TRANSPARENT DISTRIBUTION FOR JAVA APPLICATIONS

A Dissertation
Submitted to the Faculty
of
Purdue University
by

Philip McGachey

In Partial Fulfillment of the
Requirements for the Degree
of

Doctor of Philosophy

May 2010
Purdue University

West Lafayette, Indiana

To all those who have supported me over the years.

ACKNOWLEDGMENTS

I'd first like to thank my PhD committee: Jan Vitek and Patriekgster for agreeing to
serve, and Eliot Moss for his input both at the start and tloboéthe process. | particularly
thank my advisor, Tony Hosking, for his years of guidance sungport; during my career
he has acted as a mentor, a colleague, a boss and a friend.

A great many people have helped and influenced me over the gegraduate school,
making any list necessarily incomplete. I'd like to thanke@MWright at Sun and Rick
Hudson at Intel for supervising me during my various intarps and giving me a valuable
insight into life beyond academia. While at Purdue, | mamgdi my sanity largely with
the help of Michael Richmond, Darrin and Karen Cox, Mike Steunty Joe Auffermann,
Samuel Adams and the second Earl Grey. I'd particularly itkéhank Dennis and Petra
Brylow for their encouragement, help and bad TV, Adam Weldisrconstant friendship,
advice and beer, and Nicki Barker for her kindness and momat during the last year
of my degree.

I'd finally like to thank my parents for their unwavering suppover what turned out to
be a long process. Their enthusiasm and continual encauegehrough the good times

and bad gave me the confidence to see things through to the end.

TABLE OF CONTENTS

LISTOF TABLES . . .« o oo
LISTOFEFIGURES« o oo,

ABSTRACT . . o o oo

1 INtrodUCtion
1.1 OVEIVIEW. o
1.2 Ruggedd.
1.2.1 Target Applicatiohs
1.2.2 System Desi@n
1.2.3 Class Transformation
1.2.4 Run-Time Infrastructure
1.2.5 Partitioninb
126 Summary
1.3 Contributions

2 Backgrounbl

2.1 Transparent Distribution
2.1.1 J-Orchestra.
2.1.2 Terracotfa
2.1.3 Addistant
2.1.4 AIDE
2.2 Java Distributed Shared Mem\ory
2.3 Language-Based Distribution
2.4 Other Java Distribution Systems.
2.5 Work Related to Key RuggedJ FeatUres

251 ObjectModel.
2.5.2 Whole-Program Transformation.
2.5.3 Application Partitionng

3 Class Transformation.
3.1 Terminologﬂl
3.1.1 System and User Classes.

3.1.2 Transformation.o

3.2 The RuggedJ ObjectModel
3.21 GeneratedClasses.
3.2.2 Referring to Transformed Objects.

3.2.3 Inheritance
3.24 Arrayé
3.25 StaticData
3.2.6 Hand-Coded Classes

3.3 Method and Field Transformations
3.4 System CIasses.
3.4.1 Barriersto Transformation.
3.4.2 TheRugged JVMTIAgent
3.4.3 TemplatesforRewriting
344 Subtyping.
3.45 Classification.
3.4.6 System Class Static Singletons.

35 USerClasses o oo
351 Rewriting
3.5.2 Native and Reflectivecode
353 BaseClasses.
3.5.4 Classification

3.6 Classification Evaluation.
3.6.1 Static Singletohs

3.7 Contributions
3.8 ConcludingRemarks.
4 RUn-TIME SUPPOM. o o
41 The RuggedJ Network
4.1.1 Network Configuration.
4.1.2 Communication.

4.2 Run-Time Primitives
4.2.1 ObjectManagement.
4.2.2 Immutable Objedts
423 MIGration

4.3 JavaSemantics.
4.3.1 Objectldentity
4.3.2 Reflection.
43.3 StaticData
4.3.4 Threading and Synchronization.
435 ExceptionHandling.

4.4 Application Partitioning.
45 Contributions
5 Distributed Application Development
5.1 Distributability.
5.1.1 General Distributabiliky

\5.1.2 Designing for Ruqqe\dJ

5.2 Partitioning Strateqibs

5.3 Applicationb

5.3.1 Monte Carlo Simulation
5.3.2 Molecular Dynami&s
5.3.3 DNA Database Matching.
5.3.4 SPECjbb2005.
5.35 CIUE. o

5.4 Contributioﬂs

55 ConcludingRemarks.

\6 Summary and Future Wdrk

6.1 Summaﬁy

6.2 Future WOrK. o

6.3 CONCIUSION . . . o o o o

Vi

Page

104
106
108
112
115
119
124
126
127

128
128
129
131

132
138

Vii

LIST OF TABLES

Table Page

3.1 Subclassing between templates. 53

LIST OF FIGURES

Figure

\1.1 The RuggedJ System Architecture
1.2 The RuggedJ object model

3.1 Userand systemclasses.

3.2 Transforming classes.

3.3 The RuggedJ object model

\3.4 Inheritance between transformed clalsses

3.5 Generated arraytypes.

\3.6 Multi-dimensional arrays with interfad:es

\3.7 Handling static data for distribution

3.8 Classloading in the Java Virtual Machine.

3.9 Wrapping class hierarchy

3.10 Extending class hierardhy

3.11 Promotable class hieraréhy. C

3.12 Direct class hierarchy.

\3.13 Classification for system claslses)

\3.14 Classification of user clasbes C

3.15 Percentages of systemvs. userclasses

\3.16 Classification of user clas%es C

\3.17 Classification of system classes. .

3.18 Elimination of static singleto\ns. o

4.1 Communication between RuggedJnodes

‘4.2 Problemsynchroni zed deadIOC‘(.)

5.1 Monte Carlo application structure .

5.2 Monte Carlo speedup (normalized to untransformed)

viii

Figure

5.3

MolDyn application SUUCUNE. .« o o o oo

5.4

MolDyn speedup (normalized to untransfornhed)

5.5

DNA database matching application structure

5.6

DNA database matching speedup (normalized to untremeﬁﬁ)

5.7

SPEC]jbb2005’s main database Structure.o

5.8

Rewritten SPECjbb2005 application’s main databasetsteic.

5.9

Comparing the original SPECjbb2005 and rewritten JBB beacks . . .

5.10

Re-implemented version of SPECjbb2005 perforrﬁance

5.11

Clue application SUUCIUME © .« o o o oo

5.12

Partitioning the Clue applicati\on

ABSTRACT

McGachey, Philip Ph.D., Purdue University, May 2010. Tgarent Distribution for Java
Applications. Major Professor: Antony L. Hosking.

Cloud computing and falling hardware prices today offer espdented access to cheap
and flexible computer clusters. Unfortunately, develogheydistributed applications that
are needed to take full advantage of this extra capacityllig staunting task. Application
programmers must concern themselves not only with apmitddgic, but also with the
mechanics of distribution: tracking remote data, globalckyonization, network configu-
ration and so forth.

RuggedJ is a transparent Java distribution framework thiat/es much of the burden
from distributed programming. We inject distribution logmto standard Java applications,
and we deploy the rewritten code across a dynamic run-tifiastnucture. This way,
we maintain the semantics of the original application wipiteviding powerful distribu-
tion capabilities such as dynamic application partitigniobject location transparency and
replication of immutable state.

This dissertation describes the design and implementati@ur prototype RuggedJ
transparent distribution infrastructure. It discusseth lbloe bytecode rewriting techniques
that allow us to distribute code and the run-time infragticecthat manages the distributed
application. We investigate the propertiesdidtributableapplications (those that benefit
from distribution), and describe techniques to optimizégrenance for the RuggedJ plat-
form. Finally, we demonstrate that the system can disteilsetveral realistic applications,
and show that these applications exhibit scalability whammg on a cluster beyond that

possible on a single machine.

1 INTRODUCTION

Transparent distribution can allow distributable standalava applications to execute
across multiple machines with minimal programmer overhdadnsformed applications
can show minimal performance degradation on a single hostewdlemonstrating

significantly improved performance on a cluster.

With the increasing availability of affordable commoditysters and cloud computing
infrastructures, consumers have access to more computingrghan ever before. Data
sets and workloads are increasing to employ these resouheegrowing internet econ-
omy requires that servers scale to handle ever-increasusjsl of traffic, while scientific
infrastructure produces massive amounts of raw data todmepsed. The result is that de-
velopers today can no longer rely vertical scaling, waiting for the rising tide of processor
speed to improve single-threaded application performaRa¢her, applications must scale
horizontallyby distributing across multiple loosely-connected cormputesources and so
leveraging the available computing capacity.

Developing applications that effectively take advantaighis capacity requires signif-
icant programmer effort. Systems must be designed to loligériacross multiple machines,
transferring data and accessing remote objects over netwoinections. Using commaod-
ity frameworks such as Java Remote Method Invocation (RMI)samiglization, program-
mers must explicitly track objects across disparate merspages, handle remote objects
specially, and ensure that data is correctly synchroniEegther, obtaining good perfor-
mance often requires implementing unsupported functitynslich as object migration or
replication to minimize remote invocations.

Transparent distribution removes much of this overheaunh fdevelopers. Rather than

writing an application with explicit distribution code,qgrammers use the familiar shared-

memory abstraction to develajstributablemulti-threaded systems. The transparent dis-
tribution framework takes this application and dynamigaikerts distribution logic, trans-
forming the code at run time to run across multiple machiesin-time system operates
on each machine and maintains mappings between remotdsbjec

Such a system offers substantial advantages over mantaidbuli®n. The program-
ming model is significantly simpler; developers do not neeexplicitly handle the mech-
anisms of distributed execution. The distribution infrasture can analyze the application
to optimize object placement, replicating immutable ddtarther, it can provide means
by which objects can migrate from one machine to anothemda&dvantage of shifting
data access patterns. Finally the developer does not hdiveltand track remote objects
or global data, as the run-time system maintains this inébion.

A transparent distribution system requires several feattw appeal to developers. It
must offer significant savings in development effort wheitdang distributed applications,
allowing developers to focus on the specific functionalityh®ir systems rather than the
mechanism by which they are distributed. Additionally, th&tributed application should
not be tied to a specific network configuration; an applicatieat scales horizontally must
be able to deploy on an arbitrary network that may changedsrtwnvocations. Finally, the
system must not be a source of significant performance datioad and must not present

a barrier to the application’s scaling across multiple niaeh

1.1 Overview

We have developed a transparent distribution system far theat meets these criteria.
The RuggedJ system takes bytecode emitted from any stanaeaidcdmpiler and uses
a rewriting class loader to transform the application’seco@ihe rewritten code integrates
with a distributed run-time system that manages the glotedgion of the application. We
have implemented and evaluated a prototype RuggedJ systdrhase found that certain
classes of applications can show significant performangeawements when run across

multiple machines.

