old types. Thus, system-level interfaces must

be System Direct (if they contain only primitive or Direct arguments and return values) or

System Extending (if they contain Extending, Wrapping, or Promotable arguments).

3.4.5 Classification

We refer to the process by which templates are chosen for eachclass asclassification.

A given class’s classification may be determined by its subclasses or its references from

55

System

Wrapping

System

Direct
PromotableSystem

Extending

Natives?

Yes

Yes

Direct in

hierarchy?

Yes

No

Hierarchy

contains

Wrapping? Yes

No

Start

No

No

Referenced by

system code?

Yes

No

Superclasses all

Extending or

Promotable?

No

Subclasses all

Promotable?

Yes

Yes

No

Passed to interface

implemented by or

method overridden by

user class?

Yes

No

No

Yes

Returned by

native code?

No

Yes

Returned to user

code by system

code?

No

Yes

Interface?

Argument or

return value of

system class?

Yes
No

Yes

No

Extending in

Hierarchy?
No

Yes

Immutable or

VM-specifc?

Yes

No

Final?

Accessible field

of system class?

Figure 3.13.: Classification for system classes

elsewhere in the system, so we require knowledge of the entire application. We run the

classification algorithm only on the classes that make up theapplication; analyzing the

entire Java class libraries would introduce false dependencies, and limit our flexibility in

transforming the application. We compute classification during a pre-processing phase,

which we run once per application for a given set of class libraries.

We arrange the various classification templates using a total ordering. Direct classes

are handled first, as they are an optimization and otherwise fall into at least one other clas-

sification. Next we find Promotable classes, which maximize the flexibility of our rewrites,

then Extending classes that handle the remaining classes with less overhead. Wrapping

classes account for the remainder.

The algorithm is iterative, since changes to the classification of one class may affect

others. We present the algorithm as a decision graph, which produces the classification

for a given class, assuming that all other classes have already been correctly classified. To

56

generate a full classification, we simply run the algorithm until a fixed point is reached.

The decision graph for system classes is shown in Figure 3.13.

3.4.6 System Class Static Singletons

Extracting static members from a class is a simple process when transforming user

code, but is not possible for system classes. Since we cannotrewrite system code, we

cannot change static references (InvokeStatic, GetStatic, etc.) to use static singletons.

Thus, we implement the static local class differently for user and system code.

We refer to the static local class generated for a user or Promotable class as amobile

static singleton(MSS). This local class functions as described in Section 3.2.5, and con-

tains implementations of each static method from the original class, as well as versions of

each static field. The methods and fields are transformed fromstatic to instance members,

allowing the singleton to implement the static interface. Additionally, by transforming

static methods to instance methods we remove the dependencyon a particular VM: static

data is usually stored in a VM-specific manner and cannot easily be moved from node to

node, while instance data is stored in the heap and can be migrated (hencemobilestatic

singleton).

While system classes cannot use static singletons themselves, we make their static state

available to remote user code by generating apinned static singleton. This implements the

same interface as a mobile static singleton, but can exist ononly one node. The static local

class contains an instance method with the signature of eachstatic method. In this case it

simply acts as a redirector, calling the static method of thesystem class, allowing that data

to be accessed remotely.

Pinned static singletons pose a major barrier to distribution. Not only must all objects

of a class with a pinned static singleton be allocated on the same node, but so must any

other system classes that refer to the static parts of that class. Fortunately static singletons

are required only for classes with static data. As we will seein Section 3.6.1, we do not

57

need static singletons in most cases; ultimately, only 12% on average of the classes we

consider require a pinned static singleton.

3.5 User Classes

The transformation of system classes constrains that of user code. As we discussed in

Section 3.4.4, the classification of a given type can affect the classification of its super- and

sub-classes. This requirement extends above the system boundary, meaning that we need

to create equivalent versions of the four templates within user classes. Additionally, native

code can be present in user as well as system code, which limits our ability to rename and

rewrite classes.

The four templates for rewriting user code closely mirror those for system code. Classes

can be User Wrapping, User Extending, User Unconstrained (the user-level equivalent of

Promotable), or User Direct. As might be expected, occurrences of user-level native code

or the subclassing of system classes are rare. As we show in Section 3.6, the vast majority

of user classes are either User Direct or User Unconstrained.

3.5.1 Rewriting

User code differs from system code in one important manner: the classes are loaded by

our user-level class loader, and so can be rewritten. This has implications for User Direct

classes, as well as the base classes for User Extending, and Wrapping.

When rewriting user code, we define two invariants:

1. Values with generated interfaces (User Wrapping, Extending or Unconstrained) are

always typed using that interface. This allows us to vary theimplementations of these

interfaces among several alternatives (as discussed in Section 3.2). If we know that

these instances will always be manipulated through the interface methods then any

implementation of those interfaces is safely encapsulatedand we can freely decide

on that implementation without worrying if that decision impacts other code.

58

2. User code exclusively refers to new types. By strictly ensuring that all rewritten code

uses new types, we define a clear separation between old and new types. We can

maintain this invariant because instances cross the systemboundary in well-defined

places (passed as arguments, returned from methods, etc.).Thus, we never need to

check dynamically if an instance is of an old or new type; the context from which the

instance is referenced (system or user) decides staticallyif the instance has an old or

new type.

We occasionally break the second invariant to optimize baseclasses. However, these viola-

tions are always localized transformations (an old-type reference never escapes the method

in which it is used), and so do not impact the system as a whole.

3.5.2 Native and Reflective code

When transforming user code, we must make allowances for native code (for which we

do not assume that we have source code) and for reflective code. We observe that either

native or reflective code can break any large-scale series oftransformations by introspecting

on any class in the system. Should a class, field, or method be renamed or removed, hard-

wired assumptions in native or reflective code may fail. We accept that an adversarial

programmer, or one that makes extensive use of such code, candisrupt our system. We

focus instead on permitting the widest possible range of common usages of both native and

reflective code.

In the case of reflection, we do this at by intercepting reflective methods that refer to

rewritten code and converting the results to the appropriate new types. We will discuss

this mechanism in Section 4.3.2. In the case of native code, we exploit the heuristics laid

down in J-Orchestra [Tilevich and Smaragdakis, 2006] that determine which classes are

most likely to be accessed by native code. They define classeswith native methods to be

unmodifiable, as well as the types of their fields and superclasses (dynamic dispatch can

result in calling an overridden method indirectly from native code). These heuristics are

adequate for the applications we consider. We ensure that any classes that are likely to be

59

exposed to native code conform to the User Direct, Wrapping orExtending templates. This

way they retain a base object upon which native code can operate.

3.5.3 Base Classes

User Wrapping and Extending classes are largely similar to their System equivalents,

with the difference that their base classes are above the system boundary and so can be

rewritten. Following the second invariant, we rewrite the method signatures and bodies of

the base class to use new types rather than old. This simplifies the local classes that wrap

or extend the base, since they do not have to translate between old and new types.

However, since user-level base classes may be passed to natives or system code (typed

as system-level interfaces or superclasses), a base class must retain thesignatureof its

unmodified original. New fields and methods may be added and the bodies of methods may

be rewritten, but the class cannot be renamed, and its fields and methods must retain their

original names and types. This violates our second invariant, that user code exclusively

refer to new types.

We overcome this for methods by providing old-type implementations that simply redi-

rect to their new-type equivalents. For fields this is more difficult. We ensure that any field

that may be accessed by native code is not classified as User Unconstrained by the defi-

nition of unmodifiable classes above; a field of an unmodifiable class is itself considered

unmodifiable, and so can not be classified as User Unconstrained. We observe that system

code cannot directly access the fields of user classes, sincethey are loaded by different class

loaders. Of the remaining templates, Direct and Extending classes are trivially compatible

with system and native code (although we must type Extendingclasses as their base, and

then cast upon use in user code). User Wrapping classes are also typed by their base, but

since the wrapper is a separate object, we maintain a cached copy of the wrapper as an

additional field. System or native code use the base class, while user code uses the new

wrapper field. Note that the casting and wrapping of fields is required only in the base class

60

itself; all other user classes refer to the object by interface and so can never access the field

directly.

Another violation of our invariant occurs when a method accesses itsthis pointer. The

type of thethis pointer in a base class is an old type. We must therefore convert the

reference to a new type, either by casting if it is a User Extending class or by wrapping

if it is User Wrapping. This way the invariant is maintained. There are, however, some

situations in which this is not desirable and some in which itis not allowed. If thethis

reference is loaded to the stack in order to execute a field access, for example, we would

rather perform the access directly rather than going through theget method of the interface.

More importantly, if the pointer is loaded in preparation for a superclass constructor call (as

required in every constructor) it would be incorrect to wrapthe reference. Doing so would

lead to the constructor being called on the wrapper rather than the base, which would cause

a run-time error.

We determine whichthis references to convert using a def-use analysis. If the ref-

erence escapes the current method (by being passed as an argument or stored as a field)

we convert it, otherwise we do not. While this violates our invariant that rewritten code

exclusively refers to new types, it does so only in a localized manner. Note that we can also

use this optimization when accessing local fields within Unconstrained classes.

3.5.4 Classification

The classification of user code follows a similar approach tothat of system classes.

Figure 3.14 shows the decision graph for user classes. The user classification process

uses the same ordering as the system; Direct classes are handled first, then Unconstrained,

Extending, and Wrapping.

3.6 Classification Evaluation

We evaluate our classification system using experimental results obtained from RuggedJ.

We examine the output of our classification algorithm on a variety of benchmark applica-

61

Start

Exposed to

native code?

Yes No

User

Wrapping

User

Direct

User

Unconstrained

User

Extending

Immutable?No

Yes

Super and

Subclasses all

Direct?

Yes

No

Superclass

Wrapping?

Yes

NoSuperclass

Wrapping?

No
Yes

No

Yes

Any Subclass

Wrapping?

Yes

No

Final?

Yes

Interface?

Yes

No

Extending in

Hierarchy?

No

Yes

No

Returned by class

exposed to native?

Yes

No

Subclasses

 all Unconstrained?

Figure 3.14.: Classification of user classes

tions, and provide some insight into the sources of overheadintroduced by our system. Note

that we evaluate classification on several standard benchmarks that we will not discuss in

our overall performance evaluation in Section 5.3. The majority of standard benchmarks

are unsuitable for distribution, either through low levelsof concurrency or through bottle-

necks in data organization. However they serve to illustrate the distribution of the various

classifications.

All classifications were generated on an Apple computer, using Mac OS X 10.5.6, and

version 1.6.007 of Apple’s Hotspot-based Java VM. This affects the results of the clas-

sification; different implementations of the standard class libraries may produce slightly

different classifications.

We ran the classification algorithm on applications from different benchmark suites,

show in Figure 3.1: ten benchmarks from the the DaCapo suite (version 2006-10-MR2

[Blackburn et al., 2006]), nine from the SPECjvm2008 suite [SPECjvm98, 2008], plus

SPECjbb2005 [SPECjbb2005, 2005]. In addition, we analyzed four of the applications that

we will present in Chapter 5.3: a re-implemented distributable version of the SPECjbb2005

workload, a DNA database matching application [Keane and Naughton, 2005] and dis-

62

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

antlr

bloat

chart

eclipse

fop

hsqldb

jython

luindex

lusearch

pmd

xalan

compiler

compress

crypto

derby

mpegaudio

scimark

serial

sunflow

xml

SPECjbb2005

Re-implemented SPECjbb2005

DNA Database

Monte Carlo

Molecular Dynamics

System Classes

User Classes

Figure 3.15.: Percentages of system vs. user classes

tributable versions of the Monte Carlo and Molecular Dynamicbenchmarks from the Java

Grande suite [Mathew et al., 1999, The Java Grande Forum].

To obtain an accurate count of the classes referred to by the DaCapo applications, we

analyzed them without the DaCapo harness. This way we classified only those classes

referred to by the application, not by the harness.

As Figure 3.1 shows, the majority of classes (78% on average)in an application belong

to the standard libraries. This is due to the degree of interaction between system classes:

a single reference can cause a large closure of classes to load. This strongly demonstrates

the need to handle system classes within a rewriting system.

Figure 3.16 shows that the majority of user classes are splitbetween User Direct (42%

of user classes and 10% of the total application) and User Unconstrained (53% of user

classes 13% of the total application). Very few classes are User Extending or User Wrap-

ping. There was no user-level native code in the applications we studied, so these two

classifications were used only for user classes that extended system classes. We see that

63

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

antlr

bloat

chart

eclipse

fop

hsqldb

jython

luindex

lusearch

pmd

xalan

compiler

compress

crypto

derby

mpegaudio

scimark

serial

sunflow

xml

SPECjbb2005

Re-implemented SPECjbb2005

DNA Database

Monte Carlo

Molecular Dynamics

User Direct

User Unconstrained

User Extending

User Wrapping

Figure 3.16.: Classification of user classes

only four classes in any of the benchmarks were classified as User Extending. While the

number of User Extending classes seems insignificant, we must retain the classification

template for these classes. Recall that an Extending class cannot extend a Wrapping class,

so eliminating the User Extending template causes more system classes to be Wrapping

rather than Extending, which we wish to avoid due to the wrapping overhead.

Figure 3.17 shows that, below the system boundary, System Wrapping classes are the

most common, representing 57% of the system classes and 42% of the total application on

average. This can be attributed to the need to wrap objects that are passed or returned to

user code. System Extending classes are less common, representing 18% of system classes,

while 20% of system classes are System Direct. Finally, 3% ofclasses on average can be

promoted.

64

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

antlr

bloat

chart

eclipse

fop

hsqldb

jython

luindex

lusearch

pmd

xalan

compiler

compress

crypto

derby

mpegaudio

scimark

serial

sunflow

xml

SPECjbb2005

Re-implemented SPECjbb2005

DNA Database

Monte Carlo

Molecular Dynamics

System Direct

System Unconstrained

System Extending

System Wrapping

Figure 3.17.: Classification of system classes

3.6.1 Static Singletons

While we present a mechanism for handling static data within adistributed system

in Sections 3.2.5 and 3.4.6, we recognize that static singletons pose a major source of

overhead. At best, a local static method invocation requires additional work to locate and

insert a reference to the static singleton, while at worst every static method invocation could

become a remote call. We aim, therefore, to eliminate staticsingletons in those cases where

they are not strictly necessary (for classes that have no static state, or for which static state

is immutable). Figure 3.18 shows that we are able to completely eliminate static singletons

for 82% of classes on average across our applications, 12% ofclasses require a pinned

static singleton and the remaining 6% of classes need a mobile static singleton.

65

0% 20% 40% 60% 80% 100%

antlr

bloat

chart

eclipse

fop

hsqldb

jython

luindex

lusearch

pmd

xalan

compiler

compress

crypto

derby

mpegaudio

scimark

serial

sunflow

xml

SPECjbb2005

Re-implemented SPECjbb2005

DNA Database

Monte Carlo

Molecular Dynamics

No Static Singleton

Pinned Static Singleton

Mobile Static Singleton

Figure 3.18.: Elimination of static singletons

3.7 Contributions

The RuggedJ object model borrows concepts from several of thesystems presented in

Section 2. The master/proxy model that we implement in our stub and local classes is a

common theme in distributed systems; the majority of systems that refer to remote objects

do so through some form of delegating stub. Where we differ is in the flexibility of our

interface-based model. We type references as interfaces, allowing us to switch the imple-

mentation of an object from local to stub in the case of migration. We combine this ability

with our dedicated proxy object that allows us to dynamically change the implementation

of an object at run time, while retaining the ability to elideproxies for performance reasons

when we know them to be unnecessary. No other object model that we studied has this

flexibility.