The dissertation is structured as follows:

e The remainder of this Introduction chapter gives an ovenaéthe RuggedJ system,

and enumerates the contributions of this work.

e Chapter 2 discusses the prior work in this area, and sumnsaarae closely related
fields.

e Chapter 3 details the bytecode transformations by which weiteethe classes of
an application. This includes a comprehensive discusdithow we integrate Java

library classes into our system.

e Chapter 4 outlines the run-time management system thatem&the execution of
a distributed application. We first discuss some of the featof this infrastructure,
such as remote object tracking and data replication. Weitigioate how we build

upon these underlying systems to support some of Java’s coanplex semantics.

e Chapter 5 provides a full discussion of distributable aggians in Java, including
those data structures and design features that lend thesadel distribution. We
discuss a number of realistic applications that we haveiloiged using our prototype
system, detailing the program structure and distributioategies for each, as well

as performance evaluations where appropriate.

e Finally, Chapter 6 summarizes the dissertation, and ingscabme areas in which

this work could be continued in the future.

1.2 RuggedJ

In this section we introduce RuggedJ, a specification-basadsparent distribution
framework for Java. RuggedJ automatically (based on copesgrammer specifications)
transforms standard multi-threaded Java applicationsri@cross a cluster of unmodified
Java virtual machines (JVMs), removing the burden of exptistributed programming

from the developer. Our framework gives Java developerssscto powerful distribution

mechanisms for minimal additional effort, while maintaigithe semantics of the original
application.

RuggedJ offers significant novel benefits. It allows distebluapplications to scale
out to clusters of arbitrary size and configuration withodditional developer effort, and
without hard-encoding the network and its topology withie &pplication. This simpli-
fies development and maintenance. Further, the develoger mat worry about objects
that may be local under some network configurations and eemnader others, and need
not explicitly handle references to migrating objects. afy) RuggedJ transforms stan-
dard Java applications, with no additional annotationsegrethdencies upon specialized

libraries.

1.2.1 Target Applications

RuggedJ can transform and distribute most standard Javieappis (with minor ex-
ceptions; we do not support some Java features such asewséclass loading and certain
aspects of reflection). However not all Java programs befmefit distribution. We tar-
get a class of applications that we refer todastributable those that can be broken into
multiple discrete units, each of which is operated upon bgdicghted node. Thegbstri-
bution unitsare located on different nodes in the network, allowing agitity by adding
additional nodes to operate over more units. To maximizéopeance, there should be
little cross-talk between multiple distribution unitsténactions between distribution units
on different nodes are performed via remote method invogatihich carries with it an
inherent performance penalty.

In addition to these properties, distributable appligaishould be long-running. Es-
tablishing a RuggedJ network incurs a startup cost that neuaniortized across the exe-
cution of the application. Additionally, there is some waoekuired to create threads and
copy initial data. Thus, small applications (having exemutimes less than two or three

minutes) will never see the benefits of distribution.

Finally, distributable applications should minimize thdependence on native code,
reflection and static data. The presence of native or rafeectide can tie the instances
of a given class to a single node in the network, destroyingpmtential distribution (an
issue that is discussed in depth in Chapter 3). Static datarggndoes not limit the
distributability of an application, but can lead to incredsetwork traffic, since static data
must be globally unique within the system.

We discuss the characteristics of distributable appbeoatmore fully in Chapter 5.

1.2.2 System Design

RuggedJ runs across an interconnected network of JVMs thatfge to asnodes
Each physical machine (s} within the cluster can contain one or more nodes. RuggedJ
is implemented entirely at the bytecode level (we do not iiydde JVM), and we make no
requirements on the capabilities of the hosts, save thgtdaeh run a fully-featured Java
virtual machine with compatible versions of the Java cldssaiies. This VM-agnosticism
provides us with several advantages. First, our implentient& not tied to a specific VM
distribution, making porting between VMs and versions @ ffava specification trivial.
Additionally, a given RuggedJ network can integrate hetenegus hosts; an application
can be distributed across multiple architectures runnimgrsle operating systems, so long
as they provide a compatible JVM. Figure 1.1 shows the coctstm of a RuggedJ net-
work.

RuggedJ is designed to allow maximum flexibility in the platficupon which it runs.
The partitioning of an application (the allocation of the application’s data work across
multiple hosts) is determined at run-time, so an applicatieed not be modified to account
for every new network upon which it runs. This is achieveatigh our partitioning plug-
in system: when targeting RuggedJ for distribution, the iappbn developer supplies a
partitioning strategy, encapsulated as a Java class. Tdss bas access to the run-time

state of the RuggedJ network and, guided by this informainaticates how the application

class
loadin:

TRANSPARENT DISTRIBUTED APPLICATION

transformed
classes

transformed
classes

transformed
classes

transformed

class =

runtime library

runtime library

runtime library

runtime library

transforming
classloader

transforming
classloader

transforming
classloader

transforming
classloader

Linux JVM

Windows JVM

OS X JVM

Solaris JVM

Java
compiler
JAR
reader

—Q

E
| \
Java
o Java class
application libraries
sources

NETWORK

Figure 1.1.: The RuggedJ System Architecture

should be partitioned, and makes dynamic decisions abtmdadion, migration and so
forth.

Each node in the RuggedJ system comprises two major comonanbytecode-
rewriting class loader, and a run-time library. Classeséddaidto the JVM are first pro-
cessed by our class loader to inject distribution logic. SEheewritten classes then in-
teract with the run-time library on their local node. The+time library itself manages
the higher-level aspects of distribution. Among other fiorts, it tracks remote objects,
handles threading and locking, maintains static data anddamates remote method invo-
cations. The run-time libraries of each node within the Raggeetwork interact with one
another to coordinate global data, monitor the state of éteark and propagate dynamic
object information.

One node in the RuggedJ network is designated akehd node This node performs
some globally unique tasks in addition to its responsibgias a standard node. For exam-
ple, it invokes therai n method that launches the application, it acts as a cancsucate
for network information (such as the locations of shareecisj)), and it maintains a termi-
nal connection for the standard input, output and erroaste The head node is specified

as part of the network configuration. The remaining nodesraatically organize them-

Original Transformed Application
Application

Interface X

b i

--= . Pt
| Class X$local I | Class X$proxy I | Class X$stub I

Figure 1.2.: The RuggedJ object model

selves into a tree hierarchy (with the head node at the raliyying efficient broadcasting

of data and a simple lookup mechanism for network state.

1.2.3 Class Transformation

Key to distribution of applications within RuggedJ is the diyade transformation li-
brary. RuggedJ transforms the classes that make up an applit@implement its object
model [McGachey et al., 2009a], as shown in Figure 1.2. E&dsdrom the original ap-
plication spawns creation of three new classes and ondan&rThe interface represents
the class’protocol the original method names and signatures, and additi@téeg meth-
ods for every field in the class. Object references within Ragdaare typed exclusively by
interface; abstracting out the protocol allows the corciplementation of a class to vary
without altering client code that refers to instances ofdiass. We rewrite method bodies
within the class to refer to transformed objects, includiadirecting method and field ac-
cesses through interfaces, modifying the types of objecéstount for the object model,
and so on.

The three classes | ocal , X_st ub andX_pr oxy provide these concrete implementa-
tions. Alocal object contains the fields and method implementations obtlggnal class;
it can be thought of as the canonical representation of tfexblocal objects haveh: 1
relationship with objects in the original application, sdyoone local object exists in the
RuggedJ system for every object in the original applicatidre second class, tlsul im-

plements the interface by providing remote method callbédacal object. Stubs have an

n : 1 relationship to local objects. Each node in the networkl(ekog the node that con-
tains the local object) may have up to one stub per objectarotiginal application. This
way, any node can refer to any remote object in the systenallfzitheproxyobject allows
objects to migrate. Should an object be migratable (seed®eti2.3), a proxy object will
be allocated as well as the appropriate local or stub. Theydrolds a single reference to
the local or stub object, and all references to that objess$ plarough the proxy. This way
if an object should migrate it is necessary only to updatedference within the proxy to
refer to the new implementation. Since the majority of otgexdithin an application never
migrate, and we allocate proxies only for those thaymigrate at some point, the majority
of accesses do not incur this indirection.

Additionally, we extract the static parts of the originapéipation from their rewritten
counterparts. Static data is be unique within the systediviohual nodes must not maintain
their own, possibly inconsistent, versions of static stale this end we create static
singletonobject for each class that contains static data. Theseesorg are managed by
the run-time library, and are guaranteed to be globally wmid/Ve discuss this further in
Section 4.3.3.

The second aspect of class rewriting involves copying aasforming the contents
of the original class to the new local class. All object refezes must be re-typed to refer
to rewritten interfaces rather than to the original class&dditionally, field accesses are
transformed to call get and set methods on the interfaceerahan directly reading and
writing fields. Finally, the method bodies are modified td cait to the run-time library
to perform any additional functions required for distribat These transformations are
discussed in depth in Section B.3.

When the RuggedJ class loader has rewritten a class, it pseselytthe transformed
version for loading into the Java VM. The VM never sees thgioal class, which elimi-

nates the possibility of conflicts between modified and urifrexticlasses.

1.2.4 Run-Time Infrastructure

The second component of a RuggedJ node is the run-time infcaste. The run-time
provides library functionality to rewritten bytecode, asaesponsible for coordinating the
activities of each node’s rewritten classes to executegpbaation as a whole. The various
functions of the run-time are performed per-node, minimgzhe network traffic generated
by the system itself.

The first task of the run-time library is to simplify rewrittdytecode. Some function-
ality is best hidden behind an abstract API, avoiding thelneeyenerate complicated and
implementation-specific bytecode sequences inlined mmsfcamed application code. As
an example, our messaging system relies upon Java’s TCRtsoklanaging these sockets
within rewritten bytecode would be a complex and error-prtask. Rather we present a
simple interface to the run time library, and so can implenhtea socket interactions as
Java source. Additionally, abstracting communicationkasuty functionality made it sim-
ple for us to change the underlying networking infrastruetiiom an MPI library to Java
sockets when we determined that communication was a bettke(see Section 4.1.2).

The run-time library is also responsible for tracking reenabjects. As we will describe
in Section 4.2.1, shared objects in RuggedJ are tracked lyemientifiers JIDs). Each
node must track those shared objects to which it has a referas well as the node upon
which that object is located. This ensures that we do notergaurious stubs, and allows
us to connect a stub to the correct remote implementatiomlitiddally, RuggedJ allows
objects to migrate to maximize data locality. The run-tinteedry coordinates migration,
moving objects from node to node and updating referencdsmiroxies. It also coordi-
nates with other nodes to ensure that all references go tmtinect node. RuggedJ allows
for replication of immutable state (discussed in Secti@?). The run-time library fetches
immutable content on demand when required by the local na@eates local replicas of
such state, and ensures that each immutable object is eepeedy a single local replica.