66

Of the systems that we examined, Addistant had the most similar approach to handling

system classes. Their Extending template was similar to ours, while their Copy template

was equivalent to our Direct. However we allow more flexibility when placing system

objects; Addistant clusters objects together by class, with all instances of a given class

colocated, while we allow system objects to be allocated on different nodes so long as they

do not refer to one another. Our whole-program rewriting system is also more flexible than

those that we have seen. We allow programmers to override static classification decisions

within an application’s partitioning policy to take account of domain-specific knowledge.

Thus we can declare objects to be functionally immutable (ina similar manner to Emerald,

although within the context of Java) allowing them to be replicated. Similarly we can

eliminate rewrites completely on key performance-critical classes, allowing them to run

without the overhead from our rewrites; we have not seen thisoptimization performed by

other systems.

3.8 Concluding Remarks

Bytecode transformation allows RuggedJ to integrate original application code with our

infrastructure. In this chapter we have described a series of virtualizing transformations

that can be applied to the various classes that comprise an application to allow them to

conform to a unified object model, as well as the classification process to determine which

template should be applied to each class. We have discussed the bytecode transformations

that we apply to method bodies to integrate with this new object model, as well as the

supplementary classes we generate to handle system code. Finally, we have described the

implementation of our prototype system, and presented an analysis of the classification

process when applied to several benchmarks.

67

4 RUN-TIME SUPPORT

RuggedJ’s run-time system links the rewritten classes around the network, creating a single

unified application. It perform the dynamic aspects of distribution; where the bytecode

rewriting class loader transforms classes to handle remoteobjects, the run-time system

creates, tracks and dispatches to those objects. It provides an abstract interface to library

functionality, allowing complex tasks to be moved from rewritten bytecode to pure Java

implementations, and it manages global operations such as the coordination of static data or

synchronization between objects. Finally, the run-time can optimize an application without

modification to the original source, improving data locality by migrating or replicating

objects.

The RuggedJ run-time is made up of separate library instancesrunning on each node in

the network. The major functions of each node’s run-time include:

Library functionality. Transformed code calls out to the run-time library to perform tasks

that would be laborious to implement in bytecode. For example, when a wrapped

object is returned from system code to user code it must be wrapped, re-using a

previous wrapper object if one exists (as described in Section 3.4.3). This wrapping

operation can take various forms, depending on the object: user code maintains a

typed reference to previous wrappers, system code containsan object reference that

must be cast, and primordial classes can not hold additionalreferences, and so the

wrapper must be located in a hash table. Finally if a wrapper does not already exist, a

new wrapper object is reflectively created and then stored for future lookups. Rather

than providing the bytecode sequence to perform these operations at every wrapping

point we simply call out to the run-time library.

Network communication. When a RuggedJ network is created, the run-time systems on

each node negotiate to form a communication hierarchy (discussed in Section 4.1.2.

68

This communication system is used to query network state information (such as the

existence and location of static singletons) and to broadcast control messages (such as

the global termination command). As the application executes, the run-time systems

coordinate to create and invoke methods on remote objects.

Remote Object Tracking. The RuggedJ run-time tracks remote object references, both

when external object references are introduced as arguments for incoming messages

or when local references escape the node. Mobile object locations are updated using

broadcast communication, and nodes redirect requests to moved data.

Replication and migration. Data locality is essential for performance in a distributedsys-

tem. Since network accesses are orders of magnitude slower than local memory reads

and writes, a very few key remote objects can devastate performance. Our run-time

system supports objectmigration, allowing data to move to the node upon which it is

to be used. Additionally wereplicateimmutable data on each node in the network,

allowing local read-only access to those parts of an object that never change.

Threading and synchronization. The run-time system preserves the identity of threads

in the original application by mapping each logical global thread to a specific Java

thread on each node. Thisthread affinityensures that application behavior that re-

lies on thread identity, such as the acquisition of monitors, operates correctly in the

distributed application.

The final component of the run-time system is the partitioning strategy. This deter-

mines how the application is divided between the RuggedJ network’s nodes, and con-

trols the location and migration of objects. Partitioning in RuggedJ is performed by an

application-specific plug-in written by the application developer. This allows the program-

mer to leverage domain-specific knowledge of the application’s structure and behavior,

while benefitting from the powerful tools provided by RuggedJ.

The remainder of this chapter is structured as follows: Section 4.1 describes the RuggedJ

network, both in terms of architecture and specification. Section 4.2 discusses the primitive

components upon which RuggedJ’s run-time system is built, and Section 4.3 describes how

69

we compose these primitives to implement some of the Java language’s features. Finally,

Section 4.4 describes the design and capabilities of RuggedJ’s partitioning interface.

4.1 The RuggedJ Network

RuggedJ is designed such that the configuration of the networkis supplied as a final

step in the deployment of the system. A given application (with a well-written partitioning

strategy) can be executed on an arbitrary network without special modification. In this

section we describe the specification and configuration of networks within RuggedJ, as

well as the mechanism by which we communicate between nodes.

4.1.1 Network Configuration

RuggedJ requires that all nodes in a network are capable of running a fully-featured

Java virtual machine, and that each node implements the sameversion of the standard class

libraries. Differences between library versions may lead to incompatible code executing

on different nodes. Beyond this requirement, RuggedJ is agnostic to the virtual machine

implementations upon which it runs. A single RuggedJ networkmay run on nodes with

different architectures, operating systems and virtual machine implementations.

Nodes within a RuggedJ network communicate over Java sockets; we found simple Java

sockets to perform better than MPJ [Baker and Carpenter, 2000], a Java implementation of

the MPI specification that we had used through much of the development of RuggedJ.

At present network configuration is supplied as a text file when the network is created,

although future versions may detect peer nodes automatically. The network configuration

specifies the host name for each virtual machine, as well as the port upon which it listens.

This way a single host may run multiple RuggedJ nodes. When eachnode starts up it

ensures that it can reach all other nodes in the network and that all nodes are running a

compatible virtual machine. This guarantees that the network is ready before we begin

execution of the application.

70

Head

Node

NodeNode

Node

Node

NodeNode Node

Global

Message

Global

Message

Global

Message
Global

Response

Global

Response

Global

Response

NodeNode

Node-to-Node

Message

Node

Node-to-Node

Message

Node-to-Node

Message

Figure 4.1.: Communication between RuggedJ nodes

4.1.2 Communication

When each node has determined that the others in the network are valid and reach-

able, the nodes organize themselves into a binary tree structure, establishing parent and

child relationships with other nodes in the network (Figure4.1). The hierarchical struc-

ture is determined dynamically by the nodes in the network, and is not supplied as part

of the network configuration. This simplifies the configuration of the network, and leaves

opportunities to tailor the communication hierarchy basedupon run-time network-specific

factors such as host location and connection speed. By arranging the nodes in this manner

we simplify the dissemination of run-time information across the nodes; a node need only

exchange run-time information with its parent and childrenrather than broadcasting to the

network as a whole.

The node at the root of this tree is designated thehead node. This node has several

responsibilities beyond those of a regular node. First, it instantiates the application by

invoking themain method on the appropriate application class. Additionally, the head node

serves as a canonical source for global information, and arbitrates global activities (such

as the allocation of static singletons, discussed in Section 4.3.3). Since the head node sits

at the root of the communication hierarchy, we can be certainthat any requests for global

71

information passed up the tree will eventually be fulfilled.Finally, the head node manages

the standard input and output streams, displaying all application output to a single console.

Communication within RuggedJ is performed by passingMessage objects between

nodes. Messages are split into two categories:global messages that concern the status

of the network as a whole, andnode-to-nodemessages that communicate between arbi-

trary nodes. Global messages include class loading requests that ensure the uniqueness of

static data, queries as to the status of other nodes, or a shutdown message when the main

method exits or in response to aSystem.exit invocation. Global messages make use of

the communication hierarchy; updates and queries pass up the tree to the head node, while

responses and relevant information passes back down from parent to child. Most messages

within the system are node-to-node messages. These includeremote method invocations,

object replication and migration, and requests to allocateobjects remotely. These messages

are passed directly between the nodes concerned, without involving the head node.

4.2 Run-Time Primitives

The RuggedJ run-time system provides the functionality thatwe need to correctly dis-

tribute an application. In this section, we discuss these primitives, while in Section 4.3 we

describe how we exploit them to support Java’s semantics.

4.2.1 Object Management

Objects within RuggedJ do not have a direct one-to-one relationship to those within the

original application. As discussed in Section 3.2, the implementation of an object depends

on whether it is local or remote to the current node, and whether it may migrate (in which

case it requires a proxy). The RuggedJ run-time library creates and maintains these various

representations.

Any object that may be referred to from a remote node is given aunique global identifier

(UID). UIDs are created on-demand when an object reference first escapes a node; we do

not need to create UIDs for purely local objects. A UID comprises along (the encoding

72

is based on the creating node’s network identifier so UIDs canbe created locally) and a

boolean indicating whether it requires a proxy. Whenever an object reference is passed

between nodes (as part of a method invocation, for example) we refer to the object by UID.

UID references are resolved immediately upon reception by anode. This way we know

that all references within rewritten bytecode correspond to the RuggedJ object model, and

do not have to check for UIDs. When a UID is encountered in an incoming message, the

node’s run-time system first checks whether this UID has beenseen before. Each node

maintains a map of all UIDs that it has sent or received to their representative local or stub

instance on the current node. This way we ensure that multiple resolutions of a given UID

result in the same instance. Should an incoming UID not be found in the map, we know that

the object to which the UID refers has not yet been seen by the current node. This implies

that the object is remote; a local object’s UID is logged in the map when a reference to it

first escapes the node. We therefore create a stub (and proxy if necessary) to represent the

object on this node.

4.2.2 Immutable Objects

By far, the largest source of overhead in RuggedJ stems from accessing remote data.

Each remote field access, as well as method invocations on remote objects, requires the

creation and delivery of a network message, along with the associated marshaling and

unmarshaling of target objects, arguments and return values. We have found that the cost

of sending a message overwhelms the cost of transferring data. Thus, we can improve

performance of the system as a whole by reducing the number orremote object accesses,

even if it means transferring more data per message than would otherwise be the case. The

simplest way to do this is to exploit immutability. If an object is known to be immutable

(i.e., that its fields are never modified after initialization) we can safely replicate the object

on any node that refers to it. The state of these copies will never change, meaning that no

coherence mechanism is needed to keep them up to date.

73

We identify immutable objects at the class level using a whole-program analysis, ex-

amining the bytecode of every method in the transitive closure of the application to find

occurrences of theSetField bytecode. We could have decided immutability simply by

using thefinal keyword, but it is common even that non-final fields can be statically in-

ferred immutable, so our our analysis produces a larger set of immutable classes. The static

immutability analysis comes at minimal marginal cost, since we must statically analyze the

whole program anyway to determine interactions between user and system code (discussed

in Section 3.13). We do not generate local, stub or proxy classes for immutable classes (a

replicated class does not need a stub, since it will never be referenced remotely).

Replicas of immutable objects are created in the same way as stubs for remote objects.

Each immutable object has a globallong identifier (ID) similar to a UID. As an optimiza-

tion we do not use actual UIDs for immutable objects because they never need a proxy

and so there is no need to track that information. When an immutable ID is received, a

node first checks whether that immutable object has been seenbefore, and if not it creates

a replica.

Replicas are created in one of two ways. If the object to be replicated implements

Serializable, we use Java’s serialization mechanism to transfer its data, constructing

a byte array that can be sent across the network. Otherwise we must use reflection to

extract each of its fields, and send a map of field/value pairs that allow the object to be

reconstructed reflectively at the destination. Of these approaches, Java’s serialization is

preferable; the serialization mechanism is considerably faster than reflection over fields.

However serialization is appropriate only when an object’stransitive closure can be se-

rialized. The object cannot contain fields that should be transmitted as UIDs, otherwise

serialization will erroneously make a copy of the stub or local object. Thus, serialization is

limited to objects with primitive or immutable fields.

In addition to immutable objects, certain parts of otherwise mutable objects can be

replicated. Individual fields within a mutable class may themselves be immutable; we can

cache these values on each node, meaning that we do not need tomake repeated network

calls to read the data.

74

We implement this caching within the stub class. During the static analysis we deter-

mine theimmutable contentof each class. When we generate the stub for a given class, we

include state for its immutable content. We supplement the generatedget/set methods to

check whether the immutable content has been loaded, and if not we request the immutable

content from the original object. Caching immutable contenton demand rather than when

the stub is created at a node avoids transferring state that is never accessed. However, all the

immutable state for an object is requested at once to avoid multiple requests for different

immutable fields. These decisions minimize the number of requests for immutable state.

We further observe that we need only execute methods on the node containing an object

if that method contains synchronization or modifies the object’s fields. Thus, we locate

unsynchronized methods that do not access any of the mutablefields of the target object

and replicate their bodies in the stub class. We can execute these methods on the local node

without the overhead of a remote method invocation.

4.2.3 Migration

Data locality is key within any distributed application. Manipulating remote objects re-

quires a network transaction, which is more expensive than local accesses by orders of mag-

nitude. Therefore, we minimize non-local accesses bymigrating objects between nodes.

Migration can exploit shifting spatial locality; a good example is the allocation of a large

array on one nodeA, followed by its use on a different nodeB. Without migration, one

must either create the array onA and perform remote accesses fromB, or, conversely, cre-

ate it onB and populate it fromA using remote accesses. Either case suffers significant

performance degradation. Instead we allocate and populatethe array on nodeA, then mi-

grate it to nodeB, requiring only one network access. The cost of sending a message, (the

message creation time, and the time taken to marshal and unmarshal its arguments) greatly

outweighs the time taken to actually transfer the data across a fast network connection.

Therefore, migrating an object to cut down on remote method invocations, while involving

75

a single large data transfer, is significantly cheaper than repeated remote invocations on that

object.

The run-time system must determine which objects can migrate. A migratable object

must have a proxy in order to redirect references from the formerly local object to its stub.

We determine which objects require a proxy by querying the partitioning policy. Further,

an object can be migrated only if all references to that object go through the proxy. This

means that objects manipulated by either system or native code cannot migrate; such code

is unaware of the RuggedJ object model, and so cannot refer to remote objects. Finally, we

cannot migrate objects with close ties to the JVM (such asjava.lang.Class); in practice

migrating such objects would be meaningless. These constraints allow us to migrate the

vast majority of user-level objects, as well as system-level objects referred to only from

user code (such as utility objects drawn from thejava.util collections framework), which

generally make up the parts of an application that we would like to migrate.

Deciding which objects are to be migrated and when they should migrate is determined

by the partitioning strategy. We provide tools that presentdevelopers with the results of the

static partitioning analysis, determining which objects are referenced from which classes.

However the constraints imposed by a static analysis are generally more stringent than

those needed in practice; partition developers can frequently override these limitations to

improve the performance of their applications.

The partitioning policy interface provides several mechanisms by which object migra-

tion can be triggered. The policy author can indicate certain methods whose results should

be migrated. This gives a mechanism to implement the earlierexample; a large array may

be created, initialized, and returned by a given method, then migrated to the node upon

which it will be manipulated. The run-time library also maintains a count of remote ac-

cesses to a given object. The partitioning policy can determine a threshold number of

accesses before it is given the option to migrate an object. This can be useful if an object

is alternately referenced by multiple nodes. It can migrateto the node currently making

use of it, and then move to the next node after reaching the threshold. Finally, migration

76

can be triggered through user-defined callbacks to the partitioning strategy. These will be

discussed further in Section 4.4.

Migration builds upon the same primitives as object replication. When the partitioning

policy determines that an object should migrate, both the source and destination nodes are

notified. We update the proxy reference on the source node to refer to a newly-created stub

object. Any new accesses to the object during the migration are forwarded to the desti-

nation node, which will block them until the migration is complete. The proxy maintains

a count of threads entering each method (including generated get/set methods), and so

can wait until all outstanding invocations on the object have completed. This has the po-

tential to create deadlock if a thread recursively invokes methods on the same object; new

method invocations will be forwarded to the remote node and never return. This must be

avoided by taking appropriate care when defining a partitioning policy, although we have

not encountered such a situation in the applications that wehave distributed.