Finally, each node’s run-time library coordinates withresponding libraries through-

out the network to perform globally synchronized actiomsdisseminate network state

10

information and to cache RuggedJ’s metadata in order to nerimetwork traffic. For

example, RuggedJ maintains static singletons for thoseadasith static data. These sin-
gletons are created as required on the first node that reférsin, spreading the singletons
across the network to minimize bottlenecks and improvelilyca he creation of a static

singleton requires coordination between run-time lilesutio ensure that the singleton is
globally unique. Once the singleton is created, its locaisopropagated through the net-
work using the tree-based communication hierarchy, andasrded on each node. This

reduces communication with the head node when each nodeesfiess to the singleton.

1.2.5 Partitioning

In order to distribute an application across a RuggedJ n&twee must determine
which objects are to be allocated upon which nodes. We refti$ process agartition-
ing the application. RuggedJ provides a partitioning intertacehich developers provide
an application-specific policy. We believe that the appitccadeveloper is in the best po-
sition to provide an optimal partitioning, guided by the muttof our whole-program static
analysis.

Application developers provide a partitioning plug-ingsdaghat extends RuggedJ’s ab-
stractParti ti oni ng class. Each node has its own instance of the partitioningypall-
lowing most decisions to be made locally and so reducing estwommunication. The
partitioning policy has access to the local node’s run-titmery, allowing it to make de-
cisions based on the dynamic state of the network. Additigraartitioning policies have
access to RuggedJ’s communication infrastructure, allpwmessages to be passed be-
tween instances of the policy.

We will discuss the interface to, and capabilities of, thetipaning system in Sec-
tion/4.4, and cover some of the strategies that we employ wlegaloping a partitioning
policy in Section 5.2. We generally find that simple policpform well: we identify
the root of a distribution unit (typically thBunnabl e object that encapsulates the work

of a single thread) and allocate instances of this class moteenodes. By default, any

11

subsequent allocations are performed locally, so objetdsed to that distribution unit are
automatically placed on the same node. We determine thesngaten which to allocate
distributable units by their capacity (the number of coneslable to the node, determined
by introspecting at run-time) and by the load level of thenwek (the ratio of the number
of distributable units to the total capacity of the networkiie majority of policies that we
have developed for the benchmarks discussed in SectioreSe8deen expressed in a few

dozen lines of Java.

1.2.6 Summary

Developing applications that perform well on RuggedJ resgulittle programmer ef-
fort beyond that needed to develop single-machine horadlyrscaling applications (as
we discuss in Chapter 5). However, the RuggedJ frameworksosiignificant benefit to

application developers over manual distribution:

Standard Java. Applications that target RuggedJ are written in standard,J&ith no ad-
ditional libraries, language features or annotations. dbmers do not need to learn
new syntax, and applications are not tied to one specifiastifucture. Additionally,
legacy code (such as scientific computation packages) #ra mot written with dis-

tribution in mind can be integrated into distributed apations without modification.

Deployment on arbitrary networks. RuggedJ applications are not tied to a specific net-
work configuration. Our partitioning system allows devegpto write dynamic par-

titioning strategies that adapt their application’s gemting to the current network.

Caching and migration. RuggedJ automatically caches immutable data and allow$-deve
opers to specify object migration through the partitiongaicy. Hand-coding such
behavior would be tedious and error-prone, and is unlikelyroduce the same level

of performance.

12

Object tracking. Developers need not implement the mechanics of objectitocatan-
agement such as looking up the location of objects, maimigitheir sources and

destinations during migration, and customizing code foal@r remote objects.

Simple remote invocation. Remote method invocations in RuggedJ are transparent to the
developer. Applications are not explicitly aware of theeajlocations, and so do
not need to handle calls to remote objects. This is partilyuleseful in the presence
of migration; developers need not determine at run-timetkdrean object is local or

remote at a given point in the program.

Immutability control. Partitioning policies give developers the ability to labklsses as
functionally immutable. Instances of such classes may aeastdtically determinable
as immutable (they may contain non-final fields that are medliiutside the con-
structor), but the developer knows that they will never bediied after an initial

set-up phase. This allows the developer to control reptinahore precisely.

Finally, applications developed for RuggedJ can make useatlard tool chains and
development methodologies. Since RuggedJ operates onlg thieeapplication is de-

ployed, programmers can use any Java development and deguggls.

1.3 Contributions

While the concept of transparent distribution is not in fteglvel, our approach to the
problem differs in several key ways from previous work (aswilédiscuss in Section [2).

This dissertation presents several main contributions:

Novel infrastructure. We present a user-level infrastructure that transpareimlyibutes
large Java applications running on standard JVMs. Thisaditht transparent Java
distribution system that dynamically adapts to arbitragywork configurations, us-

ing a programmer-defined partitioning strategy rather #natatic partitioning.

13

Object model. Our object model allows virtualized access to the objectsudphout a sys-
tem, enabling us to interpose arbitrary code that taileedunctionality of the appli-

cation executing on that system.

Whole-program transformation. We enumerate the major barriers to transforming appli-
cations, specifically the presence of native code and sytdbeany code that cannot
be rewritten. We offer transformation templates that akbowh classes to conform to
our object model, and discuss of how transformed classestanoperate with un-
modified code. We have developed a classification algoritrahdetermines which

source classes should be transformed in which ways.

Run-time mechanisms.We demonstrate how immutable data can safely be replicated i
a distributed system, and how objects can be migrated aokienlaransparently to

the developer.

Distributed semantics. We maintain Java’s original semantics in the face of digtrdn,
including an elegant remote monitor implementation, aesysto maintain global

uniqueness for static data and an infrastructure for magagiceptions.

Partitioning interface. We describe the interface to our partitioning system thaggde-
velopers the flexibility to take full advantage of the Ruggeddastructure. Our
partitioning framework is designed so that plug-ins cantieresively tailored to the
individual application, while simple policies can be implented in a few lines of

code.

Application properties. We characterize the propertiesétributableapplications, indi-
cating classes of applications that will perform well whéstributed and the design
features that can lead to poor performance. We discuss iaptions that improve
distributed performance, both in the general case and wérgeting RuggedJ in

particular.

Performance study. We demonstrate scalability for realistic benchmark apions on a

large-scale cluster of 48 cores over 3 machines.

14

2 BACKGROUND

RuggedJ draws inspiration from a number of prior systemstthat explored Java distri-
bution. In this chapter we will survey the major systems thathave learned from, and

discuss some alternative strategies to distribution.

2.1 Transparent Distribution

Transparent distribution (distributing an applicatiorthwiittle or no input from the
original developer) is a promising approach to developisgithuted applications. Several
systems have implemented transparent distribution fax irethe past, developing some of

the techniques that we have used in RuggedJ.

2.1.1 J-Orchestra

J-Orchestra [Tilevich and Smaragdakis, 2002, 2009] issparent Java distribution
system that formed part of the inspiration for RuggedJ. lIdd€&eOrchestra influenced
many of RuggedJ’s early design decisions. However, J-Onadi®gundamental goal is
different from RuggedJ’s: We distribute applications dyreatly across arbitrary network
configurations, while J-Orchestra aims for “resource-@hidistribution,” where one shares
an application between a small, fixed set of machines witlciBpeapabilities. For ex-
ample, a transformed system may perform calculations orck-bad server, while dis-
playing its user interface on a PDA. The design of each systdlacts these differing
objectives. J-Orchestra uses a static design to execut dlient-server applications or
for rapid prototyping [Liogkas et al., 2004]. The overalbdm of J-Orchestra fits well for
the applications that they target, which generally consiistlient/server communication

or applications with a Ul running on a separate host than thie processing work [Tile-

15

vich et al., 2005]. The primary goal is to take advantagepetsic resources on different
machines, rather than to distribute a large processinggaisa multiple back-ends.

The RuggedJ object model is partly derived from J-Orchestné&h relies upon a sim-
ilar if somewhat more simple model. Classes within J-Orahesate determined by the
user to beanchoredor mobile[Tilevich and Smaragdakis, 2002]; mobile classes are those
that can be remotely referenced or can migrate, while aechdasses must remain fixed
on a single machine. Mobile classes are replaced by rewpttexy classes that allow for
local or remote access, and any direct data accesses ¢gettthsetting fields) are redi-
rected through accessor methods. These proxies providathe location-hiding function
as our interfaces. A proxy instance can refer to either al locéo a remote object, re-
quiring no special modifications when referring to such otsie The proxy class assumes
the original name of the class, meaning that it cannot bee@lidhen an object must be
remotely-referenceable but does not migrate (an optimizdahat has proven effective in
RuggedJ). J-Orchestra handles unmodifiable (system) codedpping. It creates proxy
classes that encapsulate a reference to an associateoh ©yags which can then be re-
ferred to by rewritten code [Tilevich and Smaragdakis, 300®is approach is the same
as ourWrappingsystem code template (discussed in Section 3.4); we fowtdutapping
and unwrapping incurred a performance overhead, and sdéogeekadditional techniques
to handle system code.

J-Orchestra partitions applications at the class levstamces of anchored classes are
always allocated on the same machine. This simplifies thecolpodel, since they can
predict ahead of time which references will be local and Wwhigll be remote (classes
can beco-anchoredo ensure that all their references are local). Howeverrttgans that
instances of anchored classes cannot exist on multiple imes;Himiting the partitioning
strategies available to developers. J-Orchestra’s riegritystem is static and performed
offline before the application is deployed. Each class isriteam as Java source code
according to its designation (anchored or mobile), conapitebytecode and delivered in
a per-sitg ar file to each machine in the cluster. This collection of clasgpresents the

transformed version of the application appropriate to tlwate, which runs it as a regular

16

application. This strategy works well for J-Orchestra;eitnoves the need for load-time
rewriting, and their fixed-network partitioning does noftfeufor the lack of dynamism. In
contrast, RuggedJ’s dynamic partitioning system allowsms&ance decisions, allowing us
to allocate instances of a given class on arbitrary noddsmiihe network. Not only does
this let us take advantage of current network conditions¢hanot be predicted ahead of
time, but it also allows us to perform load-balancing byrdisiting key objects of a given
class across the network.

J-Orchestra uses a run-time infrastructure that perfoimgas functions to that of
RuggedJ. A large part of the run-time’s functionality is ¢regiremote objects. J-Orchestra
uses an RMI-based distributed object factory that runs on eade and reflectively creates
instances of mobile objects. This differs from RuggedJ'€obg¢reation approach where
the majority of instances are created locally using Javaisdarchew operation, with only
those few objects that are explicitly determined to needotenallocation incurring the
expense of reflective creation. The run-time also contaippart for threading and syn-
chronization. J-Orchestra uses RMI for remote executiod, ssmcannot implement the
thread affinity-based synchronization approach that weudisin Section 4.3. Instead they
implement a separate run-time library that mimics the astiof monitors, extending RMI
calls to include a global thread equivilance class idemttfiat determines which thread
should acquire any monitors during a method’s executioreyThund this mechanism to
incur an overhead of 5.5-12% [Tilevich and Smaragdakis4R00

The J-Orchestra run-time system does not manage exceatiihg, rather allowing
the user to supply custom error recovery blocks within thexyr This approach offers
more flexibility than the automatic exception handling thatdescribe in Section 4.3 but
lessens the transparency of the system. The run-time a¢soroha intercept the majority of
reflective calls. While the system designers argue that idtyect support of reflection is
possible using a mechanism similar to that discussed ind®e4t3.2, they do not expand
on the claim; itis unclear how they would handle such isssesftective access to wrapped

objects.

17

2.1.2 Terracotta

Terracotta [Terracotta Inc.] is an open-source JVM-lelgdtering system. It has sev-
eral similarities to RuggedJ, requiring no specific API fovelepers to implement, and
using bytecode-rewriting to allow mostly-transparentribsition. Terracotta also targets a
similar class of applications to RuggedJ: where J-Orchessoptimized for applications
that distribute across small, fixed networks, Terracotigets large distributable applica-
tions that can run on large clusters. However, the Terra@yproach differs from that of
RuggedJ in several key aspects.

Users define Terracotta’s shared object graph as a closwbj@éts reachable from
distributionroots All objects that can be reached from these roots are comside be
shared. By contrast, RuggedJ considers all objects to bet@mdtgnemotely-referencable,
and so does not distinguish between shared and non-shgestisolTerracotta root objects
have different semantics from regular Java objects: theevaf a root field may not be
changed, as doing so would affect the shared object grapjectBlyeachable from a root
are referred to aslustered Such objects have a cluster-wide identifier and so can be re-
motely referenced. Terracotta also uses this shared goapefsistence; clustered objects
can be persisted without additional specification.

The Terracotta run-time system uses a client-server appibat differs strongly from
that of J-Orchestra or RuggedJ. A central server (which cadidigbuted to reduce the
bottleneck that it presents) manages all clustered ob{#tas are located on this central
server) as well as global activities such as locking. Teftaaises a transaction mechanism
to perform work on the client systems. A remote thread locktuatered object on the
server, starting a transaction. Any necessary data iscegpltl on the client node, which
performs local work on the safely-locked object. Once tlamgaction is complete, the
client releases the lock and updates the cannonical oljeitteoserver, which propogates
the changes to any remote replicas. This transactionahttdierver approach differs from
RuggedJ’s peer-to-peer system, where cannonical versiofgazts are spread throughout

the system.

18
2.1.3 Addistant

Addistant [Tatsubori et al., 2001] enables the distributyd “legacy” Java applications
(the developers define legacy as any Java software writtioutidistribution). The system
makes use of load-time bytecode rewriting using the Jasagsinsformation tool, and
provides a run-time system. It requires no modification &oJava VM. Developers specify
the locations of objects at the class level in a separateypble; the authors claim that it
is not realistic to individually specify where each objectdcated. The Addistant run-time
system has the interesting feature that it automaticaliyets rewritten source code to the
respective nodes, simplifying application deployment.

The major contribution of the Addistant system is its objacidel. Like RuggedJ, Ad-
distant uses proxies to forward remote references to theopppte objects. They develop
a classification that allows system code to integrate indtriduted applications, based on
two properties. Modifiability refers to the capacity of their tool to rewrite bytecode; we
discuss a similar concept in the differentiation betweesr aad system codéleterogene-
ity refers to the references that a class holds; a heterogenkmsscan refer to both local
and remote objects. Based on these two criteria, they definafiproaches to developing
proxies. TheReplaceapproach is usable when a class is modifiable and non-he&ogs.

It assigns the class to one node and generates a proxy wigathe name on all remote
nodes. Th&kenamapproach is used when the class is unmodifiable, but is eeféoronly

by modifiable classes. In this case the system creates a pritixya different name, and
rewrites all references to point to this proxy. Thebclasapproach allows heterogeneity:
the proxy is a subclass of the base class. References poiatihg base class can instead
refer to the proxy. Finally th€opyapproach is used for primitive and immutable objects,
with replicas passed around the network.

Addistant takes the same approach to object equality as Rdgegeguality is guaranteed
by ensuring that exactly one proxy object per host refersmiog@ven master object. It
also uses a similar thread affinity system to RuggedJ, ergsthrat callbacks from remote

methods are handled by the same thread.

19

2.1.4 AIDE

The AIDE system [Messer et al., 2002] proposes “offloadingiork from low-power
computational devices such as PDAs. Monolithic applicegiare transparently distributed
to make use of available remote resources. AIDE is impleatkeint Java using a modified
version of HP’s Chai virtual machine. It uses a class-levelifi@ning system where all
instances of a given class are colocated. The partitiosidgtermined at run-time through
VM instrumentation; a weighted execution graph is built upni instrumentation data.
A graph partitioning is computed at periodic or resourcseeatrigger points. Lightly-
connected components are considered candidates for afftpadhile strongly-connected
components have frequent interactions and so should beatelh

AIDE bypasses some of the rewriting issues that RuggedJ bgcesreasing the func-
tion of the head node. All native methods are executed onrtgmal JVM, and while static
functions can be executed anywhere, static data remaimeanriginal VM. This simplifies
the implementation of static data, but could cause a beitlert the original, presumably
low-power, VM. This overhead is difficult to determine; wdédn implementation of AIDE

was built, the authors report numbers from an emulator.

2.2 Java Distributed Shared Memory

Distributed Shared Memory (DSM) systems use a cluster ofifiedd)ava VMs to im-
plement a single shared-memory image. While this does netttiircompare to RuggedJ’s
transparent distribution approach (as it involves VM maaifion), such systems can run
similar applications in a distributed manner.

A number of Java DSM systems use the Homebased Lazy Releasist€nag model
(HLRC) [Iftode, 1998, Samanta et al., 1998]. HLRC is a page-tagtual memory con-
sistency model that assigns a “home” node to each shared pagemputes difference
maps (liffs) for each dirty page at the end of a specified interval (sudfuaisig a release

operation) which are immediately applied to all other vamsiof the page. This model al-

20

lows Java VMs to cache local updates while ensuring that mgmaonsistent at defined
points.

Java/DSM [Yu and Cox, 1997] was the first distributed sharecharg implementation
for Java. It was built on top of the Treadmarks system [Kalehal., 1994], a DSM im-
plementation that uses a a homeless LRC protocol to providar@d memory abstraction
for Unix applications. The Java/DSM heap is allocated inTireadmarks shared memory
area. Data is shared per-page, and types are modified toradootnardware differences
such as endianness. MultiJav [Chen and Allan, 1998] is maldié&a VM that implements
a Java DSM. MultiJav differs from Java/DSM in the unit of shgr sharing in MultiJav
is per-object, with synchronization performed by releesssistency. Shareable objects
are detected by the VM, with no programmer annotations sacgsand are referenced
through handles mapped to machine memories.

cJVM [Aridor et al., 1999, 2000] is a cluster-aware JavaattMachine implemen-
tation that uses an optimized object model to improve perémrce. A master object is
located at the node where an object was created. All othessiodhe cluster have proxies
that refer to the master. A proxy can have multiple impleragois, with the most efficient
chosen at class-load time. The cJVM object model supporecbland thread migration,
caching through replication and remote method invocation.

cJava [da Silva et al., 2003] is a Java DSM based on HLRC in wéach node executes
an instance of a modified VM. It runs unmodified multi-threcdigeograms in a distributed
manner with no additional programmer input. Each JVM corga Distributed Object
Manager that allocates objects and manages the globabtspece, an Event Manager
that controls communication between JVMs and a Thread Marthgt oversees synchro-
nization and thread creation. When running on multiple VMasytlbbserved sub-linear
speedup, which they attributed to a mismatch between the Hirir@el and Java’s lan-
guage semantics. The Cooperative Java Virtual Machine (C9JVdbosco, 2003, Lo-
bosco et al., 2005] is a similar Java DSM that uses the HLRC mddeises selective
diffing to update only those pages that contain dirty Javaaibj and lazy home allocation

to minimize bottlenecks.

21

2.3 Language-Based Distribution

RuggedJ distributes Java applications, maintaining theas@os of the original lan-
guage in a distributed context. This approach has its adgast developers are largely
familiar with Java, and efficient implementations of theal&irtual Machine are widely
available. However a different approach would be to desigrew language from the
ground up with distribution in mind. This would allow for eatflexibility in language
concepts than was available to us, and could greatly siynipliplementation by imposing
distribution concepts into the language, compiler andthome systems.

The Emerald programming language [Black et al., 1986, 20@pJements many of
the same concepts as Java. It is an object-oriented languagye data is encapsulated as
object state, including primitive data such as integersomdans. Classes implement ab-
stract types, similar to Java’s interfaces, and objectsima&g an optional process attribute
that allows them to execute code in a concurrent thread.k&/dlava, however, Emerald
contains direct support for distribution. Instances havegplicit location attribute and
unique name (similar to RuggedJ’s unique object identifigyai allow them to be tracked
across the network. Objects can be declared immutable yetvedoper, allowing them to
be replicated across multiple nodes, and objects can batadyfrom node to node.

Emerald’s object model presents an advance over earligibdited languages such as
Argus [Liskov et al., 1987] or Eden [Black, 1985] in that it gsesingle representation for
local and remote objects. Previous systems had requireédiévelopers implement two
versions of a given object if it was to be used in a local andatencontext. In Emerald
developers supply a single object specification that isstcamed by the compiler into one
of three representation$slobal objects are reachable from remote nodes;al objects
are colocated with another object, addect objects are inlined into an enclosing object.
Each implementation inherits from a common abstract typewang developers to refer
to them in a uniform manner.

While the Emerald object model makes locations transpanemngl invocations, de-

velopers can explicity obtain object location informatidach object implements several

22

operations: a developer céwcatean object (tracked by a run-time system that uses for-
warding references to resolve migrations, falling back tw@adcast system if the infor-
mation is unavailable [Jul et al., 1988Fix or Unfix an object (anchoring it to a particular
node), andviovean object from one node to another. Parameters to remoteothatto-
cations are generally passed by reference, with develgideso specify arguments to be
migrated to the invoking node.

X10 is a modern object-oriented distributed programmimgleage that was designed
to enable large, scalable applications to run across ctustdigh-end computers [Charles
et al., 2005]. X10 introduces the conceptméces an execution environment with a
finite number of threads and a bounded region of shared methatyis accessible with
uniform time to the local threads. Accesses to remote plasegperformed usinfutures
An asynchronous request is spawned by the local thread &amtsemmediately, with the
result of the access supplied later. This allows X10 to hateesof the latency of remote
data accesses. Computation is performed usatigitieswhich can execute synchronously
or as part of a future.

Synchronization in X10 is implemented usialgpcks A clock represents a global bar-
rier with which activities can register. Activities reanfithe end of a specific clock phase
must wait until all registered acivities hageiiescedby indicating that they are ready to
proceed. X10 clocks generalize the concept of barriers loyvalg a given activity to
synchronize on multiple clocks, while still guaranteeingls programs to be free of dead-
locks [Agarwal et al., 2007].