Once all threads have exited all methods on the migrating object, the local object is

copied using the same mechanism as in object replication. When the copy is complete, the

source node forwards any waiting invocations to the destination. Finally, the new location

information is transmitted to the head node, from where it propagates to all nodes in the

network. Subsequent invocations received by the source node from third-party nodes are

forwarded to the destination, and the third party informed of the change.

4.3 Java Semantics

Preserving source-level Java semantics in a distributed context is a challenge, and re-

quires explicit run-time support to ensureobject identity, appropriate reflective behavior,

uniqueness of static state, proper thread synchronizationand exception handling.

4.3.1 Object Identity

Since an original application object can be represented by multiple generated objects

within RuggedJ (local, proxies and stubs), we must maintain object identity. Comparisons

77

between objects (e.g.,== and.equals()) must produce the same result in the distributed

version of the application as in the original. The design of the RuggedJ system ensures this

property with no additional effort.

Consider mutable objects that conform to the RuggedJ object model. Method-based

comparisons will trivially produce the correct outcome: any method invocation upon a

remote object is forwarded to that object’s local instance on the remote node, where it

executes like any other method. Of more interest is the== operator. The map from UID to

instances on the current node (as discussed in Section 4.2.1) ensures correct execution of

==. We cannot have a stub and a local version of the same object onthe same node, and we

cannot have two stubs referring to the same remote object on the same node. Additionally,

a local or stub object for which a proxy is created is never referenced without that proxy.

These properties, plus the uniqueness of each local object (by definition) ensures that==

comparison simply works. Any two references that representthe same UID object on a

given node will be reference identical.

The argument for immutable replicated objects is similar. We ensure that only one

copy of an immutable object is created per node by maintaining a map of all previously

encountered immutable identifiers. Since a direct object isuniquely represented by a sin-

gle instance on each node, comparison methods and referenceidentity (==) comparisons

produce the proper results.

4.3.2 Reflection

Reflection allows Java application code to introspect on itself and to execute arbitrary

methods. The difficulty that this poses for any dynamic rewriting system is clear; if an

application should reflectively access code which has been modified or removed, the effect

on the system will be unpredictable or catastrophic. Fortunately, however, applications

generally use reflection sparingly and RuggedJ is able to copewith the common uses which

we have experienced.

78

Handling reflective code in RuggedJ involves both the bytecode rewriting class loader

and the run-time system. During the rewriting process, we check for reflective calls, filter-

ing by class name. For example, when we find a method invoked ona java.lang.Class

object we handle it using our reflection mechanism. We rewrite the invocation to be a static

call to our reflection manager within the run-time system; inthe case of an instance method

we pass the target object as the first argument to the static call, eliminating the need to mod-

ify the stack. In the run-time library we attempt to replicate the intent of the call within

the context of our rewritten system. For example, should an application invokegetMethod

on a class object, we return the result of that call on the local version. We have found this

approach to work well in practice.

There is, however, a fundamental problem with such reflective transformations. An au-

tomated system cannot accurately know the intent of the developer, and so we may return

the wrong result in some instances. For example, should an application callClass.forName

to obtain aClass object, the developer may want the new type (e.g. a user-level wrapper

class) to invoke a method, or may want the base type to obtain alock on the class. In such

cases our system may produce incorrect results. Developinga better system for handling

reflective code could be an interesting research project in the future.

4.3.3 Static Data

When distributing a Java application we must retain the semantics of static data, ensur-

ing that a static field maintains a single, global, value regardless of the node from which it

is accessed. In RuggedJ we encapsulate static data using a per-classstatic singletonobject

that holds the canonical version of the static fields of the class.

The structure of a static singleton (shown in Figure 3.7) closely mirrors that of the

transformed instance parts of a class (from Figure 3.3). This allows a static singleton

to be remotely accessed in the same way as any other object and, subject to partitioning

constraints, to migrate. The static singleton structure differs slightly from that shown in

Figure 3.3 in that the static proxy does not implement the static interface. This is because

79

1 public class X_static_proxy {

2 private static StaticGeneratedClass singleton;

3 public static StaticGeneratedClass getSingleton()

4 {

5 if (singleton == null)

6 singleton = StaticSingletonManager.getSingleton("X");

7 return singleton;

8 }

9 }

Listing 4.1: Getting a static singleton via the static proxy

a static singleton does not represent an object from the original application, and can never

have its reference stored. We use the static proxy as a means of obtaining the static singleton

when necessary, but we do not cache it in rewritten code.

The classes of an application fall into three categories with respect to static data. First

are those that contain no mutable static fields. In this case we have no need for a static

singleton, since there is no static data to manage. For established benchmarks such as

SPECjvm2008, SPECjbb2005, and DaCapo, approximately 82% of classes do not require

a static singleton [McGachey et al., 2009b]. Of the remaining classes, we split static sin-

gletons intomobileandpinned. Mobile static singletons can be allocated on and referenced

from any node in the network, while pinned singletons have data exposed to system code

and so have constraints upon their locations. Untransformable system code referring to

static data is a problem inherent to Java distribution, requiring that the application be par-

titioned in such a way as to avoid duplication of fields. We defer to the developer of the

partitioning strategy for a correct partitioning, guided by our classification tools.

The RuggedJ run-time library tracks the locations of both mobile and pinned static

singletons, and ensures that only one instance is created inthe network. Rewritten code ob-

tains a reference to a given static singleton through its static proxy, as shown in Listing 4.1.

TheStaticSingletonManager class coordinates with its counterparts on various remote

80

nodes to obtain a reference to the static singleton, or to create one if it does not already

exist. It first sends aclass loading queryto its parent in the network to find the singleton.

If the parent has a reference it returns it, otherwise the request continues up the tree until

it reaches the head node. If the head node does not have a reference to the singleton it as-

signs the original requester to create one (logging the factto prevent race conditions should

two nodes simultaneously request a singleton for the same class). This way, the head node

maintains a record of the location of all singletons, and canredirect future class loading

queries to the correct node.

4.3.4 Threading and Synchronization

RuggedJ distributes applications by transferring thread control flow between nodes.

This generally occurs by invoking a remote method; the source node waits while the desti-

nation executes the method, returning control to the sourcewhen the method completes. In

this way we aim to execute a method on the same node as its data,rather than bringing the

data to the appropriate node and suffering the overhead of object migration. A näıve ap-

proach to remote method invocation would be to maintain a pool of threads on each node,

and use these threads to execute any incoming method requests. However doing so would

violate Java’s synchronization semantics.

Javasynchronized blocks and methods expressmonitorsynchronization with respect

to an object instance or class [Gosling et al., 2005]. The monitor (instance or class) is

named explicitly insynchronized blocks. Insynchronized methods, the monitor is im-

plicitly the method receiver (i.e.,this) for instance methods or the declaring class for

static methods. At the bytecode level,synchronized blocks translate to blocks delim-

ited byMonitorEnter/MonitorExit bytecodes. Only one thread at a time can acquire a

monitor, though the same thread may recursively acquire thesame monitor multiple times.

This allows a thread to call multiplesynchronized methods from within the same monitor

without complication.

81

1 public class X {

2 private Y y;

3 public synchronized void m1(){

4 y.method(this);

5 }

6 public synchronized void m2(){

7 ...

8 }

9 }

10

11 public class Y {

12 public void method(X x){

13 x.m2();

14 }

15 }

Listing 4.2: Example:synchronized methods

Recursive monitors force threads executing remotesynchronized methods somehow

to retain the identity of their calling thread, even when thecaller is on a different node.

Consider the situation in Listing 4.2. A thread that invokesx.m1() obtains the monitor for

the appropriateX instance, then callsy.method(this). Whenmethod invokesx.m2() the

thread must be able to re-enter the monitor for theX instance, and successfully executem2.

However, under RuggedJ it is possible for the objects in this example to be distributed

as shown in Figure 4.2. In that case, the thread onNode A enters the monitor for the ap-

propriateX_local instance, then waits for the remote method invocation ofy.method(X)

to return. The thread onNode B makes a remote call back toNode A. If a random thread

is assigned to execute this call then it will deadlock waiting to acquire the monitor on the

X_local instance.

82

Node A Node B

Y_localY_stub

y.method(X)

Remote

Method Call

y.method(X)

X_stub

Remote

Method Call

x.m2()

x.m2()

X_local

x.m1()

Figure 4.2.: Problem:synchronized deadlock

Thread Affinity

We solve this issue by implementingthread affinityfor remote method calls. We define

logical global threadsthat capture the control flow of a single thread in the original appli-

cation. We map each global thread to exactly one Java thread on each node; any remote

method call performed by a given global thread is executed byits assigned thread on that

node. This ensures that the situation in Figure 4.2 cannot occur.

Since we have built our thread affinity implementation on topof our custom network

library we do not rely upon Java RMI to assign threads to remotemethod invocations.

Thus we can use a simpler thread affinity system than that usedby J-Orchestra [Tilevich

and Smaragdakis, 2004]. We can control which thread executes remote methods so we do

not need to map threads to equivalence classes like J-Orchestra does, and we are able to use

the JVM’s internal monitor implementation rather than creating a custom synchronization

library.

To minimize the number of Java threads running on each node weonly create local

threads on demand. If a global thread invokes a method on a given node for which it

currently has no local thread assigned, then one will be created to carry out the work. We

must also intercept remote invocations ofThread.start() to create a new global thread,

and detect termination of a thread when its initialrun() method exits. This triggers a

clean-up process that frees the corresponding local threadresources on each node.

83

Implementation of thread affinity requires that method invocations be non-blocking;

the sequence of calls in Figure 4.2 would lead to deadlock if the first remote invocation (of

y.method) blocked, since the Java thread would be unavailable to executex.m2. Instead,

once a thread initiates a remote method call it proceeds to wait for incoming messages,

allowing it to execute any incoming method calls.

Listing 4.3 sketches the implementation of our non-blocking calls: invokeRemote-

Method is called from a stub object, indicating that a running method has attempted to

invoke a method on a non-local object. The stub creates anInvokeMethodMessage object

that describes the method to be invoked, as well as its targetobject. After sending the

invocation request in line 2, control passes towaitForMessages.

Each global thread has a unique thread identifier (TID) that is constant throughout the

network. We use the TID to determine the thread for which a message is intended. When

a message arrives for a thread (line 9 in Listing 4.3) we can tell from the type whether the

message is a response to an outstanding remote call or a remote request for a new method

to be executed locally. If the former, we simply return the value, and control proceeds from

the site of the initial remote invocation. If the latter, we execute the incoming method on the

local node (line 15). Any subsequent remote method invocations in the method body will

result in a call toinvokeRemoteMethod, which will call waitForMessages. Thus, we can

see that successive remote invocations for a given thread form a stack ofwaitForMessages

calls, ensuring that return values are properly matched to their respective invocations.

Remote Monitors.

When acquiring a monitor in a distributed context, we must ensure that the correct

object is locked. In RuggedJ this requires two conditions: the monitor must consistently be

acquired on a specific node, and the monitor must always be acquired on the same object

within that node.

This second condition arises from the various implementations of the RuggedJ object

model, outlined in Section 3.2. In order to make untransformable system code conform

84

1 public Object invokeRemoteMethod(InvokeMethodMessage msg) {

2 msg.send(thread_id);

3 Object result = waitForMessages();

4 return result;

5 }

6

7 public Object waitForMessages() {

8 for(;;) {

9 Message msg = Message.recv(thread_id);

10 if (msg instanceof MethodResultMessage) {

11 return ((MethodResultMessage)msg).getResult();

12 }

13 if (msg instanceof InvokeMethodMessage) {

14 Object result

15 = ((InvokeMethodMessage)msg).invokeLocally();

16 new MethodResultMessage(result).send(msg.source,

17 thread_id);

18 }

19 }

20 }

Listing 4.3: Non-blocking remote method invocation

to the object model we create user-level wrappers around unchanged system class objects.

Thus we must ensure that user-level code locks the system object, rather than the wrap-

per. This way both user and system code acquire monitors on the sametarget object; user

code by selecting the correct object, and system code which is not aware of the user-level

wrapper.

Additionally, we optimize immutable objects within RuggedJby replicating them across

the network. For these we define a replicated object’shome nodeas the node upon which it

was first allocated, and use that copy as the canonical targetfor locking. Immutable objects

85

locked by untransformable system code are by default not replicated (though this can be

overridden by the partitioning strategy), so they do not pose any problem.

We implement remote monitor acquisition as an extension of our remote method invo-

cation mechanism. When a remote monitor is acquired or released we send a message to

the appropriate node, specifying the object to be operated upon. This message is handled

similarly to a remote method invocation; if a representative Java thread does not yet exist

for the global thread we create it. Otherwise, we know that the thread is waiting inside

thewaitForMessages method. Thus, we can add a mechanism towaitForMessages that

obtains and releases monitors for the global thread.

The design of this mechanism is complicated slightly by the bytecode-level semantics

of Java monitors [Lindholm and Yellin, 1999]. EachMonitorEnter/MonitorExit pair

must be balanced within their method’s body; every control flow path through the method

must have exactly one monitor exit operation for every monitor entry. This means that we

cannot simply generate a method that acquires the monitor for an object. Such a method

would have to release the monitor before exiting, which would violate its purpose, or would

generate a run-time error. Instead we nest remote monitor entries and exits within the

remote method infrastructure, as shown in Listing 4.4.

We extendwaitForMessages by handling two new message types: anEnterMonitor-

Message at line 10 and anExitMonitorMessage at line 13. When a remote node enters a

monitor, it callsenterMonitor. First it finds the target monitor object (line 20). For the

sake of clarity, we assume that the target is local to the node. This is normally the case,

since the requesting node must necessarily have obtained a reference to the object in order

to acquire its monitor, and so will also have obtained location information. We handle the

corner case in which the requesting node’s information is outdated (due to migration of the

target) through theRemoteObjectManager service.

Given the appropriate local object, line 21 ensures that we hold the canonical object

(rather than a wrapper, as discussed earlier). We then acquire the object’s monitor with a

synchronized block, and make a nested call towaitForMessages. Execution then pro-

ceeds as before, with remote method invocations forming a stack of nested calls. Even-

86

1 public Object waitForMessages() {

2 for(;;) {

3 Message msg = Message.recv(thread_id);

4 if (msg instanceof MethodResultMessage) {

5 ...

6 }

7 if (msg instanceof InvokeMethodMessage) {

8 ...

9 }

10 if (msg instanceof EnterMonitorMessage) {

11 enterMonitor((EnterMonitorMessage)msg);

12 }

13 if (msg instanceof ExitMonitorMessage) {

14 return null;

15 }

16 }

17 }

18 private void enterMonitor(EnterMonitorMessage msg) {

19 Object monitor

20 = RemoteObjectManager.findObject(monitor.getUID());

21 monitor = MonitorManager.getLockableObject(monitor);

22 synchronized(monitor){

23 waitForMessages();

24 }

25 }

Listing 4.4: Remote monitor acquisition

tually the remote method will encounter a monitor exit operation (guaranteed by byte-

code semantics), at which point it will send anExitMonitorMessage, returning from the

waitForMessages invocation at line 23.

87

4.3.5 Exception Handling

When executing a remote method in RuggedJ we must preserve any exceptions thrown

by that method. An exception thrown by a remote method may be caught by a localcatch

clause, and so to preserve the semantics of the original application we must ensure that

such an exception is thrown.

Java’s exception handling mechanism limits our rewriting capabilities for exceptions.

An object thrown or caught as an exception or error must inherit from Java’sThrowable

class. This rules out the Wrapping rewriting template, sinceWrapped types do not preserve

the inheritance hierarchy of the original type. Recall that Wrapping is the mechanism

by which we ensure that all system classes can conform to the RuggedJ object model; a

Throwable subclass in the Java standard libraries which could not be rewritten using any

other template could therefore fail to conform to our objectmodel. No such class exists

within any of the standard libraries that we have examined. In practice, allThrowable

subclasses that we have examined are classified as Direct.

We treat the exceptional exit from a method in a similar manner to a standard return. All

remote method invocations are performed as reflective callson the executing side. Under

Java’s reflective semantics, any exception that remains uncaught in reflectively called code

is wrapped in aInvocationTargetException and thrown to the invoking code. We wrap

our reflective method invocations in atry/catch block that catches this exception. We

unwrap the original thrown exception and pass it back as partof the response to the original

method invocation message. On the invoking node we check allmethod message responses

for exceptions, re-throwing any that have been raised. Thisway the original exception is

thrown and can be caught by any calling context.

The re-throwing mechanism contains an interesting subtlety. Thrown exceptions must

be declared in method signatures to statically ensure that calling code can handle any such

exception. Thus, our remote invocation method must declarethat it throwsException (as

it can throw any subclass ofException). Normally, this would require that every possible

control flow path to this method contain acatch block that can handleException. This

88

is not an issue within RuggedJ, since the remote method invocation code is called only by

stub object, which are generated at the bytecode level. As these classes are never compiled,

the requirement that thrown exceptions be catchable is not checked.

One unfortunate limitation of our exception handling mechanism is that stack trace in-

formation is not correctly preserved. The stack trace for anexception starts at the point

where it was thrown on the local machine (inside RuggedJ’s messaging system), losing

any trace from the remote execution. We could solve this in several ways. First, rather

than re-throwing the originalThrowable object we could create a new object of the same

type, and chain the original exception object as a “cause”. This would preserve the stack

trace information, albeit with some additional frames for RuggedJ’s remote invocation in-

frastructure. However such an approach would risk losing additional information stored

in the exception object, and so could alter the semantics of the original application. Al-

ternately, we could insert correct stack trace informationinto theThrowable object before

it is re-thrown, composing the current stack trace with thaton the remote machine. This

would give accurate stack trace information, but would carry the overhead of generating

unnecessary stack traces for all remote exception whose traces are not examined.

4.4 Application Partitioning

In order to distribute an application across a RuggedJ network, we must determine

which objects are to be allocated upon which nodes. We refer to this process aspartitioning

the application. RuggedJ provides a partitioning interfaceto which developers can write

a partitioning policy. We believe that the application developer is in the best position to

provide an optimal partitioning, guided by the output of ourwhole-program static analysis.

While creating a partitioning policy for an application may seem to be a daunting task,

we have found that simple policies generally perform well; the policies for each of the

benchmarks discussed in Section 5.3 never required more than a few dozen lines. As a

general strategy, we first locate the root object of a distribution unit (typically aRunnable

object that contains the work for an individual thread), andallocate instances of this ob-

89

1 public class DatabasePartitioning extends Partitioning {

2 private int allocated = 0;

3 protected int loadTimeAllocationPolicy(AllocationSite site) {

4 if (site.getTargetClass().equals("search.ComparisonThread"))

5 return ALLOCATE_DYNAMICALLY;

6 return ALLOCATE_LOCAL;

7 }

8 protected int runTimeAllocationPolicy(AllocationSite site) {

9 if (++allocated > NodeManager.getMyNode().availableProcessors())

10 return ALLOCATE_REMOTE;

11 return ALLOCATE_LOCAL;

12 }

13 protected Node runTimeAllocationNode(AllocationSite site) {

14 int id = 1 + (allocated % (NodeManager.getNodeCount() - 1));

15 return NodeManager.getNodeByID(id);

16 }

17 protected List<RJType> getDeclaredReplicable() {

18 List<RJType> replicable = new ArrayList<RJType>();

19 replicable.add(RJType.get("char[]"));

20 return replicable;

21 }

22 protected boolean copyTransitiveClosure(Object obj, RJType t) {

23 return t.equals(RJType.get("search.Chunk")) ||

24 t.equals(RJType.get("search.ResultSet"))

25 }

26 protected List<String> getNonRewritable() {

27 List<String> local = new ArrayList<String>();

28 local.add("neobio.alignment.*");

29 return local;

30 }

31 }

Listing 4.5: Partitioning policy for DNA database matchingapplication

90

ject on remote nodes. By default, any subsequent allocationsare performed locally, so

objects related to that distribution unit are automatically placed on the same node. List-

ing 4.5 shows the partitioning policy for one of our benchmarks, a DNA database matching

application, excluding those parts related to migration.

Remote allocation is decided in stages, to afford maximum flexibility. During the

bytecode rewriting phase the partitioning policy is expressed for each static allocation

site using methodloadTimeAllocationPolicy. Using the supplied allocation-site in-

formation, the policy can determine whether objects allocated at that site should be al-

located locally, remotely, or dynamically. In the case of dynamic allocation, the policy

is queried again at run-time, whenever that allocation siteis executed, as expressed by

methodrunTimeAllocationPolicy. At that point, the policy can determine whether to

allocate locally or remotely, depending on the dynamic condition of the network. Remote

allocations, whether determined statically or dynamically, cause the partitioning policy to

be queried an additional time to determine the node at which the remote object should be

allocated, as specified by methodrunTimeAllocationNode. The policy has access to the

run-time library’s network metadata, including the numberof nodes and the capabilities of

hosts on the network, so an informed decision can be made at run-time. Here the policy

cycles between all nodes other than the head node (number 1).

The partitioning policy also allows a developer to declare types to be immutable, allow-

ing them to be replicated. One of the uses of this mechanism iswhen the instances of a class

undergo a population phase, after which they are not modified. Our static analysis cannot

detect that the object is not modified after a certain point inthe application, and so marks

the class as mutable. However, based upon knowledge of this phase behavior, the devel-

oper can declare the class to be immutable for the purposes ofdistribution, allowing it to be

replicated across the network, using thegetDeclaredReplicable method. The database

matching application operates over large character arraysthat are initialized early in the

application, and then used unmodified. Line 19 allows these arrays to be replicated. Note

that this occurs at the type level, and so requires that allchar[] arrays in the application

are immutable.

91

The copyTransitiveClosure method allows the developer to designate classes that

should be copied using Java’s serialization mechanism rather than RuggedJ’s reflective

copying technique. This offers several key advantages: serialization is much faster than

RuggedJ’s marshaling and unmarshaling process, and it allows multiple objects to be copied

in a single operation. However, the classes that can be copied in this way are limited.

Clearly, such classes must implement theSerializable interface. Additionally, all classes

in an instance’s transitive closure must be direct (i.e., they are not rewritten to implement

the RuggedJ object model). Serializing instances of a classX that does implement the

RuggedJ object model would copyX_local instances, which violates the rule that every

local instance represents a unique object.

The final method in Listing 4.5,getNonRewritable, allows the developer to specify

classes that will not be rewritten. We treat these objects assystem classes, and load them

into the JVM without modification. This mechanism exists as an optimization to allow key

performance-critical sections of code to execute without the overhead of interface indirec-

tion, such as accessing public members and array elements via get and set methods. These

non-rewritable classes may not reference any rewritten classes, as they will be unaware of

the RuggedJ object model. Additionally, they may not reference non-final static data, since

they cannot access static singletons.

The partitioning policy is also responsible for managing object migration. Listing 4.6

shows the migration policies for the DNA database application. The partitioning policy

must first declare which classes may have migrating instances (mayMigrate). This allows

us to allocate proxies only for those classes that may need them, avoiding the indirection

overhead for all other accesses. Migration can be triggeredin three ways. The first is to

migrate the return value back to the caller (migrateMethodReturnValue). In this case, the

return value of a method called from another node is immediately migrated to that node,

allowing it to be operated upon locally.

The second trigger is after a remote object has been invoked some number of times

up to a fixed threshold (migrateFrequentlyCalled). This allows objects to migrate to

92

1 protected boolean mayMigrate(RJType t) {

2 return t.equals(RJType.get("search.Sequence")));

3 }

4 protected boolean migrateMethodReturnValue(UID uid,

5 String methodname, String methoddesc, Object[] args) {

6 return false;

7 }

8 protected boolean migrateFrequentlyCalled(Object obj,

9 RJType type, UID uid, int callcount) {

10 return false;

11 }

12 protected List<MigrationTrigger> getMigrationTriggers() {

13 List<MigrationTrigger> triggers

14 = new ArrayList<MigrationTrigger>();

15 triggers.add(new MigrationTrigger("search.Sequence",

16 "populate", "(Ljava/io/BufferedReader)V", Position.End,

17 "this"));

18 return triggers;

19 }

20 protected Node

21 migrationTriggerCallback(MigrationTrigger trigger, UID uid)

22 {

23 int id

24 = 1 + (allocated % (NodeManager.getNodeCount() - 1));

25 return NodeManager.getNodeByID(id);

26 }

Listing 4.6: Migration policy for DNA database matching application

whichever node is currently accessing it most frequently (once the threshold is reached),

letting the partitioning strategy account for phase behavior.

Finally, a partitioning policy can install callbacks at thestart or end of arbitrary meth-

ods in the application (getMigrationTriggers). The policy specifies the class, method

93

name and signature into which a callback is to be inserted, aswell as the position (start or

end) within the method. Additionally, it gives a variable name that may be migrated. A

callback to the partitioning policy is inserted in the specified method when the bytecode

is rewritten, so the policy is called when the method executes at run-time. The callback

method (migrationTriggerCallback) allows the partitioning policy to supply a node to

which the referenced object should migrate. This mechanismallows arbitrary values (such

as local fields or method arguments) to be migrated, rather than simply the return values of

methods.

4.5 Contributions

The primitives upon which we build our run-time infrastructure have some similarities

to those implemented in other systems. Redirecting remote method invocations through

stub objects is a common theme in object-oriented distribution, although our implemen-

tation does not rely on RMI as does several other projects. By implementing our own

communication layer we are afforded more flexibility in our run-time, allowing us to im-

plement thread affinity. RuggedJ’s communication system also allows different forms of

message passing for different goals; broadcast messages use a tree-based communication

hierarchy, while method invocations go from node to node. This dual-mode messaging

system significantly reduces communication overhead.

RuggedJ’s network configuration is also a key difference withprevious work. The

majority of transparent distribution systems (J-Orchestra, Addistant and AIDE) focus on

small networks with fixed computing resources. The only other system that targets larger

clusters of machines is Terracotta. However, Terracotta uses a similar distribution model

to the simpler systems, with a client/server architecture that offloads work from a central

server to worker nodes. RuggedJ deemphasizes the head node (necessary to coordinate a

few global activities), while storing canonical versions of objects across the network and

implementing a peer-to-peer configuration.

94

The idea of object migration for spatial locality is also a common theme within dis-

tributed systems, going back to an early implementation in Emerald. However RuggedJ’s

unique partitioning plug-in interface allows developers to combine application knowledge

with a level of dynamic introspection that is not commonly available within transparent

distribution systems. In addition, some other distribution systems (including Emerald and

Addistant) allow immutable objects to be replicated on multiple nodes. However they de-

fine this immutability at the object level, whereas we detectdetermine immutable fields

which we replicate using caching in our stubs.

95

5 DISTRIBUTED APPLICATION DEVELOPMENT

The bytecode transformations and run-time infrastructurethat we have presented in the

previous chapters allow us to support the vast majority of Java applications. However, not

all applications benefit from distribution. We target a class of applications that we refer to

asdistributable: applications that can be broken into multiple discrete units, each of which

is operated upon by a dedicated node. In this chapter we will describe some of the design

decisions that can impact the distributability of an application, based upon our experiences

while writing and modifying applications to run on RuggedJ. We will then discuss some

concrete examples, detailing how we modified and partitioned the applications to maximize

performance under RuggedJ.

Many of the application characteristics that we discuss in this chapter are applicable

to distributed systems in general, while others exist as artifacts of RuggedJ’s distribution

mechanisms. We therefore approach this issue in two parts. Section 5.1.1 outlines the

concept of distributability in Java and discusses some of the fundamental properties that

distributable applications must demonstrate. Section 5.1.2 talks more specifically about

targeting applications to the RuggedJ infrastructure, and how design decisions in the ap-

plication can make the most of our distribution platform. Section 5.2 describes the general

strategies that we use when partitioning applications. Finally in Section 5.3 we describe

some large, realistic applications that we have either designed or modified to distribute with

RuggedJ.

5.1 Distributability

The constant CPU performance improvements implied by Moore’s law [Moore, 1965]

have meant that developers have traditionally been contentto scale their applicationsverti-

cally. Vertical scaling is achieved by adding more and faster hardware to a single machine;

96

improvements in the platform lead to better performance at no cost to the developer. Such

a scaling model is clearly attractive. We can simply wait forthe next generation of hard-

ware to improve our applications’ performance. Modern hardware trends, however, do not

offer the same vertical scaling opportunities. Clock speedshave reached a plateau, with

additional computing capacity coming from additional cores rather than from increases in

monolithic processor horse-power.

This shift in hardware design must be met by a corresponding change on the software

side. Rather than scaling vertically, applications must be designed to scalehorizontally,

finding performance gains by executing across multiple cores and machines. Developing

such applications requires a new way of thinking for those used to vertical scaling; not

only must applications be multi-threaded, but data structures and access patterns must be

designed to produce discrete work units that can be operatedupon independently of one

another. Decomposing applications in this way requires more effort at the design phase,

and may require more complex synchronization than a simple single-threaded system. To

compensate, however, horizontal scaling allows a well-designed application to scale out to

a virtually limitless degree.

5.1.1 General Distributability

In this section we discuss some of the design decisions that allow an application to scale

horizontally. We focus here on general principles that holdtrue regardless of the distribu-

tion mechanism used. We will discuss RuggedJ-specific techniques in Section 5.1.2.

Application Structure

Distributable applications must be structured with natural distribution points, with each

distribution unitperforming a subset of the application’s workload. Scalingcan thus be

achieved by executing more distribution units on additional hardware resources, rather than

by increasing the workload for a single unit. This stands in contrast to the traditional

single-threaded application model, where vertical scaling allows a single unit to perform

97

more work in a single machine. Each distribution unit shouldbe operated upon by one or

more dedicated threads. By binding threads to a specific part of the application’s data and

workload we can partition distribution units among the cores or machines of a system while

preserving spatial locality in a given thread’s accesses.

The application should be structured with minimal interaction between distribution

units. When scaling to a large number of units we may not be ableto predict the latencies

between any two; the data from a remote unit may be located within the shared memory of

the local machine, in a distant memory bank in a NUMA architecture, or on a remote ma-

chine. Thus, it is likely that any cross-talk between distribution units in a large application

may translate to expensive network operations.

Finally, the design of data structures within a distributedapplication is crucial. Data

must be allocated close to the thread that will use it in orderto avoid costly remote accesses

or migrations. Thus data structures that can be decomposed into smaller units are preferable

to single indivisible data structures. For example, large arrays pose a barrier to distribution;

such a structure must be allocated on a single node, whereas alist of smaller arrays could

be spread across the network.

Distribution Bottlenecks

We have encountered several common bottlenecks that keep applications from scaling

horizontally. The most common is mutable static state (as opposed to immutable static data

such as class constants which can be replicated, and so does not pose an issue to distribu-

tion). An application’s mutable static data must be globally consistent across the system.

This means that the state must either be stored on a single node, with all updates and reads

being performed on that node, or it must be subject to some form of coherence mecha-

nism to ensure that updates on one machine are reflected on allothers. RuggedJ uses the

former mechanism. Either one of these approaches leads to anincrease in network traffic

and can slow down data accesses, causing a deterioration in system performance. Appli-

cation designers can alleviate this overhead by minimizingthe use of mutable static data,

98

using shared locally-consistent data rather than globally-consistent statics where possible.