Fortress [Steele, 2006] is a high performance languaggmesito offer the same porta-
bility properties as Java. Fortress is designed to be higgulgllel, with language constructs
that make parallelism the natural mode of development. iplalbperands to an operator,
or expressions within a tuple, can be executed in paralieguany resources available.
Fortress uses a work-stealing technique first develope@ifer[Blumofe et al., 1995] to
distribute work between idle threads; expressions to béueted are placed on a work

gueue from which other threads may scavenge work when idigrdss was designed to

23

eventually execute across clusters of nodes, but thattiners not currently being pur-

sued.

2.4 Other Java Distribution Systems

There have been a number of different approaches takenttddisg Java applica-
tions, with varying degrees of transparency to the develope provide here a summary
of the major systems.

The standard mechanism for distributed computation wiflava is Remote Method
Invocation (RMI) [Sun Microsystems, Inc., a]. Java RMI praesdan API that allows
programmers to create and manipulate remote objects lgir€2iasses that may be used
remotely implementemote interfaceshat define the operations that can be performed
by remote clients. Remote objects are represented by stabsotiward any accesses to
the original object. Java RMI makes distribution fully exjili developers must track the
locations of objects and must be aware of object locatiomvaesigning their applications.

JavaParty [Philippsen and Haumacher, 2000, PhilippseZanger, 1997] is a a source-
level transformation system that adds support for remojectdto Java. Classes in Java-
Party can be declared asnot e (using a newly-defined modifier) and so are visible and ac-
cessable from any other node in the network. The run-timesy$akes care of placement
and communication, and removes the need to register shajedtsy a remote object is
globally visible upon creation. JavaParty is implementetop of RMI as a pre-processing
step to a Java compiler. It transforms thewot e keyword into RMI stubs, providing a sim-
pler interface to Java distribution. JavaParty introdwsmseral features that were imple-
mented in J-Orchestra, and later in RuggedJ. It genera$aoes for shared classes with
different implementations for local and remote versioral$o separates the static parts of
classes into a new generated class that can be managed lyttime system. JavaParty
supports object migration for spatial locality.

Do! [Launay and Pazat, 1998a,b] transforms annotatedlpbiala programs into dis-

tributed Java programs. It uses a preprocessor to createlases, and a run-time system

24

that manages actual distribution, remote object creanadrsa forth. Original programs are
developed in terms afAsK objects that operate oveoLLECTI ON objects that represent the
application’s data. This explicit Single Intruction, Miple Data (SIMD) model ensures
that applications are distributable and provides readyibligion points.

Doorastha [Dahm, 2000a,b] is an extension of Java RMI thatvalfine-grained opti-
mization while preserving standard Java semantics. lvall per-object determination of
argument passing semantics, whether an object should beghby reference or by copy.
A given object can be passed using different semantics fatreift times, with passing by
reference the default. The system also supports objecttiogras an additional optimiza-
tion, allowing objects that are not explicitly passed asiargnts to move between nodes.
Annotations allow the developer to specify how much of areoty transitive closure is to
be copied. Doorastha is implemented using specially-ftisdacomments as annotations
that are read by a custom compiler. The system also includastam run-time layer that
exists on top of RMI.

Javal/l (pronounced “Java Parallel”) [Caromel and Vayssi1998, Caromel et al.,
1998] is a set of library classes that allow code to be exeooiesingle-processor, multi-
processor, or cluster machines. Java applications thatemeloped using these libraries
intantiate the appropriate version at run-time. Objecs dine set aactivethrough method
calls have proxies created on remote machines, and methsdatomatically redirected.
The Java/l system supports transparent futures, allowinijjpie outstanding calls that
hide network latencies. Java// uses an abstract concephod@to refer to partitioning
units; multiple nodes can represent machines in a clusteamibe colocated on a single
multiprocessor. This way partitioning choices are builbithe application whether it runs
in a distributed manner or not.

Javanaise [Hagimont and Louvegnies, 1998] is a librargettdava distribution system
that does not perform bytecode rewriting or rely on a modiflada VM. The developer
defines clusters of related classes, which are colocatednionire communication. Each
application class has a set of proxies that serve as an ewitri/tp the Javanaise run-time

system:pr oxy_i n (located on the same machine as the object)pandy_out (located on

25

remote machines). Proxies are provided by the developéingplement Javanaise marker
interfaces. The run-time system provides synchronizaimhcoherence between threads,
and communication between proxies.

Object Request Brokers (ORBs) are middleware systems that plograms to call
one another across a network. The ORB provides a standarficsgtgemantics that allow
systems running on different platforms and coded usingufit languages to interoperate.
The Common ORB Architecture (CORBA) [OMG, 1992] defines a stathd#erface and

set of features that are implemented by many ORBs.

2.5 Work Related to Key RuggedJ Features

There are several projects with goals other than distobuttiat use similar techniques
to those in RuggedJ. In this section we discuss such relatdd feausing on the similari-

ties and differences from our implementation in RuggedJ.

2.5.1 Object Model

Thelnfer Typerefactoring [Steimann, 2007] aims to increase the reusabil code by
typing fields as interfaces rather than as classes. Thetoefag takes an object reference
and generalizes it to the minimal interface that encapssilidéd protocol. By retyping field
references using this new interface, which is then implaeteiby the original referred
class, Infer Type allows references to be specified by thenmim set of operations re-
quired, reducing the effort needed to reimplement this tionality at a later time. A key
feature of the Infer Type refactoring is producing the miaiset of functionality required
of a reference; while RuggedJ generates interfaces for éashia the original application,
it does not modify their protocols.

Java introduced dynamic proxies as part of the standardisagegspecification’s reflec-
tive API version 1.3 [Sun Microsystems, Inc., b]. Such pesxallow developers to inter-
pose arbitrary code around method invocations by redirg@ccesses through proxy ob-

jects. Java’s dynamic proxy mechanism works only for fieyget as interfaces, severely

26

limiting the usefulness of such techniques. Uniform dyraproxies [Eugster, 2006] ad-
dresses this limitation by extending support to allow pesxior class-typed objects. This
is implemented using a series of bytecode transformatioaisgroduce a unified object
model, redirecting field accesses through accessor methods

The Automatic Test Factoring system [Saff et al., 2005] poes “mock” versions of
objects which return memoized results from a previous nr@agwun, allowing developers
to speed up the testing of individual application composeiteir system uses the same
interface technique that allows us to refer to proxy andllstabs transparently; in their
case the interfaces allow them to switch real classes wiin thock equivalents, determin-
ing which parts of an application are to be tested. The TedbFag system differs in the
way it handles system code. Rather than redirecting througppers or extending classes,
they directly rewrite the system library to include mockeatis. This is not feasible in our
system, due to the limitations of visibility between clasaders. Such rewrites are possi-
ble only if classes are not renamed, and any referencediébrare stored in the boot class

path.

2.5.2 Whole-Program Transformation

The issue of rewriting system code has been considered ipasie The Twin Class
Hierarchy (TCH) approach [Factor et al., 2004] copies raleggstem classes into a user-
level package, which can then be rewritten and referred t@Wyitten user code. Because
the original system classes remain unchanged, any instrtaen inserted into the rewrit-
ten versions can safely refer to system classes withouttaftethe statistics gathered or
causing an infinite loop. The TCH system does not allow regnigystem classes to in-
teract with the original classes, making it too limited far meeds. Additionally, the TCH
approach requires custom wrappers for all native methotls dpproach does not scale,
and could require that separate wrappers be written foereifft implementations of the

standard class libraries, compromising ease of deploymantheterogeneous Java VMs.

27

2.5.3 Application Partitioning

Pangaea [Spiegel, 2000, 2002, 1999] acts as an automditopang front-end to sev-
eral distribution systems (including Java RMI, JavaPartyRB@& and Doorastha). It func-
tions over distributable applications designed as a singlehine concurrent program, and
performs a guided static analysis to determine distrilougolicies. The developer pro-
vides a starting point to the analysis; boundary objectassegned to particular machines,
and used as the base for determining distributable unite.sTdtic analysis optimizes the
partitioning using whole-program knowledge, such as inability, dynamic scope and
phase behavior leading to object migration [Busch, 2001hgBeaa could conceivably be
used as a front-end to RuggedJ, generating a partitioningydmsed on its static analysis.
However RuggedJ’s partitioning interface allows for sigwafitly more flexible policies
than would be generated by Pangaea. For example, we cande&rtage of program-
mer knowledge to mark statically-mutable classes as fonatly immutable, and we allow
the developer to insert custom migration triggers to maz@iocality. Thus, a Pangaea-

generated partitioning policy would not take full advartad RuggedJ’s capabilities.

28

3 CLASS TRANSFORMATION

Class transformation is key to our distribution system.dtijgy distribution logic into reg-
ular Java code allows classes to interoperate with remgextsband with the RuggedJ
library without modifying the underlying Java virtual mac. We perform extensive
transformations on each of the classes that make up thenakigpplication: we gener-
ate an interface that encapsulates the protocol of the alagghree implementations of
this interface to represent local, remote and migratabjeatdd Additionally, for classes
with static data we create a static singleton that represbist content, generating a further
interface and three classes. Finally, we rewrite the castehthe original classes to be
aware of these new classes and to work within a distributesiement.

We define an additional two goals in the transformation pgecé€&irst, we aim to keep
the rewritten bytecode as simple as possible. This stems tine practical difficulties in-
herent to debugging bytecode; the simpler the rewritteadnde the more straightforward
the debugging process. Additionally, overly-verbose bgtle transformation sequences
are more likely to lead to complex interactions where geteerdytecode sequences are
accidentally modified by subsequent transformations. €bersd goal is to optimize trans-
formed code for local execution. This is a result of two comists: the vast majority
of object accesses in the distributed system should be & tdgjects, and the overhead
of remote invocations is such that optimizing bytecode wdlllittle to affect the overall
performance penalty in these cases.

We perform class transformation at the bytecode levelgsicustom Java class loader.
Bytecode transformation offers several advantages ovacedevel modification. We
transform our modified classes on-demand, without coraiiber of inter-class dependen-
cies. Modified Java source code would have to be compiled;iwhiould require that the
whole program was rewritten ahead of time; we take advantdgecremental transfor-

mation to optimize classes for their location in the netwoAdditionally, bytecode is a

29

significantly less complex representation of an applicatsince Java constructs and vari-
ables are collapsed to stack and register operations. Tdkesrthe transformation process
simpler, as there are fewer cases to handle.