A similar restriction affects the usage of the Singleton design pattern [Gamma et al., 1995].

By encapsulating a class’s state in a single object, developers risk such an object becoming

a bottleneck for distribution.

Similarly, data sources that conform to the data access objects (DAO) pattern can

present difficulties in a distributed system. Forcing all data accesses to go through a single

DAO instance requires that all data is accessed from a singlemachine. In the same vein,

several construction design patterns can lead to bottlenecks. Builders and factories that

maintain internal state must result in remote calls to construct objects. Such construction

patterns could also produce extra migration overhead, as the newly-created object must

then be relocated to the node upon which it is to be used.

Immutability

Immutable data offers the largest performance improvementin a distributed application

of any factor beyond basic application structure. Since thevalue of immutable data will

never change after an initial setup phase we can replicate iton each node in the network, al-

lowing local read access to all threads. Application developers can increase the immutable

content of their applications by factoring out the mutable content of a class. This allows

the immutable content to be stored locally, while the mutable content is subject to remote

invocations. Note that the RuggedJ run-time system makes this optimization unnecessary

by identifying and caching immutable state in the stub; performing such a transformation

by hand could be error-prone in case of later modifications tothe application.

The design of class initialization can also increase the immutable content of a class. By

setting immutable fields in a class’s constructor such fieldscan be marked asfinal, and

so can be picked up by analysis tools. Contrast this to settingthe fields in an initializing

method that is called after the object is created. While the fields are still immutable, it is

not as clearly obvious without a more involved control flow analysis.

99

Object Migration

A factor to consider when designing data structures is object mobility. Migration allows

us to exploit shifting access patterns and maximize spatiallocality. However, the act of

migrating itself may cause unacceptable overhead. Should two or more threads on remote

machines refer to a single object, there is a risk that the object may “ping-pong” between

the machines, migrating from one to the other depending on the source of the most recent

access. While this can be alleviated in part by a sensible migration policy, a better approach

would be to avoid this behavior in the application’s design.

One approach to limiting spurious migration is to define phases within the application

or object’s life cycle. The object is then bound to a particular distribution unit for the

duration of the phase, preventing it from migrating before the next phase boundary. Note

that this does not affect the reachability of the object; it can still be accessed by remote

machines, just not migrated. An example of this would be the creation and use of a large

data structure. The structure would be bound to the creatingunit until it has been populated,

and then to a different unit that makes use of it after it is complete.

Serial Sections

An issue that can seriously limit the distributability of anapplication is sections of serial

code. The maximum performance gain of a distributed system is limited by the percentage

of the application that is parallel [Amdahl, 1967]. Thus, byintroducing serial sections of

code we limit the benefit that we can see from horizontal scaling.

Some serial code is unavoidable. It is frequently necessaryfor a single controller thread

to handle global tasks such as creating distribution units,partitioning work between them,

merging results, and so forth. However, there are some casesin which serial execution

is unnecessary. Threads in Java are implemented as classes implementing theRunnable

interface; calling thestart method on a thread associated with such an object will cause

theRunnable class’srun method to execute in a new thread. Only code invoked from the

run method is executed in the new thread; the object’s constructor is executed by the parent.

100

We have seen cases where a series of worker threads are created by a single controller, with

substantial work performed in eachRunnable object’s constructor. Moving this work to

the start of therun method has increased the distributability of the application, and brought

considerable performance improvements.

5.1.2 Designing for RuggedJ

RuggedJ offers significant advantages to developers of distributable applications, in-

cluding a shared-memory abstraction, flexibility in network infrastructure, caching of im-

mutables and straightforward object migration. If a developer plans to leverage the RuggedJ

infrastructure, there are some additional design choices that can be made to maximize the

benefit from the infrastructure.

Language Features

There are several features of the Java language that we do notsupport within applica-

tions, and others for which we provide limited support.

We do not support applications that define their own user-level class loaders. This is the

case for two reasons. We rely on the fact that we transform alluser classes to implement

our object model. Allowing applications to install their own class loaders could violate this

constraint, allowing unmodified classes to exist in the system (for similar reasons, we do

not allow applications that use the JVM Tool Interface). Thesecond cause to disallowing

custom class loaders is that we use a full-program analysis to determine which template

should be used to transform each class and to identify immutable data. The result of this

classification depends on all the classes in the system, withthe result for one affecting the

classification of others. Generating unprocessed classes at run-time through a custom class

loader may invalidate the results of this classification, and can lead to mutable data being

replicated.

We also do not support Java’s security policies. RuggedJ is implemented entirely at

the user level, but performs some minor modifications to system classes using the JVMTI.

101

To avoid security exceptions, we have defined our own, highlyliberal, security policy.

Application-level security policies may be more strict than our own, and so can prevent

RuggedJ from functioning properly.

We offer limited support for reflection within RuggedJ. As we have described in Sec-

tion 4.3.2 we use a heuristic-based system that intercepts reflective calls and rewrites them

to work within our rewritten infrastructure. However we do not guarantee that these trans-

formations preserve the behavior of the original application. Thus, while many uses of

reflection will work as intended in our system, we cannot fully support all reflective se-

mantics.

Simplifying the Object Model

The RuggedJ object model as described in Section 3.2 allows all system classes to

operate within a RuggedJ network. It does this using a range ofimplementation techniques

that work around the limitation that we cannot directly transform library code. Since we

can rewrite user code, we have far more freedom in transforming such classes. However

there are two instances in which we must apply the Wrapping or Extending template to

user classes.

First, as we discussed in Section 3.5, a user class must use the Wrapping template if

its superclass is classified as Wrapping. This can come about if the user class extends a

Wrapping system class; the user classes and any subclasses will be classified as Wrapping,

and will incur extra wrapping and unwrapping overhead. It isdifficult to predict ahead

of time how a given class will be classified (classification for each class depends on the

classification of other classes in the closure; adding new system classes can change the

classification of existing classes). Thus it is advisable tominimize subclassing of system

classes.

The other way in which a Wrapping or Extending template may be applied to user code

is through exposure to native code. As we have previously stated, native code can break our

transformed applications, should a rewritten class or member be referenced. To minimize

102

this risk, if our heuristics should suggest that a class may be exposed to native code we

do not rename it, and so must use the Wrapping or Extending template. Additionally,

exposure to native code limits code mobility, as an object that may be referred to by native

code cannot migrate. We therefore recommend that applications targeting RuggedJ do not

include native code.

Replication

RuggedJ offers more flexibility in identifying immutable code than is available through

the Java language alone. First, we use our whole-program analysis to identify immutable

data, rather than relying on thefinal keyword. More importantly, however, we allow

developers to identify functionally-immutable data through the partitioning policy. This

takes advantage of the developer’s application-specific knowledge; a class may be statically

determined to be mutable, but may have its contents frozen after an initial setup phase,

allowing it to be replicated safely. This maximizes the datathat we can replicate in a

distributed application. Developers can take advantage ofthis fact when designing their

objects’ life cycles.

As a further optimization, developers can declare immutable classes to implement the

Serializable interface where practical. This way we can take advantage ofthe faster data

transfer gained by serializing objects, as discussed in Section 4.2.2.

Direct Field Access

Contrary to most Object-Oriented development best practiceadvice, fields in RuggedJ

should be accessed directly, rather than usingget andset methods. The reason for this is

subtle: the RuggedJ class loader rewrites allGetField bytecodes to be method invocations

on generated interfaces (with a symmetrical implementation for SetField bytecodes). The

get method is implemented differently depending on the object’s location; aget method

in a local class simply returns the field, while the corresponding method in a stub performs

a remote method invocation. However, we optimize stub methods in the case of immutable

103

fields. Should a field be determined to be immutable we cache the value in the stub, and so

save the overhead of a remote method invocation. Thus,GetField bytecodes on immutable

fields are purely local operations, regardless of the objectlocation.

In the contrary case, a user-definedget method in the original application is not ac-

cessed using theGetField bytecode, but is called usingInvokeVirtual. It is therefore

not redirected to our generatedget method. In the local case, the user-definedget method

performs in the same way that the generated version would. However, the stub implemen-

tation of such a method simply performs a remote method invocation on the local object to

execute the method. Thus, even if a field is immutable callingaget method in the original

application can lead to a remote invocation.

Performance-Critical Sections

While the RuggedJ object model allows all data to be remotely referenced, it incurs

some performance overhead. Redirecting all field accesses throughget andset methods

carries a performance penalty, particularly when iterating through the elements of an array.

RuggedJ allows developers to avoid this run-time overhead bydesignating performance-

critical classes to be System Direct. This means that such classes are loaded into the VM

with minimal transformations, and so run at the same speed asthey would without RuggedJ.

We can perform the System Direct modification on any classes that are known to be

immutable or purely local. Any remote reference to a System Direct class leads to its

replication, which would cause lost updates in the case of a mutable object. This require-

ment is not particularly arduous — the performance-critical sections of well-partitioned

applications should be purely local (otherwise such sections would require frequent remote

invocations, making the indirection overhead insignificant).

Of more concern is the fact that System Direct code cannot refer to transformed types.

The transformations that would make System Direct code refer to new types (indirection

through interfaces, callingget andset methods in case of remote data, etc.) are exactly

the performance-affecting transformations that we seek toavoid. Thus, we can use this

104

optimization only on those performance-critical classes that do not refer to shared objects.

By structuring their applications to take this consideration into account, developers can

maximize the classes that they designate System Direct, andso minimize the performance

impact of the RuggedJ transformations.

5.2 Partitioning Strategies

We have generally found simple partitioning strategies to work well. In each of the

applications that we discuss in Section 5.3 we have determined a clear point for decompo-

sition into distribution units. We found that distributionunits are normally anchored in a

Runnable object (i.e., the root of the distribution unit is bound to a single thread).

Once we have identified the distribution units, we must determine the nodes upon which

to place each unit. This will generally depend on the resources available to each host; we

want each distribution unit to have a roughly equal level of computing resources. This way

we do not have one unit lagging behind the others, leading to lower overall performance.

Our partitioning strategies begin by introspecting into the nodes of the network, determin-

ing the number of cores available to each. We aim to assign at most one distribution unit

to each core to avoid thread switching (naturally this is possible only until the cores of all

nodes are saturated). The allocation of distribution unitsto nodes depends on the number

of units in the system, as well as the capacity of individual nodes. We consider three load

levels:

Light load. A system is lightly loaded when the number of distribution units is less than

or equal to the number of cores available to the head node. In this case we allocate all

distribution units to the head node. The head node is the natural place to allocate the

first distribution units; we know that the application is launched on the head node,

and standard input and output streams are redirected to the head node’s console. By

allocating the maximum number of distribution units on the head node we eliminate

remote references between those units. The only exception to this is where there is

105

considerable work performed by a controller thread that is tied to the head node. In

this case the head node may be saturated before we allocate any distribution units.

Medium load. A medium load is when the number of distribution units is marginally

greater than the number of cores available to the head node. The definition of

“marginal” in this case depends on the level of inter-node connectivity. Under a

medium load we allocate units on the head node until it is close to capacity, and

place the remaining distribution units on the second node. We do not completely sat-

urate either node since there will be incoming remote methodinvocations that must

be handled; allocating units to every core of a node would lead to thread switching

should an incoming method request arrive. The more cross-talk that exists between

distribution units, the more cores should be left availableto fulfill remote requests.

Heavy load. A heavily loaded system is one where the number of distribution units is far

greater than the number of cores available to the head node. In this case we allocate

the distribution units evenly across the nodes. This allowsmaximum flexibility for

handling interactions between distribution units. If suchinteractions are few, there is

little penalty for allocating units on remote nodes. If interactions are more common

this approach spreads the targets for remote method invocations across the network,

and leaves the maximum number of cores available to handle incoming requests.

These strategies are general guidelines, rather than hard-and-fast rules. They make

assumptions about the application (such as a uniform pattern of access to remote data)

that may not hold true for any given circumstance. For example, some of the applications

that we studied had a central controller object to which results are returned after each

distribution unit completed its work. In this case it was advantageous to saturate the head

node (to avoid copying results from one node to another) evenwhen the system was under

a medium or heavy load. This is one of the major benefits of our partitioning system; an

application developer can easily specify a customized allocation policy for an individual

application.

106

5.3 Applications

Clearly, not all applications meet the distributability requirements laid out in the previ-

ous section. Many computational tasks have data dependencies that make them inherently

serial, or limit their scalability to a finite number of threads. Others would appear to be

distributable, but have serial sections that overwhelm anyspeedup gained by distribution.

However, we have identified a number of classes of applications that demonstrate the qual-

ities that we rely upon for distribution:

Scientific computation. Scientific calculations such as physics simulation, financial an-

alytics, genetic computation or fluid dynamics lend themselves well to distribution.

Such problem sets generally have a small amount of data upon which expensive com-

putation must be performed. These calculations can often beperformed in parallel,

taking advantage of extra processing capacity.

Rendering. Rendering a three-dimensional scene by ray-tracing is a computationally in-

tensive process in which individual rays of light are simulated interacting with ob-

jects. Rays are independent of one another, and so can be traced in separate distribu-

tion units.

Business software.There are many accounting and middleware applications thatcould

distribute under our system. For example, tax accounting software requires many

independent calculations based on individual transactions. These calculations could

be performed in parallel. Additionally, financial trading firms make use of complex

models to simulate markets; such scenarios can be simulatedin parallel. Finally,

many businesses produce complex reports that must be generated from large data

sets that can be decomposed to run on separate machines.

Functional-style programming. A final class of applications are those written in a func-

tional style, with few side-effects to methods. An important example of this program-

ming style is map/reduce, implemented by Google’s internalinfrastructure [Dean and

Ghemawat, 2008] or by the open-source Hadoop framework [TheApache Software

107

Foundation]. This programming paradigm is ideally suited to distribution, at it makes

explicit the requirement that work units be independent.

In this section, we will examine several applications from diverse problem domains. We

will discuss how each was designed or modified to distribute under RuggedJ, demonstrat-

ing the principles outlined in Section 5.1. We will outline the partitioning and migration

policies for each application and, where appropriate, present the scalability characteristics

when each application is run on a RuggedJ network. Our resultswere gathered on a small

cluster of three machines. Each 16-way host had eight dual-core AMD Opteron proces-

sors, running at 4.5GHz, and 32Gb of RAM, in a NUMA arrangement. The machines

were connected on a private Gigabit Ethernet switch. We measured both the untransformed

application running on a single host, and then the RuggedJ transformed version as it runs

on multiple hosts. We present results showing 95% confidenceintervals, gathered from 30

iterations for each data point. We normalize scalability curves to the untransformed wall-

clock run time of the application using four threads; normalizing to the execution time

with a single thread would produce a similar curve, but gathering single-core execution

times for the large applications that we run over multiple iterations would have taken an

unreasonable length of time (on the order of weeks per data point).

Our benchmark applications come from a number of sources:

Java Grande. We studied two of the large-scale applications from the JavaGrande multi-

threaded benchmark suite [The Java Grande Forum]: MolDyn, amolecular dynamics

n-body simulation, and MonteCarlo, a financial simulation using Monte Carlo pric-

ing techniques. RayTracer, the third application, was unsuitable because its memory

access patterns on our NUMA architecture lead to such large variations in execution

time that performance cannot be measured consistently.

DNA Database Matching. This application was adapted from the DSEARCH application

by the Heterogeneous Distributed Computing group within theDepartment of Com-

puter Science at the National University of Ireland Maynooth [Keane and Naughton,

2005]. It compares a set of protein sequences against a database to identify similari-

108

ties. The original application ran under an explicit distribution harness, similar to the

BOINC infrastructure [Anderson, 2004].

SPECjbb2005. We experimented with SPECjbb2005, a standard Java benchmarkthat

simulates transaction processing within a business database. However, we found that,

contrary to our expectations, SPECjbb2005 was not distributable. Instead, we devel-

oped a new application based upon SPECjbb2005 that performedthe same workload

in a distributable manner.

Clue. We developed a multiplayer version of the board gameCluethat we distributed with

RuggedJ. While performance was not an issue in this application (the time spent by a

player making a move far outweighed any communication overhead) this application

demonstrates the ease with which complex network protocolscan be encapsulated

by RuggedJ, as well as our capability to distribute applications that rely on complex

Java libraries such as Swing [Robinson and Vorobiev, 2003].

5.3.1 Monte Carlo Simulation

Our first benchmark from the Java Grande suite uses a Monte Carlo simulation to derive

the price of a product from the price of an underlying asset. This benchmarks is an example

of the many real-world financial simulation problems that can benefit from distribution.

Application Overview

The Java Grande project provides two versions of each benchmark application: a multi-

threaded shared memory version and a message passing version that uses MPJ. Neither

version of the Monte Carlo benchmark was ideal for transparent distribution. The shared

memory implementation made heavy use of static arrays, causing a bottleneck as outlined

in Section 5.1. Removing this shared data was required to makedistribution practical; a

straightforward distribution of the shared memory versionwas possible, but took an unfea-

sible amount of time to run due to repeated remote invocations. The MPJ implementation,

109

on the other hand, used localized data structures but built distribution around explicit re-

mote calls. We therefore created a hybrid version of the benchmark that used the control

logic of the shared memory version with the non-static data structures of the MPJ version.

This version eliminated the complexity of explicit MPI invocations, while allowing the

application’s data to be split into discrete units.

The Monte Carlo benchmark code also contained significant debugging code which

was controlled by astatic boolean value in each class, as well as a per-classstatic

String value that was prepended to any debug messages. These valueswere set during an

initialization phase to afalse value hard-coded into a controller class. While inspection

of the code told us that each debug flag could never be set to true, the fields could not

be cached, as they were not final, and could not be overridden in the partitioning policy (at

present, partitioning policies can specify immutability at the class, not the field level). Thus,

every piece of debug code, while never executed, triggered acall to the static singleton.

To solve this problem, we set the per-class prompt field to bestatic final, using the

value assigned in the initialization phase. This way we could cache the field in the static

stub. We also factored the per-classstatic boolean debug flag fields out to be a single

static final field in the controller class (from where the hard-codedfalse value was

propagated), allowing it to be referenced from all other classes and cached in the static

stub.

Finally, we modified the benchmark to make it perform more iterations of the workload.

The Java Grande suite was released in 1999 and reflects significant workloads for the time.

However, what was a large workload in 1999 can be trivially executed by today’s hardware.

We introduced a loop that simply calculated the price for each stock five hundred times;

this way the application ran for approximately one hour using four threads on one of our

test machines.

110

AppDemo

AppDemoThread AppDemoThread AppDemoThread AppDemoThreadAppDemoThread

PriceStock

MonteCarloPath

PriceStock

MonteCarloPath

PriceStock

MonteCarloPath

PriceStock

MonteCarloPath

PriceStock

MonteCarloPath

Figure 5.1.: Monte Carlo application structure

Partitioning

The core of the Monte Carlo benchmark is structured as shown inFigure 5.1. A run

of the application is initiated in theAppDemo class, which creates multipleAppDemoThread

objects. EachAppDemoThread is executed in a separate thread, and so form the natural

units for our decomposition. Each of theAppDemoThread objects processes a part of the

workload, creating localPriceStock objects that perform the Monte Carlo simulation.

Once all stocks have been priced, theAppDemoThreads pass the result back to theAppDemo

object.

We define a distribution unit to be a singleAppDemoThread object. Any temporary data

(such asPriceStock or MonteCarloPath objects) is allocated locally and so is collocated

with the parentAppDemoThread object.

The shared data within the Monte Carlo benchmark consists of alarge array ofToTask

objects, each of which represents a stock to be priced. We declare the array typeToTask[],

as well as the base typeToTask to be immutable, allowing us to replicate this array. We

can do this because neither the contents of the array nor the fields of eachToTask object

change after an initial setup phase. EachAppDemoThread operates over a section of this

array, defined by a thread identifier passed when it is created. While this results in some

unnecessary replication (not all replicatedToTask objects are operated upon by each node),

111

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of Threads

0

1

2

3

4

5

6

7

8

9

10

11

12

S
pe

ed
up

 v
s.

 4
 th

re
ad

s

RuggedJ
Untransformed

Figure 5.2.: Monte Carlo speedup (normalized to untransformed)

we use serialization to make the replicas, resulting in negligible overhead. Finally, each

thread passes the result of its computation back to the mainAppDemo object, in the form of

an array ofToResult objects. We treat theToResult array in the same way as theToTask

array, replicating the results on the original node.

We declare the majority of classes within the benchmark to beSystem Direct for per-

formance reasons. The only mutable remotely referenced classes in the system were the

mainAppDemo class and the per-threadAppDemoThread. These were User Unconstrained,

while the remainder of classes were declared to be System Direct.

Performance Evaluation

Figure 5.2 shows speedup for our rewritten Java Grande MonteCarlo simulator, running

in both its untransformed form and under RuggedJ. We see that the untransformed version

of the application experiences performance improvements as we add threads until it reaches

112

16 threads, after which it flattens out. This is to be expected, as each host has 16 cores.

In contrast, RuggedJ shows steady scaling as it utilizes the second and third nodes in the

cluster. For this application, RuggedJ incurs no measurableoverhead. We attribute this to

our policy of rewriting only those objects that must be accessed remotely.

We observe a small performance decrease for this benchmark at 48 threads. This is

the point at which the overhead of copying data for an additional four threads outweighs

the benefit seen by their work. The point at which this occurs depends on the size of the

workload; the overhead of copying is relatively constant, while the benefit of additional

threads increases with the amount of data.

5.3.2 Molecular Dynamics

The second Java Grande application that we studied was MolDyn, a molecular dynam-

ics simulator. This application models ann-body system where forces from each body

act upon all others in the system. The simulation involves a pairwise resolution of forces

that reduces to a single force vector on each particle. This calculation is iterative as each

particle is affected by the total forces of the system.

Application Overview

As in the case of the Monte Carlo benchmark, Java Grande includes two versions of the

MolDyn application: one using shared memory, the other using explicit MPJ. We created a

hybrid application, using elements of each. Due to the complexity of the changes that we

made to the data structures we rewrote much of the application. However, we left the core

computations untouched and verified that our rewritten version produced the same result as

the original.

This large-scale modification of the data structures for MolDyn was a more involved

process than for Monte Carlo. Where the Monte Carlo simulation created temporary objects

to perform calculations and return results, the MolDyn application stored all intermediate

results in a central static array. This array could not be replicated as it was not immutable.

113

MolDyn

MDThread

ParticleManager

Particle[]

Forces

MDThread

ParticleManager

Particle[]

Forces

MDThread

ParticleManager

Particle[]

Forces

Figure 5.3.: MolDyn application structure

However each thread wrote to a different part of the array, meaning that they did not read

or overwrite one another’s results. Clearly this array was a bottleneck, so we modified the

application to store intermediate results in a local, non-static array. As the results were

only used by the thread that created them, this did not cause any change in the algorithm’s

correctness.

As with the Monte Carlo benchmark, we scaled the workload to run in approximately

an hour on four threads. We did this by increasing the number of iterations for the system,

and so the number of calculations.

Partitioning

Our rewritten version of the MolDyn benchmark is structuredas shown in Figure 5.3.

The eponymous main class of the application isMolDyn, which creates a number of worker

MDThread objects, each of which encapsulates a thread. As with Monte Carlo, the threads

are the decomposition point for distribution units. Each thread creates aParticleManager

object which generates theParticle objects under that thread’s control. At the end of

every iteration, eachMDThread passes an array ofForces objects to theMolDyn object,

which are merged with those from all other threads, and used as a starting point for the next

iteration. Thus the particles themselves are never passed between threads, only the forces

that they generate.

114

TheForces objects passed between threads contain three large arrays of double val-

ues, representing thex, y andz components of force vectors. As the computation of each

iteration, as well as the resolution of forces, would require iteration over these arrays, it

was essential that they be Direct. Iterating over a remote array requires repeated remote

invocations, with the associated performance hit. We therefore declared theForces class

to be immutable, and rewrote any code that would have mutatedaForces object to instead

create a new instance. This resulted in a slightly increasedgarbage collection load, but

allowedForces objects to be replicated and so operated upon locally.

The bulk of computation in the MolDyn benchmark is performedin the Particle-

Manager andParticle classes. We declare these classes to be System Direct, removing

the overhead incurred by our object model. While these classes are mutable, they are not

referenced from an external distribution unit, and so will never be replicated.

Performance Evaluation

Figure 5.4 shows the execution times for our rewritten Molecular Dynamics bench-

mark. We see similar scaling in this benchmark as in the MonteCarlo application, with a

similar point at 48 threads where the communication cost begins to overwhelm the benefit

of distribution.

Of interest in Figure 5.4 is a performance improvement when running RuggedJ with

four threads over the untransformed version. We believe that this is an effect of the NUMA

configuration of our test machines. We do not control which cores our application is as-

signed to, and so with a small number of threads the likelihood that data is in a distant

memory bank increases. RuggedJ allocates several additional, sometimes large, data struc-

tures. By using more memory, the application data is distributed across more memory

banks, leading to more reliable memory accesses.

115

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of Threads

0

1

2

3

4

5

6

S
pe

ed
up

 v
s.

 4
 th

re
ad

s

RuggedJ
Untransformed

Figure 5.4.: MolDyn speedup (normalized to untransformed)

5.3.3 DNA Database Matching

Geneticists encode the DNA of plants and animals as character strings, with each char-

acter representing a particular amino acid. The DNA Database matching application takes

as its inputs a “database” file of these DNA fragments (each ofwhich is generally on the

order of 1,000 characters), and a second file containing “query” fragments. The applica-

tion performs string matching on the DNA sequences, finding the best matches (those with

the smallest distance between the strings) from the database for each query. The matching

algorithms used have a high space and time complexity (each string comparison isO(mn),

wheremandn are the lengths of each string), and the matching application compares each

database string with each query string.

116

Application Overview

The original DNA matching application (DSEARCH) was written to use a distributed

Java framework developed by the Department of Computer Science at the National Uni-

versity of Ireland Maynooth [Keane et al., 2005]. This distribution system aims to provide

horizontal scaling for applications, but uses a different approach from RuggedJ. Rather

than our transparent system that provides the illusion of shared memory, the Maynooth re-

searchers built an infrastructure that simplifies the explicit partitioning and distribution of

work units, and executes applications as plug-ins to this framework. DSEARCH can thus

be thought of to consist of three parts: the distribution framework, the plug-in component

that partitions the workload, and the back-end logic that performs the matching algorithms.

Of these three components, the third part (the back-end logic) is most interesting to us.

We extracted that part from the application and wrote our owndriver program to partition

the work load and initiate the matching algorithm. Discounting the distribution framework

(which can be though of as performing a similar role to RuggedJ, although using a very dif-

ferent approach), we believe that our shared-memory abstraction allows for a simpler driver

application. Our implementation was more concise (422 vs. 733 lines), and the DSEARCH

driver had to conform to the many rules of the infrastructure, such as file naming conven-

tions.

Partitioning

The structure of the DNA database matching application is shown in Figure 5.5. The

search is launched by theSearchCoordinator class, which spawns multipleComparison-

Thread instances. The database is divided up between theComparisonThreads, which

calculate the distances between the sequences in each thread’s assigned portion of the

database and each of the query sequences. The string matching is performed in theneobio

package, a biocomputing library. The natural decomposition for this application is at the

ComparisonThread.

117

SearchCoordinator

ComparisonThread

ParticleManager

neobio

ComparisonThread

ParticleManager

neobio

ComparisonThread

ParticleManager

neobio

ComparisonThread

ParticleManager

neobio

ComparisonThread

ParticleManager

neobio

Figure 5.5.: DNA database matching application structure

The input database and query files are read by theSearchCoordinator, with each

DNA sequence represented by aSequence object. The database is divided into equally-

sized arrays ofSequences, with one assigned to eachComparisonThread. The queries are

represented by a singleSequence array, a reference to which is passed to each thread. We

declare bothSequence andSequence[] to be immutable, since they are constant after the

initial database population step, allowing them to be replicated on each node.

The output of the DNA database matching program is a series offiles, one for each

query sequence, that lists the topcount database matches (withcount specified in a con-

figuration file). Thus we must not only record the distance between each pair of sequences,

we must also output aString that represents the transformations necessary to go from one

sequence to the other. These matchingStrings can be large (depending on the number

of transformations and the length of the original sequences). Storing each of these trans-

formations for the fulln × m possible combinations of sequences is unfeasible; even on

fairly modest database sizes the space requirements quickly exceed the memory available.

Instead, we compute only the distance scores for each match,and then as a final act each

ComparisonThread recalculates the matching for its topcount matches for each query,

storing theString representation for each. The results from each thread are encapsulated

in DirectResultSet instances, which are collated by theSearchCoordinator.

118

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of Threads

0

1

2

3

4

5

6

7

8

9

10

11

12

S
pe

ed
up

 v
s.

 4
 th

re
ad

s

RuggedJ
Untransformed

Figure 5.6.: DNA database matching speedup (normalized to untransformed)

Performance Evaluation

Figure 5.6 shows the performance of the DNA database application. Once again we see

that RuggedJ incurs no measurable overhead for this application. Most computation occurs

within the local computation library; by declaring this library to be Direct we minimized the

overhead from our transformations. The small data set and intensive computational power

required for this benchmark mean that we do not see a point where the cost of copying data

overwhelms the benefit of additional processors on our cluster. In this case, however, we

do see a decrease in scaling at 48 threads due to saturation ofthe available cores; remote

accesses increase the number of active threads on each node leading to increased thread

context switching.

119

Company

warehouseTable customerTableitemTable

districts

Warehouse

Warehouse

Warehouse

Item

Item

Item

Item

Item

Item

District

District

District

districts

District

District

District

districts
District

District

District

Customer

Customer

Customer

Customer

Customer

Customer

Customer

Customer

Customer

Item

Item

Item

Figure 5.7.: SPECjbb2005’s main database structure

5.3.4 SPECjbb2005

SPECjbb2005 [SPECjbb2005, 2005] is a standard Java benchmarkapplication that im-

plements the TPC-C workload [TPC], simulating the workflow of acompany. The bench-

mark creates an in-memory database that tracks the warehouses and districts that make

up the organization, as well as the customers and inventory managed by each warehouse.

The benchmark then executes a number of different transaction types against the database.

It creates and tracks orders, deliveries and payments, and produces reports on customers

and stock levels. Each transaction is run on behalf of a warehouse, and interacts with the

database. Performance is measured by transactional throughput within a fixed time.

Application Overview

SPECjbb2005 is designed to be parallel and scalable. Each warehouse has an associated

thread that executes transactions; by increasing the number of warehouses (and therefore

threads) the system as a whole can execute more transactions. Unfortunately, while the

application is scalable it is not distributable. Figure 5.7shows SPECjbb2005’s major data

structure. TheCompany object contains three major arrays: anitemTable that contains

120

Company

warehouseTable

itemTable

districts

WarehouseWarehouse Warehouse

District District District

districts districts

Item

Item

Item

Item

Item

Item

Item

Item

Item

District District District District District District

customers

Customer

Customer

customers

Customer

Customer

customers

Customer

Customer

customers

Customer

Customer

customers

Customer

Customer

customers

Customer

Customer

customers

Customer

Customer

customers

Customer

Customer

customers

Customer

Customer

Figure 5.8.: Rewritten SPECjbb2005 application’s main database structure

details of the products available in the company, awarehouseTable that holds references

to the company’s warehouses and acustomerTable that lists the company’s customers.