There exist several strategies to rewrite bytecode. Aspeatted programming (AOP)
is a design methodology that aims to separate cross-cuttingerns from the main logic
of an application [Kiczales et al., 1997]. Aaspectis a transformation that is inserted at
specific, well-defined points in an original application@km aspointcutg, augmenting or
replacing the existing code. This way, aspects can be usedplement features such as
logging or error handling separately from the main appicatThe most commonly-used
implementation of AOP is AspectJ [Kiczales et al., 2001abich includes both a source-
level and bytecode-level aspect weaver that rewritesralgilasses. AOP suffers from a
lack of low-level control; aspects are specified in termdheftlasses that they modify, and
allow adviceto insert or modify code that corresponds to specific poistclihis matching
process makes it difficult to design general aspects th&inespecialized context-specific
rewrites on arbitrary classes. MetaAspectJ [Huang and &dakis, 2006] aims to remedy
this issue by providing an aspect-generating framework ¢ha create specific aspects
programatically. However, even with this additional to8QP is capable only of modifying
existing classes; it cannot be used to generate the neveslesguired by a system such as
RuggedJ.

A similar but more flexible, approach is that of Javassist p@hi2000, Chiba and
Nishizawa, 2003], where on specifies code transformatiorlava syntax, which is then
compiled with a custom compiler. This offers a lower-lewalerface to rewriting than
AOP. However, we found that its on-demand compilation agpinonade whole-program
modification difficult. Jinline [Tanter et al., 2002] is a a&d project that allows load-
time rewriting of bytecode. It provides a version of AOP a thytecode level, inlining a
specified method body at a given bytecode location. Jinlhogiges static and run-time
information to user-defined listeners, which are calledwever a matching bytecode se-
guence is encountered. JMangler [Austermann et al., Kingtssd., 2001] intercepts and

rewrites bytecode at load-time. Itis able to work with ukssel class-loaders by providing

30

a modified version of thel assLoader class. JMangler is currently limited to Java 1.4,
making it unsuitable for our needs. Barat [Bokowski and Spjei§®8] loads either byte-
code or Java source and builds a complete AST. It perform& rzamd type analysis on the
code, making the results available for use in other revgitipstems. While the analyses
provided by Barat would have been useful in developing Rugghdksystem is currently
limited to analyzing Java 1.1 class files.

Ultimately, we determined that ASM [Bruneton et al., 2002ports a good balance
of direct access to method bytecode while hiding awkwarditdetuch as management of
constant pools and the selection of instructions with leaded local variable slots. These
two abstractions vastly simplified the design of transfdroms and generated bytecode,
making ASM more useful to us than the similarly-featured BCBlalim, 2001]. Addi-
tionally, ASM supports the class file extensions specifiedawa 6, allowing us to make
use of the latest language features. As a result, we pertbtineevast majority of our trans-
formations using ASM, with some minor additional modificais performed by a custom
C library (see Sectian 3.4.2).

When transforming an application, we must account for Jagsesy code. A user-
level class loader cannot rewrite classes from the Javdatdtibraries, and so we cannot
transform them in the same way as we would any other code.clordance with our goal
of simple bytecode transformation, we use a combinatioroof tlifferent techniques to

handle library classes, removing the need for specialrtreat in rewritten bytecode:

Direct classes.We classify immutable and purely local objectdasect, and refer to them
without modification. Immutable direct objects can be regtied on each node in
the network, and so are never remotely referenced. This snibam they need not

implement the RuggedJ object model.

Promotable classes.System classes that are not referred to by other systeneslasthin
an application are referred to &omotable Since all references to these classes
exist in rewritable code, we can create a copy of the systass¢hat we are free to

rewrite.

31

Extending classes.For many system classes we can generatéxendingset of classes
that implement the RuggedJ object model. This allows thecbbpebe referenced by

remote nodes in the same way as any other transformed class.

Wrapping classes.Finally, we can generaté&/rappingclasses that implement the object
model without extending the original system class. Thikmégue allows any system

class to be remotely referenced, at the cost of wrapping andapping overheads.

Classes in RuggedJ are transformed on demand, with a rewcitisg loader on each
node. This way we can transform classes differently on diffe nodes; if we know in
advance that a class will only ever be allocated upon a singtee we can rewrite all
accesses from that node as purely local, and all accessasaimg other node as purely
remote. In addition to the rewriting class loader, we alse aigava Virtual Machine Tool
Interface (JVMTI) agent to perform limited modificationsJava system code.

The remainder of this chapter is structured as follows: i8e@&.1 outlines some of the
terminology that we use when discussing bytecode transftiorm Section 3.2 outlines the
RuggedJ object model, while Section 3.3 discusses the ljge@writes that we use to
support the model. Section 3.4 discusses how we integraterayclasses into the RuggedJ
object model, and Section 3.5 describes the implicatioesdltlasses have on user code.

Finally, Section 3.6 gives some quantitative evaluationwfsystem code support.

3.1 Terminology

We use (and extend) various terms to characterize Javaes|ashich we now briefly

define.

3.1.1 System and User Classes

Figure/ 3.1 gives a simplified overview of class loading witbiur system. We split
classes into two setsystemanduser classes, depending on the class loader that defines

them. System classes are those in the Java standard léranié so are loaded by the

32

— 1_Java Virtual Machine |
R ——
User Classes S [dacapo.jython.Main | - :
L ystem po.Jyihon. vai spec.jbb.JBBmain
d oy Class Loader | pec oy, I |
lacapo.jar " N "
PO [org.eclipse.core.runtime.EclipseStarter | [net.sourceforge.pmd.PMD |
- _

I3

P S ystem Boundary

System Classes Bootstrap | java.util. HashMap | | sun.audio.AudioData |
rt.jar
Classes.jar

L .

Class Loader

| javax.swing.JPanel | | org.xml.sax.XMLReader |

Figure 3.1.: User and system classes

virtual machine’sbootstrapclass loader [Liang and Bracha, 1998]. User classes, prdduce
by the application developer, form the remainder of the iappbn and are loaded by the
user-definedystenctlass loader. This distinction is vital when consideringddime trans-
formation, as a user-level class loader can modify only diseises. We discuss Java’s class
loading mechanism, and its implications for our system,dant®n 3.4.1.

Within the Java VM itself we define th&ystem boundargs a logical distinction be-
tween the two sets of classes; user classes exist abovesteesipoundary, while system
classes exist below. This abstraction is convenient whesidering interaction between
rewritten user and non-rewritten system code. We can eratendre ways in which refer-
ences can cross the boundary, and so ensure that rewrifézanees are never passed to

system code.

3.1.2 Transformation

Figure 3.2 shows the implementationwfapping one of our approaches to handling
system classes within a transformed application. In Fi@u2¢a) we see one system and
one user class before applying any transformations. Fi§2é) shows the result of
wrapping each object. Clasyst enC assW apper contains a reference to the unmodi-
fied Syst end ass. Since the wrapper was not generated by the bootstrap clader it
exists above the system boundary, with the reference ag#dse boundary. In both cases,
we refer to the original classeyst en ass andUser d ass as thebaseclass, while the

two generated classes aveappers

33

—| Java Virtual Machine I—

| UserClass |

System Boundary

| SystemClass |

(a) Before transformation

I Java Virtual Machine I

| SystemClassWrapper | | UserClass |—0| UserClassWrapper

System Boundary

| SystemClass |

(b) After transformation

Figure 3.2.: Transforming classes

Additionally, within our system we refer t8yst enCl assW apper and User d ass-
W apper asnewtypes. They are generated at load-time by our rewritingsdi@ader, and
thus can implement our object model. In contragit end ass andUser O ass areold
types, as they come from the original application. Both sétypes are necessary; new
types implement the uniform object model that allows alksts to be referenced in the
same manner, while old types can be passed safely to systeatioe code that has not
been rewritten to be aware of the presence of generated Wéalenaintain a strict separa-
tion of the two sets of types. User code refers exclusivelyelw types, while system code

refers exclusively to old.

3.2 The RuggedJ Object Model

The ability to distribute an application in RuggedJ stemeiftbe uniform object model
that we apply to all objects. Figure 3.3 shows the transftionaf a single user classto
conform to the RuggedJ object model. We discuss here thetesarts of the transformed

class, and defer the static parts to Section 3.2.5.

34

Original Application Transformed Classes

[interface X |
R R

--" ~
- ~

- | S~

-

[class X_local | [class X_stub | [class X_proxy |
| class X |
[interface X_static |
class class class
X_static_stub X_static_proxy X_static_local

Figure 3.3.: The RuggedJ object model

3.2.1 Generated Classes

For each class within the original application we generated classes and one inter-
face. The generated interface encapsulates the protocol of the original ctask contains
the signatures of all the original instance methods, aloitly mew accessor methods for all
the original instance fields. It uses the same name as thearaass—this simplifies later
rewriting of classes that refer to the original classince we do not need to update type
names in method signatures, field definitions, or caststféneX is implemented by three
concrete representations of the original class. The firsiycal , contains rewritten imple-
mentations of the instance methods of the original class iphplementations of the new
field accessor methods. In the rewritten application, ataite ofxX_| ocal corresponds
to an instance of classfrom the original application: ar_| ocal object holds all the data
present in an old instance &f

The second implementing class is used to refer to remotarioes on other nodes:
X_st ub contains remotely forwarding implementations of all themoels of the new inter-
facex, which simply call the corresponding method on a remotercal instance. Within
a distributed application, the local and stub instances laav: n relation: any local object

can be remotely referred to and invoked by stubs frormthedes in the cluster.

35

The third (and final) new class ¥s proxy. A proxy encapsulates a reference to either
a local or stub instance, and its methods simply forwardallsdo the target local/stub.
Proxy indirection simplifies dynamic migration of instasde different nodes: a migrat-
able instance is referred to by proxy, so upon migration aeh& reference in the proxy
need be updated. Rewritten application code types all re¢eseto the three implementing
classes using interface However we can bypass the proxy instance for objects tleat ar
known not to migrate. As all three classes implement interfawe can use them inter-
changeably without modification to any calling code. In Rutjhee use programmer input
to determine how to partition an application across the agkw

All of the classes in an application can be adapted to imptertiee RuggedJ object
model. As we shall see, we use several techniques to gerlecalleclasses. However
each implementation strategy produces a class that implsrtiee corresponding interface,
allowing proxy and stub classes to interact with any styllecél class in the same manner.
As the designs of stubs and proxies do not vary between ingi&tion techniques, they
are so straightforward as to be uninteresting. We therdéangs our attention on the local

classes.

3.2.2 Referring to Transformed Objects

Within rewritten code, we exclusively refer to values witbngrated interfaces using
that interface. This allows us to vary the implementatidrtbese interfaces among several
alternatives (local, proxy, and stub classes) without ictipg code elsewhere in the system.

Additionally, we use interfaces as a means of maintainiegctass hierarchy from the
original application. While some of the transformations wesent in Section 3.4.3 do not
maintain the original relationship between their locatskes, we ensure that their generated
interfaces do. Thus, since we refer to such classes exelydiy interface, we can perform

subtype and instance checks correctly.