Each warehouse holds an array ofDistrict objects. Elements of this data structure are

referenced exclusively by ID (ashort or int value that corresponds to an entry in the

appropriate table). Thus a givenCustomer requires three indices to reference: the cus-

tomer ID, theDistrict to which it belongs, and theWarehouse containing thatDistrict.

Obtaining a reference to thatCustomer means accessing theCompany to get aWarehouse

reference, theWarehouse to get theDistrict reference, and finally theDistrict to get the

Customer. And sinceCustomer references are not passed between methods, this lookup

process is required every time a givenCustomer is referred to. This makes theCompany

object a clear bottleneck: everyWarehouse, District or Customer reference must first

query theCompany.

We restructured the benchmark as shown in Figure 5.8. Since eachCustomer object is

bound to a particularDistrict, we distributed thecustomerTable structure between the

District instances, removing the need to indirect through theCompany. More importantly,

we rewrote the application to refer to instances directly, rather than using IDs. Thus we pass

121

0 4 8 12 16 20 24 28 32 36

Number of Threads

0

20

40

60

80

100

120

T
hr

ou
gh

pu
t (

x
1,

00
0

tr
an

sa
ct

io
ns

/s
ec

on
d)

Rewritten JBB
Original SPECjbb2005

Figure 5.9.: Comparing the original SPECjbb2005 and rewritten JBB benchmarks

references rather than IDs, eliminating the vast majority of lookup operations. We modified

theItem class slightly to allow it to be declared Direct, and so replicated on each node.

It should be noted that the changes we have made to the SPECjbb2005 benchmark al-

ter its run-time characteristics in a variety of ways. For example, the new version of the

application touches theCompany object far less often, leading to different caching behav-

ior. Similarly, by passing references rather than IDs we eliminate many redundant lookup

operations. This major restructuring affects the benchmark in a more profound manner

than the modifications that we performed on the Java Grande and DNA database applica-

tions, in which the data structures changed slightly but thecore computation remained the

same. While Figure 5.9 shows that the general scaling properties of the SPECjbb2005 are

preserved in our rewritten version, and our application performs the same workload as the

original (with a small speedup due to fewer lookups), we do not claim to provide a fully

122

accurate representation of SPECjbb2005. The remainder of this section discusses only our

rewritten version of the benchmark (JBB), without reference to the original.

Partitioning

We define distribution units within JBB to be the threads associated with each ware-

house. We collocate these threads with the warehouse (and associatedDistrict and

Customer objects), ensuring that the majority of transactions performed within a distri-

bution unit are local. The TPC-C specification upon which JBB isbased requires that a

minority of transactions are performed upon non-local warehouses. This necessitates that

some transactions involve remote invocations. We parameterized our implementation to

allow us to vary the percentage of remote accesses. As we willsee when discussing the

application performance, such accesses can cause significant performance degradation.

Another consequence of the requirement for non-local transactions is that any object

in the benchmark’s main data structure can be remotely referenced. This means that the

Company, Warehouse, District andCustomer classes must all implement the RuggedJ

object model (none of these classes are immutable). Not onlydoes this necessitate rewriting

these classes, but it also means that theTransaction objects (which perform the bulk of

the work in the application) must refer to transformed objects, and so cannot be declared

System Direct. This affects performance, as all accesses must be indirected.

A final interesting feature of JBB’s partitioning concerns theinitial setup of the data

structure. AllCompany, Warehouse, District andCustomer instances are initialized using

a data generation framework that creates random entries. This generator uses a single

seededRandom instance that creates a repeatable set of values. We generate our data on

RuggedJ’s head node during the setup phase. Since the variousdata storage classes are

mutable, we cannot simply replicate them across the network. Instead we migrate them at

the end of the creation phase, allowing us to generate them using a globally uniqueRandom

instance, but place them on the nodes where they will be referenced.

123

0 4 8 12 16 20 24 28 32
Number of Threads

0

1

2

3

4

S
pe

ed
up

 v
s.

 4
 th

re
ad

s

RuggedJ 0% remote accesses

RuggedJ 0.25% remote accesses

RuggedJ 0.5% remote accesses

RuggedJ 0.75% remote accesses

RuggedJ 1% remote accesses

RuggedJ 1.25% remote accesses

RuggedJ 1.5% remote accesses

Unmodified

Figure 5.10.: Re-implemented version of SPECjbb2005 performance

Performance Evaluation

Figure 5.10 shows the performance of this application. JBB reports throughput over a

fixed timing period (we measure for 120 seconds), and we report the result as transactions

per second. The graph shows the performance of an untransformed version of this appli-

cation, and the throughput on RuggedJ when we vary the fraction of remote accesses. We

can see that RuggedJ incurs a significant overhead when running on a single machine. This

is due to the highly-interconnected nature of the data structure and the transactions. Since

the company, warehouse, and district objects are distributed by RuggedJ, they must be

rewritten. And since the transactions refer to these data structures, they cannot be declared

Direct. Therefore we incur the performance penalties from RuggedJ’s transformations on

all data accesses in the system.

Figure 5.10 shows the importance of locality within RuggedJ (and, indeed, any dis-

tributed application). When no transactions operate upon remote warehouses, the RuggedJ

124

Board

Player Player Player

DeckRoundManager

Hand UI Hand UI Hand UI

Figure 5.11.: Clue application structure

version significantly outperforms the untransformed version as we increase the number of

warehouses. However, as the percentage of remote accesses increases, we see a steady de-

crease in the performance of the distributed version, until1.5% of accesses are remote, at

which point the distributed version only breaks even at 32 threads.

5.3.5 Clue

Our final benchmark was designed explicitly for RuggedJ. We implemented a multi-

player distributed version of the board game Clue in order to determine the benefit of

developing applications from scratch with RuggedJ in mind. The run-time environment

for this application differed significantly from the previous benchmarks: the game was de-

ployed across the Internet, with multiple players running simultaneous interactive sessions.

Thus performance was less of a concern, so long as the system remained responsive.

Application Overview

The system contains both client-server and peer-to-peer communication. This is a natu-

ral model for transparently distributed applications; in some cases objects communicate di-

rectly with one another without indirection through an intermediary controller, while global

activities are performed by a central mediator. The application structure was designed as

shown in Figure 5.11.

125

The key management unit in the application is theRoundManager. This creates a series

of Player objects that interact with users; each user controls aPlayer through its associ-

atedUI (we show a singleUI object to represent the classes that make up an interface in

Swing). TheUI is individual to thePlayer; UI objects do not communicate directly with

one another. TheRoundManager creates aBoard andDeck that encapsulate the major data

structures; theBoard represents the space in which the game is played (including valid,

invalid and special squares), while theDeck contains the cards that players use during the

game. EachPlayer maintains a set of cards that make up his or herHand, and refers to the

Board andDeck.

A round in the game consists of each player in turn moving a counter around the board,

and questioning one other player about the contents of theirhand. All players observe both

the movement and the question, while only the enquiring player knows which card is shown

in response to a query; the other players simply see whether acard has been shown. We

model this by a combination of one-to-one interactions and broadcast messages. The user

locally updates his position, sends a query to another player (encoding the new position; the

queried player may use this information in choosing the cardto reveal), receives a response,

and sends a summary of his turn to theRoundManager. TheRoundManager broadcasts this

summary to the remaining players, and indicates which player’s turn is next.

Partitioning

The application as presented in Figure 5.11 appears at first to be too tightly coupled

for distribution. However, our partitioning policy simplifies the structure, as shown in

Figure 5.12. We declare the board and deck to be immutable; recall that the position of

players is encoded in the broadcast turn summary from theRoundManager and so can be

locally cached. Thus the natural distribution unit is thePlayer. This portioning ensures

that theUI for eachPlayer is entirely local to the distribution unit; the applicationhas

no shared UI state. This is desirable since Swing componentsinteract closely with the

underlying VM and operating system, and so have no meaning outside the context of the

126

RoundManager

Player

DeckHand UIBoard

DeckBoard

Player

DeckHand UIBoard

Player

DeckHand UIBoard

Figure 5.12.: Partitioning the Clue application

current node. Finally, we see that the only connections between distribution units are the

necessary communication channels between individual players and between each player

and theRoundManager. This minimizes communication to that which is necessary tothe

application.

We do not present performance numbers for the Clue application as any overheads

introduced by RuggedJ are overwhelmed by the time taken for human players to move.

However the Clue application shows how complex applicationscan be trivially distributed

using RuggedJ, and how sensible partitioning choices can greatly simplify the structure of

a distributed application.

5.4 Contributions

RuggedJ’s partitioning interface strikes a balance betweenfine-grained developer con-

trol and transparent program development, while previous systems have emphasized one

factor or the other. Distributed programming languages such as Emerald or X10 allow very

precise control of object placement and movement, with explicit calls to reveal location

information. At the other extreme, transparent distribution systems such as J-Orchestra or

Addistant have imposed a class-based partitioning that is invisible to the developer. Each

127

system has its advantages; explicit object location allowsthe developer to tune the applica-

tion partitioning, while static partitioning frees the developer from locality concerns.

RuggedJ allows both approaches, combining applications that were written with no

explicit location information with an after-the-fact partitioning policy that affords precise

control of object placement. This way, the majority of development can proceed using a

familiar shared-memory single-machine model, while the developer retains the ability to

fine-tune his partitioning strategy. Our partitioning plug-in system also allows develop-

ers to introspect on their applications and the network uponwhich they are running. By

inserting partitioning call-backs a developer can invoke the partitioning policy at arbitrary

points in execution, allowing migration decisions to be made at appropriate times. No other

transparent distribution offers this level of control overpartitioning.

5.5 Concluding Remarks

Distributable applications scale horizontally and can gain performance improvements

by adding machines. Such applications can be decomposed into distribution units which

can be allocated on remote machines, with minimal interaction between the threads and

data of discrete units. Distributable applications can be further tailored to RuggedJ by

following simple optimization rules such as maximizing immutability and designing with

the RuggedJ object model in mind.

In this section we have examined the properties of applications that make the most of

the RuggedJ transformation and run-time systems, and we havediscussed the strategies

by which distribution units can be allocated across a RuggedJnetwork. Finally, we have

shown that our implementation of RuggedJ can handle large, realistic applications, and

discussed how we tuned these applications to perform well under our system.

128

6 SUMMARY AND FUTURE WORK

Transparent distribution can allow distributable standard Java applications to execute

across multiple machines with minimal programmer overhead.Transformed applications

can show minimal performance degradation on a single host, while demonstrating

significantly improved performance on a cluster.

6.1 Summary

In this dissertation we have presented RuggedJ, a specification-based transparent Java

distribution framework. RuggedJ transforms standard Java applications to execute across

a cluster of Java virtual machines with minimal developer input. A RuggedJ network is

composed of an arbitrary number of heterogeneous machines,each running a compatible

version of Java. Source applications are transformed usinga rewriting class loader, and

interact with a distributed run-time system. Applicationsare partitioned primarily by al-

locating instances of distributable units on the various nodes of the network, following a

partitioning policy supplied by the developer.

Our rewriting class loader transforms the classes of an application to conform to the

RuggedJ object model. We generate an interface that abstracts the class’s protocol, which

is implemented by three classes; one local, one remote and one proxy that holds a reference

to the local or remote object, allowing for simple migration. We have developed a further

set of transformations that allow us to integrate Java library code into our rewritten system,

using four templates to transform these classes. We have specified the transformations

required, as well as the classification algorithm that matches class to template.

Our run-time system manages execution of transformed code across the network. It

tracks remote objects, replicates immutable state and migrates objects when necessary. We

129

have implemented the run-time system to support Java’s semantics; we maintain globally

unique static data, preserve object identity across multiple nodes, implement thread affin-

ity and support the Java’s monitor-based synchronization.The RuggedJ run-time system

also provides a partitioning plug-in interface, to which application developers can create

partitioning policies. These policies can introspect on the nodes of the network, allowing

partitioning strategies to be tuned to the cluster upon which an application is executing.

We have also discussed the types of applications that perform well in a distributed en-

vironment. We have identified those features that lend an application to distribution in gen-

eral, such as a decomposable structure with few serial sections, limited reliance on global

data and a high level of immutability. We also discuss those qualities that cause an appli-

cation to perform well under RuggedJ, including a simple inheritance hierarchy, separating

performance-critical sections from remotely-accessibleclasses, and limiting use of certain

language features. Finally, we discussed the implementations of several large, realistic ap-

plications, outlining the techniques that we used to partition them and demonstrating their

performance on a RuggedJ network.

6.2 Future Work

There are several avenues of research that could follow fromthis work:

Reliability. As RuggedJ is deployed across larger networks and with longer-running ap-

plications, the likelihood of node failures increases. An interesting line of research

would be to determine the level to which fault tolerance could be built into the system,

whether through replication of work or by distributed transactions. Additionally, the

object model and transformation techniques that we have outlined could allow data

replication upon a single node, allowing for the possibility of research in transient

failure models.

Changing networks. RuggedJ is currently targeted towards arbitrary network configura-

tions. Our partitioning plug-in system allows developers to reason in terms of abstract

resources rather than partitioning across a concrete network. However, this flexibility

130

exists only for the static network configuration; we cannot currently grow or shrink

networks dynamically, perhaps in response to varying work loads or available hard-

ware.

Reflection. RuggedJ’s handling of reflection is presently on an ad-hoc basis, with our run-

time system attempting to integrate reflective code into ourrewritten classes. This

approach is limited in the long term, and could be replaced bya more formal set of

semantics that allow developers to use a strictly-defined subset of reflective behavior.

Caching. In this work, we have discussed the replication of data only in terms of im-

mutable content. It would be possible to replicate mutable data in the system, so

long as the replicas remained globally consistent. Adding acoherence mechanism to

RuggedJ’s run-time would allow this replication, and could offer significant perfor-

mance improvements, relaxing some of the requirements set out in Chapter 5.

Java Memory Model. The Java Memory Model [Manson et al., 2005] provides a relaxed

consistency model in which updates need not be propagated immediately; rather data

values are guaranteed to be consistent only at synchronization points. We could

make use of this consistency model to cache local modifications to data, updating the

canonical version only when necessary.

Optimizations. There is room for some optimizations in our implementation.The major

bottleneck in our rewriting system is the indirection required when obtaining local

values; rather than using aGetField bytecode, we instead call aget method to ob-

tain a field. This can lead to a major performance degradation, particularly when

iterating across a large array. By implementing a static analysis or through pro-

grammer input we could determine methods that use purely local objects and bypass

indirection in these instances. Another major bottleneck is large data structures, par-

ticularly arrays, which must be allocated on a single node and so remotely referenced

by all others. We could break large arrays into smaller “arraylets”, increasing the dis-

tributability of such data structures.

131

6.3 Conclusion

We have discussed the design and implementation of a prototype transparent Java dis-

tribution infrastructure. We have shown how the overhead imposed by our rewriting system

can be minimized using a variety of techniques, including selectively omitting rewrites on

performance critical sections. We have demonstrated that this system can distribute several

realistic applications, and have shown that these applications running on a cluster exhibit

scalability beyond that available to a single machine.