36

Original Application Transformed Classes
| class X | | inten‘zlce XV |8: IIITTTTT e [class X_proxy |
A el Tl A
! - | class X_stub |
: | Class X_local |
|
I
| class Y | [interfaceY |<+------ I class Y_local |
! T ~ < ---_
| | R
| | T~ -
| | ~~~-__ | classY_ stub |
[Interface A | [Interface A | [classY_proxy |

Figure 3.4.: Inheritance between transformed classes

3.2.3 Inheritance

As well as providing a mechanism by which we can referencergift versions of
a class uniformly, RuggedJ’s generated interfaces mainit&nnheritance relationships
between original classes. Figure |3.4 shows the relatiprisgtween transformed classes
(omitting static parts).

The original application’s inheritance relationship beém subclasgof classx appears
as the transformed interfageextending interfac&. Since rewritten code refers to objects
exclusively by interface, this allows one to use any objéet implementsr when the
original code required an instance xf Similarly, CheckCast oOr I nst anceO operations
operate over interfaces, and produce the same resultssfdraned code as in the original
application.

Each transformed class | ocal , Y_stub andY_proxy extends the equivalent part of
classx. This is not necessary to preserve the inheritance rekttipa of the original ap-
plication. Other than when allocating instances, rewrittede never refers to these in-
dividual classes. Rather, this subclassing works to sijmphié implementation of these

classes. Without it, each class would have to contain thdsfeehd implementations for ev-

37

Original Transformed Application

Application | Interface gen.Array_of_S_1 |<1— ———————————— | Class gen.Array_of S_1_proxy

S Z:P = S~ i TCIass gen.Array_of_S_1_stub

| | Class gen.Array_of_S_1_local |
T | Interface gen.lArray_of?kl- ———————————— | Class gen.Array_of_T_1_proxy
AU A -<
\\\\\ | Class gen.Array_of_T_1_stub
Class gen.Array_of T_1_local

Figure 3.5.: Generated array types

ery method of the superclasses of its unmodified versionghwvould lead to duplication
of code and overly-complex classes.

We do not transform interfaces from the original applicat{cm general - see Sec-
tion'3.4.3 for some exceptions) as they have no state thabeagmotely accessed. How-
ever we must capture the relationship between a class thpéments an interface; we
do this by extending the original interface in the generameerface. This maintains the
inheritance structure through generated interfaces irstime way that we do for class

inheritance.

3.2.4 Arrays

We convert array types to new array classes, which allow uefer to them as we
do any other transformed class. The new array classes coritothe RuggedJ object
model; we generate an interface, local class, stub classpenxy for each, as shown in
Figure 3.5. A one-dimensional array typig is represented by an interfacer ay_of _T_1,
while a two-dimensional array typg][] is represented byt ray_of _T_2. An array type
comprises both an element type and the number of dimensfdhe array, so we encode
both of these properties in the name of the new array typea. difines subtyping among

array types having the same dimensions only if the elem@estgre subtypes. We capture

38

Original

Transformed Application

Application | Interface gen.Array_of_Uﬁ Interface gen.Array_of_U_1] |
? | CNI;s;gen.Array_of_U_2_IooaI
I
| Interface gen.Array_of_V_2 |
i i | C]e:s; gen.Array_of_V_2_Ioti‘
o

| Interface gen.Array_of |_2 | | Interface gen.Array_of_V_1 1] |

Vil

Figure 3.6.: Multi-dimensional arrays with interfaces

this by making any generated array class for a subtype Hirextend the generated array
class for its supertype (both having the same dimensions).

We implement arrays using wrapping: the generated arrag alaiaps a regular Java
array having the same component type as the wrapping arasag.clThe implementation
also provides methods to obtain the arrayigt h and to perform the standard operations
that arrays inherit frontbj ect , such agl one.

Figure 3.6 expands on the handling of arrays, showing thesekgenerated for a two-
dimensional array typ®[][] whose element typg extendsu and also implements an
interfacel . We omit the new stub and proxy classes for clarity. This gdarhighlights
some interesting features of our generated classes.

Looking at the wrapped array within the local class, we sagettie component type of
the wrapped array is the same as that of the wrapper, withemsadimension. This mirrors
the Java definition of arrays as a single dimension of compusne/here each component
can be a sub-array. A useful consequence of this approatiatisve do not place re-
strictions on the implementations of the components of thegpped array, so long as they
implement the appropriate interface. Thus, in RuggedJastdys can be distributed across
different nodes, regardless of the location of their ennbparray.

Figure 3.6 also illustrates that the old subtyping relatfops between array elements

and interfaces must also be represented in the new types. [fdssing array instances as

39

Original Transformed Application

App"catlon | Interface X_static I

- ~

e,
| Class X_static_local I | Class X_static_proxy I | Class X_static_stub I

Figure 3.7.: Handling static data for distribution

arguments it is necessary farray_of _V_2 to implementarray_of _I _2. If an original
method signature expects an array argument whose elemgpiesment a given interface
I, then in the rewritten new method we will expect an argumbat implements some
interfaceArray_of _I _n (for some dimensiom), so capturing the proper type constraint.
Within that new method alhALoad operations are rewritten agt invocations on the
argument. The type constraint ensures that any argumesegas the new method will

have an appropriatget method to return a value implementing

3.2.5 Static Data

A class’s static state presents a complication in a didtbaetting, since an application
must see just one version of the static state. Simply rewgritiass fields as static fields in
the transformed application will result in each node hawrsgparate loaded class with that
field, whose states will not be coherent across the nodesp@each this issue through the
use ofstatic singletonsWe extract the static parts of each class to form a singtaricg,
which we handle as any other object within the system. Thamte state of this singleton
object represents the static state of the original clagkcan be accessed from any node.

Since static singletons are required only to maintain a c@abversion of static data,
we do not need to create a singleton for a class that has nofstéts. Our analysis shows
that static singletons are required in only 18% of classéisarapplications we studied.

Static singletons implement the RuggedJ object model asrshoiigure 3.7. Interface

X_st ati c complements the instance interfaget contains the static members of original

40

classx. We transform the static members of the original class instaince members of
X_static_| ocal, and use the RuggedJ run-time library to ensure that only mstance
of that class is ever created. Thus, simply rewriting allist@vocations to use the static
singleton ensures that the static data is indeed unique.

The stub clasg_st ati c_st ub performs the same remote access function as its instance
counterpart. The final class in Figure 3X7st ati c_pr oxy, acts as a per-node cache for
the appropriate static local/stub object, and is nevearirigited. Accesses to static data
in the original application (such as via thevokest ati ¢ bytecode) are handled by the
virtual machine, resolving the class name to access theoppate data. In our rewritten
version, however, we need a static singleton object uponiwioiinvoke methods. Obtain-
ing this reference through the library would be an expensperation, requiring a hash
table lookup for every static access. Instead we store fleearece as a static field in the

X_stati c_proxy class, which can be obtained through a regular static fieldssc

3.2.6 Hand-Coded Classes

A final, small, subset of classes within RuggedJ are handemrdand loaded unmodi-
fied into the Java VM. These are classes that require spexiBtomized implementations
within the RuggedJ network. For exampjeya. | ang. Syst emcontains several methods
for which we define special semantics: we must redirect &remces t®syst em out to
the head node, rather than to the local machine. Since parfgrsuch one-off transforma-
tions would be laborious and would complicate the trans&irom framework, we prefer

instead simply to load a hand-coded version of these classes

3.3 Method and Field Transformations

The implementation for most of the generated classes wiRiggedJ follow simple
templates: the stub and proxy classes each implement ewthodhof the interface, with
a standard bytecode sequence that performs a remote matloma@tion in the case of the

stub, or forwards the method call to a referent in the cas@@ptoxy. We optimize the

41

stub in some cases to cache immutable values, as we willsfisouSection 4.2.2. The
remaining classe, | ocal andX_static_I ocal contain methods and fields copied from
the original class. We rewrite the bodies of all copied mdthto refer to the RuggedJ

object model. This involves several rewrites:

Refer to new types. The first modification that we perform is to update copied roéth
bodies (as well as copied fields) to refer to new types. In roases this does not
require a change. We type values by interface, and haverdgssigur object model
to re-use the original class’ name as the interface name. eMenvthere are some
cases where we must update type names. As we will see in B&8ctipwe generate
user-level equivalents for some system classes. In rewritbde we refer exclusively
to these user-level types, and so we update any referencepied code. We also
generate wrapper classes for arrays that make them condotine tRuggedJ object

model. We similarly update references to arrays to cormesgpo these new types.

Call get and set methods.We generate get and set methods for the fields of each trans-
formed class, allowing us to hide the location of these fidlekind the interface.
We rewrite the bytecode in copied method bodies to call thesthods rather than
directly access fields throughut Fi el d andGet Fi el d instructions. When calling
these methods we take into account the different semantissperclass methods
and fields: methods override, while fields hide. Aveaimplementation could ac-
cess the wrong field if a subclass had a field of the same namgypadWe avoid

this by naming get and set methods with both the field nametendantaining class.

Update method invocations. Since we type references by interface, we update method in-
vocations from nvokeVi rt ual tol nvokel nt er f ace. The state of the stack required
for these bytecodes is identical, so we need only changepiieand. The exception
to this rewrite is where we have declared a class to be Diseet $ection 3.4.3), and

so do not indirect through an interface.

Convert array operations. Array operations pose some difficulty when rewriting. Ualik

field instructions (such aset Fi el d), array instructions (such a#Load) do not en-

42

code the type of the array being operated upon (beyond whiettmntains objects or
primitives). The type of an object array’s contents are mhetged at run-time based
upon the contents of the stack, and so are not available tches we rewrite the
class. Since we wrap arrays we need to know the type of thewrbimt order to call
the correct get or set method. We determine this informahoough a simple data
flow analysis that tracks the array type from its declaratMMe use the same mech-
anism to converirrayLengt h bytecodes to a method invocation on the wrapper

object.

Convert static references.Since we extract static data to static singletons, we aldatep
any references to static methods and fields to use thesetsing! This transforma-
tion is similar to the method and field rewriting describedwad but with the minor
complication that we must insert a reference to the statiglsion before the call.
This requires obtaining the reference (which we do throdmghstatic proxy class)
and inserting it before any method parameters (which we pagnt then restore

from local variables).

Convert static methods to instance methodsWe transform the bodies of static methods
themselves to account for their change to instance methHodtance methods con-
tain a reference to the containing object in their localalale slot zero, while static
methods have no containing object, and so do not requiredfesence. When con-
verting from static to instance, we increment the target fo all local variable
accesses by one, creating space fortthies pointer. This could cause issues with
offsets in the bytecode stream, since Java contains sinorthdecodes to load to and
store from low-numbered local variable slots. The toolk& use to rewrite, ASM,
bypasses this problem by abstracting away the shorthaedds until it produces

a final output sequence.

Rewrite monitor operations. Global synchronization in RuggedJ is handled in the li-

brary, and is discussed in Section 4.3.4. When rewriting otetiodies we convert

43

all synchronization bytecodestni t or Ent er andMoni t or Exi t) to call out to the

library, which ensures that they are executed correctly.