LIST OF REFERENCES

132

LIST OF REFERENCES

S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K. Shyamasundar,and K. Yelick.
Deadlock-free scheduling of X10 computations with boundedresources. InProceedings
of the 19th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 229–240, 2007. 22

G. M. Amdahl. Validity of the single processor approach to achieving large scale com-
puting capabilities. InProceedings of the April 1967 Spring Joint Computer Conference,
pages 483–485, 1967. 99

D. P. Anderson. Boinc: A system for public-resource computing and storage. InPro-
ceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pages 4–10,
2004. 108

Y. Aridor, M. Factor, and A. Teperman. cJVM: A single system image of a JVM on
a cluster. InProceedings of the 1999 International Conference on Parallel Processing,
pages 4–11, 1999. 20

Y. Aridor, M. Factor, A. Teperman, T. Eilam, and A. Schuster.Transparently obtaining
scalability for Java applications on a cluster.Journal of Parallel and Distributed Comput-
ing, 60(10):1159–1193, 2000. 20

M. Austermann, P. Costanza, G. Kniesel, and H. Koch. The JMangler project. URL
http://roots.iai.uni-bonn.de/research/jmangler/. 29

M. Baker and B. Carpenter. MPJ: A proposed Java message passing API and environment
for high performance computing. InThe IEEE International Parallel and Distributed
Processing Symposium (IPDPS) Workshops, LNCS 1800, pages 552–559, 2000. 69

A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structurein the Emerald system. In
Proceedings of the 1st Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA), pages 78–86, 1986. 21

A. P. Black. Supporting distributed applications: Experience with Eden. InProceedings
of the 10th ACM symposium on Operating Systems Principles (SOSP), pages 181–193,
1985. 21

A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy. The development of the Emerald
programming language. InProceedings of the 3rd ACM SIGPLAN Conference on History
of Programming Languages (HOPL), pages 11–1–11–51, 2007. 21

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Di-
wan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wie-
dermann. The DaCapo benchmarks: Java benchmarking development and analysis. In
Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Program-
ing, Systems, Languages, and Applications (OOPSLA), pages 169–190, 2006. 61

http://roots.iai.uni-bonn.de/research/jmangler/

133

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime system.SIGPLAN Notices, 30(8):207–216,
1995. 22

B. Bokowski and A. Spiegel. Barat—a front-end for Java. Technical Report B-98-09,
Freie Universiẗat Berlin, Sept. 1998. 30

E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool to implement
adaptable systems. InAdaptable and Extensible Component Systems, 2002. 30

M. Busch. Adding dynamic object migration to the distributing compiler Pangaea. Mas-
ter’s thesis, FU Berlin, FB Mathematik und Informatik, 2001.27

D. Caromel and J. Vayssière. A Java framework for seamless sequential, multi-threaded,
and distributed programming. InThe Workshop on Java for High-Performance Network
Computing, 1998. 24

D. Caromel, W. Klauser, and J. Vayssière. Towards seamless computing and metacom-
puting in Java.Concurrency—Practice and Experience, 10(11–13):1043–1061, 1998. 24

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K.Ebcioglu, C. von Praun,
and V. Sarkar. X10: An object-oriented approach to non-uniform cluster computing.
SIGPLAN Notices, 40(10):519–538, 2005. 22

X. Chen and V. H. Allan. MultiJav: A distributed shared memorysystem based on mul-
tiple Java virtual machines. InProceedings of the 1998 International Conference on Par-
allel and Distributed Processing Techniques and Applications (PDPTA), pages 91–98,
1998. 20

S. Chiba. Load-time structural reflection in Java. InProceedings of the 14th European
Conference on Object-Oriented Programming (ECOOP), pages 313–336, 2000. 29

S. Chiba and M. Nishizawa. An easy-to-use toolkit for efficient Java bytecode transla-
tors. In Proceedings of the 2nd International Conference on Generative Programming
and Component Engineering (GPCE), pages 364–376, 2003. 29

A. F. da Silva, M. Lobosco, and C. L. de Amorim. An evaluation ofcJava system ar-
chitecture. InSymposium on Computer Architecture and High Performance Computing,
page 91, 2003. 20

M. Dahm. Doorastha—a step towards distribution transparency. In JIT, 2000, 2000a. 24

M. Dahm. The Doorastha system. Technical Report B-1-2000, Freie Universiẗat Berlin,
2000b. 24

M. Dahm. Byte code engineering with the BCEL API. Technical Report B-17-98, Freie
Universiẗat Berlin, 2001. 30

J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008. 106

P. Eugster. Uniform proxies for Java. InProceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), pages 139–152, 2006. 26

134

M. Factor, A. Schuster, and K. Shagin. Instrumentation of standard libraries in object-
oriented languages: The Twin Class Hierarchy approach. InProceedings of the 19th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 288–300, 2004. 26, 52

E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides.Design Patterns. Elements of
Reusable Object-Oriented Software.Addison-Wesley, Mar. 1995. 98

J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification. Addison-
Wesley, 3rd edition, 2005. 80

D. Hagimont and D. Louvegnies. Javanaise: Distributed shared objects for Internet coop-
erative applications. InProceedings of Middleware’98, 1998. 24

S. S. Huang and Y. Smaragdakis. Easy language extension withMeta-AspectJ. InPro-
ceedings of the 28th ACM International Conference on Software Engineering (ICSE),
pages 865–868, 2006. 29

L. Iftode. Home-Based Shared Virtual Memory. PhD thesis, Princeton University, 1998.
19

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald
system.ACM Transactions on Computer Systems, 6(1):109–133, 1988. 22

T. M. Keane and T. J. Naughton. DSEARCH: Sensitive database searching using dis-
tributed computing.Bioinformatics, 21(8):1705–1706, 2005. 61, 107

T. M. Keane, A. J. Page, J. O. McInerney, and T. J. Naughton. A high-throughput bioin-
formatics distributed computing platform. InProceedings of the 18th IEEE International
Symposium on Computer-Based Medical Systems (CBMS), pages 377–382, 2005. 116

P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. TreadMarks: Distributed
shared memory on standard workstations and operating systems. InProceedings of the
Winter 1994 USENIX Conference, pages 115–131, 1994. 20

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Ir-
win. Aspect-oriented programming. InProceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP), 1997. 29

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ. InProceedings of the 15th European Conference on Object-Oriented
Programming (ECOOP), pages 327–353, 2001a. 29

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. Getting
started with AspectJ.Communications of the ACM, 44:59–65, 2001b. 29

G. Kniesel, P. Costanza, and M. Austermann. JMangler—a framework for load-time
transformation of Java class files. InProceedings of the International Workshop on Source
Code Analysis and Manipulation (SCAM), pages 100 – 110, 2001. 29

P. Launay and J.-L. Pazat. A framework for parallel programming in Java. InProceed-
ings of the International Conference and Exhibition on High-Performance Computing and
Networking (HPCN Europe), pages 628–637, 1998a. 23

P. Launay and J.-L. Pazat. Generation of distributed parallel Java programs. Technical
Report PI-1171, Institut de Recherche en Informatique et Systemes Aleatoires, 1998b. 23

135

S. Liang and G. Bracha. Dynamic class loading in the Java virtual machine. InProceed-
ings of the 13th Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 36–44, 1998. 32, 44

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Prentice-Hall, 2nd
edition, 1999. 85

N. Liogkas, B. MacIntyre, E. D. Mynatt, Y. Smaragdakis, E. Tilevich, and S. Voida. Au-
tomatic partitioning: A promising approach to prototypingubiquitous computing applica-
tions. IEEE Pervasive Computing, 3(3):40–47, 2004. 14

B. Liskov, D. Curtis, P. Johnson, and R. Scheifer. Implementation of Argus. InPro-
ceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP), pages
111–122, 1987. 21

M. Lobosco. A new distributed JVM for cluster computing. InProceedings of the 9th
International Euro-Par Conference, 2003. 20

M. Lobosco, O. Loques, and C. L. de Amorim. Reducing memory sharing overheads in
distributed JVMs. InProceedings of the 1st International Conference on High Perfor-
mance Computing and Communications (HPCC), pages 629–639, 2005. 20

J. Manson, W. Pugh, and S. V. Adve. The Java memory model. InProceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 378–391, 2005. 130

J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and development of Java
Grande benchmarks. InProceedings of the ACM 1999 Conference on Java Grande, pages
72–80, 1999. 62

P. McGachey, A. L. Hosking, and J. E. B. Moss. Pervasive load-time transformation for
transparently distributed Java.Electronic Notes in Theoretical Computer Science, 253(1):
47–64, 2009a. 7

P. McGachey, A. L. Hosking, and J. E. B. Moss. Classifying Java class transformations
for pervasive virtualized access. InProceedings of the 8th International Conference on.
Generative Programming and Component Engineering (GPCE), pages 75–84, 2009b. 79

A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, T.J. Giuli, and X. Gu.
Towards a distributed platform for resource-constrained devices. InProceedings of the
22nd International Conference on Distributed Computing Systems (ICDCS), pages 43–
51, 2002. 19

G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8),
Apr. 1965. 95

OMG. The Common Object Request Broker: Architecture and Specification. Technical
Report 91.12.1 rev 1.1, Object Management Group, 1992. 25

M. Philippsen and B. Haumacher. Locality optimization in JavaParty by means of static
type analysis.Concurrency—Practice and Experience, 12(8):613–628, July 2000. 23

M. Philippsen and M. Zenger. JavaParty—transparent remoteobjects in Java.
Concurrency—Practice and Experience, 9(11):1225–1242, Nov. 1997. 23

136

M. Robinson and P. Vorobiev.Swing Second Edition.Mannings Publications, 2003. 108

D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test factoring for Java. In
Proceedings of the 25th IEEE/ACM International Conference Automated Software Engi-
neering (ASE), pages 114–123, 2005. 26

R. Samanta, A. Bilas, L. Iftode, and J. P. Singh. Home-based SVMprotocols for SMP
clusters: Design and performance. InProceedings of the 4th International Symposium on
High-Performance Computer Architecture (HPCA), 1998. 19

SPECjbb2005. Java server benchmark, 2005. URLhttp://www.spec.org/
jbb2005. Standard Performance Evaluation Corporation. 61, 119

SPECjvm98. Java virtual machine benchmarks, 2008. URLhttp://www.spec.
org/jvm2008/. Standard Performance Evaluation Corporation. 61

A. Spiegel. Automatic distribution in Pangaea. InProceedings of the 3rd International
Workshop on Communications-Based Systems (CBS), pages 119–146, 2000. 27

A. Spiegel.Automatic Distribution of Object-Oriented Programs. PhD thesis, Freie Uni-
versiẗat Berlin, Dec. 2002. 27

A. Spiegel. Pangaea: An automatic distribution front-end for Java. InProceedings of the
IPPS/SPDP Workshops, pages 93–99, 1999. 27

G. L. Steele, Jr. Parallel programming and code selection inFortress. InProceedings of
the 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 1–1, 2006. 22

F. Steimann. The Infer Type refactoring and its use for interface-based programming.
Journal of Object Technology, 6(2), 2007. 25

Sun Microsystems, Inc. Java remote method invocation specification, a.
URL http://java.sun.com/javase/technologies/core/basic/rmi/
index.jsp. 23

Sun Microsystems, Inc. Dynamic proxy classes, b. URLhttp://java.sun.com/
j2se/1.5.0/docs/guide/reflection/proxy.html. 25

Sun Microsystems, Inc. The JVM tool interface, c. URLhttp://java.sun.com/
j2se/1.5.0/docs/guide/jvmti. 46

E. Tanter, M. Śegura-Devillechaise, J. Noyé, and J. Piquer. Altering Java semantics via
bytecode manipulation. InProceedings of the 1st International Conference on Generative
Programming and Component Engineering (GPCE), pages 283–298, 2002. 29

M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A bytecode translator for distributed
execution of “legacy” Java software. InProceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP), 2001. 18

Terracotta Inc. URLhttp://terracotta.org. 17

The Apache Software Foundation. Hadoop. URLhttp://hadoop.apache.org/.
106

http://www.spec.org/jbb2005
http://www.spec.org/jbb2005
http://www.spec.org/jvm2008/
http://www.spec.org/jvm2008/
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://java.sun.com/j2se/1.5.0/docs/guide/reflection/proxy.html
http://java.sun.com/j2se/1.5.0/docs/guide/reflection/proxy.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti
http://terracotta.org
http://hadoop.apache.org/

137

The Java Grande Forum. The Java Grande benchmark suite. URLhttp://www.epcc.
ed.ac.uk/research/java-grande. 62, 107

E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic Java application partition-
ing. In Proceedings of the 14th European Conference on Object-Oriented Programming
(ECOOP), pages 178–204, 2002. 14, 15

E. Tilevich and Y. Smaragdakis. Portable and efficient distributed threads for Java. In
Proceedings of the 5th ACM/IFIP/USENIX International Middleware Conference, pages
478–492, 2004. 16, 82

E. Tilevich and Y. Smaragdakis. Transparent program transformations in the presence of
opaque code. InProceedings of the 5th International Conference on Generative Program-
ming and Component Engineering (GPCE), pages 89–94, 2006. 15, 58

E. Tilevich and Y. Smaragdakis. J-Orchestra: Enhancing Java programs with distribution
capabilities.ACM Transactions on Software Engineering and Methodology, 19(1):1–40,
2009. 14

E. Tilevich, Y. Smaragdakis, and M. Handte. Appletizing: Running legacy Java code
remotely from a Web browser. InProceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM), pages 91–100, 2005. 14

TPC. The TPC benchmarks. URLhttp://www.tpc.org/. 119

W. Yu and A. L. Cox. Java/DSM: A platform for heterogeneous computing.
Concurrency—Practice and Experience, 9(11):1213–1224, 1997. 20

http://www.epcc.ed.ac.uk/research/java-grande
http://www.epcc.ed.ac.uk/research/java-grande
http://www.tpc.org/

VITA

138

VITA

Phil McGachey was born in Glasgow, Scotland, attending Trinity High School and

St. Aloysius College. He earned a BSc in Software Engineering at Glasgow University,

graduating with a First Class Honors degree in 2002. Phil spent the second year of his

undergraduate course at Boston College in Chestnut Hill, Massachusetts.

On graduating from Glasgow, Phil moved to Purdue Universityto work with Prof. Tony

Hosking in the Secure Software Systems lab. He completed summer internships at Sun

Microsystems in 2005 and at Intel’s Programming Systems Labin 2006 and 2007. He

completed his MS degree in 2005 and his PhD in 2010.

Phil’s research interests have centered around run-time systems, spending time working

on Java VMs, garbage collection and transparent distribution. Outside of work, he enjoys

golf, traveling, model ship building, and the acquisition of tiny power tools.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Overview
	RuggedJ
	Target Applications
	System Design
	Class Transformation
	Run-Time Infrastructure
	Partitioning
	Summary

	Contributions

	Background
	Transparent Distribution
	J-Orchestra
	Terracotta
	Addistant
	AIDE

	Java Distributed Shared Memory
	Language-Based Distribution
	Other Java Distribution Systems
	Work Related to Key RuggedJ Features
	Object Model
	Whole-Program Transformation
	Application Partitioning

	Class Transformation
	Terminology
	System and User Classes
	Transformation

	The RuggedJ Object Model
	Generated Classes
	Referring to Transformed Objects
	Inheritance
	Arrays
	Static Data
	Hand-Coded Classes

	Method and Field Transformations
	System Classes
	Barriers to Transformation
	The RuggedJ JVMTI Agent
	Templates for Rewriting
	Subtyping
	Classification
	System Class Static Singletons

	User Classes
	Rewriting
	Native and Reflective code
	Base Classes
	Classification

	Classification Evaluation
	Static Singletons

	Contributions
	Concluding Remarks

	Run-Time Support
	The RuggedJ Network
	Network Configuration
	Communication

	Run-Time Primitives
	Object Management
	Immutable Objects
	Migration

	Java Semantics
	Object Identity
	Reflection
	Static Data
	Threading and Synchronization
	Exception Handling

	Application Partitioning
	Contributions

	Distributed Application Development
	Distributability
	General Distributability
	Designing for RuggedJ

	Partitioning Strategies
	Applications
	Monte Carlo Simulation
	Molecular Dynamics
	DNA Database Matching
	SPECjbb2005
	Clue

	Contributions
	Concluding Remarks

	Summary and Future Work
	Summary
	Future Work
	Conclusion

	LIST OF REFERENCES
	VITA