Wrap and unwrap references. We make extensive use of wrapping both for arrays and
for system objects. When passing wrapped objects as argsmaernss the system
boundary from user to system code, or when returning theheiopposite direction,
we wrap or unwrap the reference to ensure that the correetbig seen on either
side of the boundary. Passing from user to system code esgaisimple unwrap op-
eration to obtain the wrapped reference. Wrapping, on therdtand, requires that
we check whether the object has been wrapped before to anezting two wrappers
for a single object. We add a reference to the wrapper in systasses using the
JVMTI agent (discussed in Section 3.4.2) which allows usstoise existing wrap-
pers. During the bytecode rewriting phase we identify thmsats where references
pass from one side of the system boundary to the other, aforpecompensating

wrapping or unwrapping operations.

Add partitioning callbacks. We also make use of the rewriting process to install callback
to the partitioning policy. These are discussed in moreildet&ection 4.4; should
a partitioning author wish to perform some action (such geatbnigration) on a
trigger, the partitioning callback mechanism allows theggyers to be written into

the rewritten code.

A final function of the rewriting phase is to replace allooatsites with references to
our transformed classes. Allocation sites are the only siooawhere we directly refer
to generated classes, rather than to interfaces. Where itfieabrapplication allocates
an object of typex (using theNew bytecode) the transformed version creates either an
X_l ocal orX_stub object, depending on the node upon which the allocationrscamd a
X_proxy object if the partitioning policy determines that the objeay migrate. We can
useX_proxy, X_| ocal , andX_st ub objects interchangeably in this manner because each
implements the generated interfaceWe make all method calls within rewritten code in

terms of the interface, and field accesses go through theajedeget and set methods. By

44

calling methods through interfaces, we minimize the tramsftion necessary on calling
code, while maximizing flexibility in the types of objectsaas

The decision whether to allocate an object locally or retgptes well as whether to
allocate a proxy, is made by the partitioning policy, and Wwé explored in Section 4.4.
These decisions can be made statically (the classes to dmat@tl are hard-coded into
the method bytecode), or dynamically (the partitioningi@ols queried at whenever the
allocation site is reached). The majority of allocations performed statically, with local

objects generated without proxies.

3.4 System Classes

The transformations described to this point apply only terusode, which can be
rewritten by a user-defined class loader. The presence tdmysode within an appli-
cation complicates the implementation of the RuggedJ oljexxtel. In this section we
discuss the issues involved when handling system code, r@sémt the transformations
that allow us to integrate system code into our object mddethis chapter we focus only
on the rewriting aspect of integrating system code. We dedesideration of semantics
(such as migration) to our discussion of partitioning int®ec4.4.

We examine the restrictions imposed upon our system befereonsider the impact
of those constraints upon user code, because we find thatsystde is generally subject
to more constraints than user code. Thus, as we will see iticBeg.6, the majority of

constraints on transforming user code are caused by deperden system classes.

3.4.1 Barriers to Transformation

Java class loaders [Liang and Bracha, 1998] are organizeartircally, as shown in
Figure 3.8. Thebootstrapclass loader forms the root of a tree structure, withdpgtem
class loader as its only child. The bootstrap class loadenpéemented within the Java
VM, while the system class loader can be replaced with a degned class loader when

the VM starts up. Any other user-defined class loaders formea rooted at the system

User Code

User-Defined User-Defined User-Defined
Class Loader B Class Loader C Class Loader E
User-Defined User-Defined
Class Loader A Class Loader D

| System Class Loader |

¥

| Bootstrap Class Loader |

Java VM

Figure 3.8.: Classloading in the Java Virtual Machine

class loader. A class loading request can explicitly spatié class loader by which it
is to be resolved (using the reflectizeassLoader class). When the class loader is not
explicitly specified, the class is loaded by the class loadsponsible for the invoking
class. By default, class loaders delegate all class loadoggsts to their parent in the tree.
Thus, a class requested from User-Defined Class Loader E img=838 would be passed
through each parent node in the tree to be resolved by thetoaptclass loader. Should
the bootstrap class loader fail to resolve the class themneitpgest would be passed back
to the system class loader, and so on. If none of the classisaah the path through the
hierarchy can load the classgiaassNot FoundExcept i on is thrown.

RuggedJ’s transforming class loader is loaded into the VIVbat ime as the system
class loader. Thus, any class loading requests that areilfibedl by the bootstrap class
loader are intercepted by our class loader, allowing usvoite all user code. Due to the
complexity incurred by composing multiple user-definedsslébaders, we do not allow
applications to use custom class loaders.

This class loading structure poses two major problems fotramsformation system.
The first is that all system classes will be loaded by the h@gsclass loader, meaning

that we do not have the opportunity to transform them. Furthbile we could override

46

the delegation mechanism and transform the classes witlggdtll's system class loader,
Java’'s security mechanism would not allow us to load thesfaamed versions. User-
defined class loaders may not load classes with reserveagaciames (such asva. »).

The second, and more fundamental, problem is that the dadsg hierarchy imposes
visibility constraints. A class can refer only to those sksloaded by the same class loader
as itself or by a parent class loader. Thus, classes loadedyyser-defined class loader
can refer to any system code (defined by the bootstrap claderp but system code cannot
refer to user code. This means that, even were we able to teadférmed versions of
system classes, they could not refer to user code such as tge&ulibrary.

A final barrier to transforming system classes is that somihede classes are effec-
tively hard-wired into the VM. The bytecode that represatdsses contains direct refer-
ences tg ava. | ang. Stri ng andj ava. | ang. d ass; both appear in the constant pool of a
class file, and can be directly accessed using tisdytecode (that directly loads a constant
to the stack). Again, changing the representation of thiesses would require modifying
the VM to understand the modified versions, which violatesgmal for being able to run
on any (unmodified) Java VM.

Interestingly, native and reflective code do not presenthifigulty at the system level.
Both types of code could break a system that transforms dgssel, indeed, must be
accounted for within user code). However, since we do notitewystem code, native and

reflective operations perform as they would in an unmodifiestiesn.

3.4.2 The RuggedJ JVMTI Agent

The Java VM Tool Interface (JVMTI) specification [Sun Micystems, Inc., c] pro-
vides a set of native interfaces that allow access to margcéspf the JVM'’s operation. It
allows debuggers or profilers to interface with the VM. Foample, an agent can extract
performance metrics, or could monitor the threads in a mmM™MM. Of interest to us is
the bytecode modification functionality of the interfacéefe are two ways in which byte-

code can be modified using the JVMTI: at class-load time angratime as a response to a

a7

class rewriting event. Of the two, the former provides maegiflility. Run-time rewriting
is subject to more constraints than load-time, as the maldifiele must be compatible with
the running system.

While we cannot implement a custom class loader for systene,ca@ are able to
perform limited rewrites on the majority of system class8y. implementing a JVMTI
agent we can intercept classes before they are loaded. lowecannot perform the
full range of transformations on these classes. For exammecan only modify existing
classes rather than generating multiple new classes. Wed@ver, make use of a JVMTI
agent to perform some minor modification to certain systeaasgs within the application.
The implementation of some transformations, for examplepmplicated by Java’s access
control mechanism; if we change the package to which a clelems, we can no longer
access other classes with default access in the originkhgac Our JVMTI agent modifies
such classes to bypass these restrictions. Such a modifickies not require reference to
any additional classes, and does not alter program seraabgcause the access control
was checked statically at compile time.

Our JVMTI agent is implemented in C, using a custom bytecoddifieation library.
The bytecode rewriting must be implemented in C; simply oglbhack to our ASM-based
Java rewriting library would be tempting, but impracticil. order to rewrite a class this
way would require loading of the entire ASM framework, alomigh the system classes
upon which it depends. This would defeat the purpose of tleaagince it would miss
rewriting hundreds of system classes before ASM had fuliyléml.

The agent is called by the VM after a class is presented falihgaby a class loader,
but before it is actually loaded. We modify the class andrretunew bytecode stream that
is then loaded to the VM. This interface represents the niajotation to rewriting with
JVMTI — we can modify classes but we cannot create or renagera.th

A final limitation to class transformation is the presenceomordial classes. These
are approximately seventy classes (with the exact numlvgingabetween VM implemen-
tations) that cannot be modified at all. Primordial classesirgimately tied to the VM,

such ag ava. | ang. Obj ect Or java.lang. String. Depending on the VM implemen-

48

tation, these classes may be hard-coded or directly memapped to optimize startup

times, and so cannot be intercepted.

3.4.3 Templates for Rewriting

Our strategy when handling system classes is to abstragt thealistinction between
system and user code, allowing rewritten code to refer heeivithout special cases. Thus
we ensure that all system classes can be made to conform RutigedJ object model.

Our class transformations use four basic techniques torohéav types:

e The local instance of 8rappingclass holds a reference to a paired instance of the

old type.

e Extendingclasses implement the object model through subtyping, télgenerated

local class extending the original system class.

e Promotableclasses are not referenced by native code or by any othe@nsysasses,

and so can be turned into user classes.

¢ Direct classes are not transformed, and so do not conform to thetohgel, solely
because it does not make sense to for the target domain fietansformations can
be applied to such classes, but would result in unnecessark@ad). In a distributed
system, immutable objects suchias eger need not be transformed, as they can be

replicated on each node.

System Wrapping

Wrapping is the most straightforward of the transformatemplates and is shown in
Figure 3.9. In this approach, a set of classes are generatee the system boundary, in
a special user-level package chosen to prevent name cenfiicr conciseness we refer
to this package agen. The base class is loaded by the bootstrap class loadersanad i

modified. The local class contains new-type implementatiohall the methods of the

49

| Interface gen.S |<l-—{ Interface gen.T |<l-—{ Interface gen.U |

R R R
| Class gen.S_local |<—| Class gen.T_local |<—| Class gen.U_local |
(3 3

System Boundary

Class S 4—@

Figure 3.9.: Wrapping class hierarchy

base class, each of which translates the arguments fromaeld tinvokes the method
on the wrapped base object, then performs an old-to-newlaon on the return value
if necessary. In this way a given object can be referred todwy type above the system
boundary, and by old type below.

Unwrapping objects when passing from user to system codeigal operation. How-
ever, we must be more careful when performing the invers@pping objects that are
passed from system to user code. In this case we need to @hatgegiven object that
has previously been wrapped is reunited with its originapper; to do otherwise would
create two wrappers for a single base object, which woulgpregerve identity. We avoid
this by inserting a reference to the wrapper within each peapsystem class, along with
get and set methods to access it. Since this involves theficettéhn of system code, we
perform this rewrite using the JVMTI agent. The wrapper refiee is typed asvj ect , as
a system class cannot refer to a user class. Finally, sincammot add fields to primordial
classes, we maintain a hash table for these objects, aganmst we check for existing
wrappers before generating a new one.

As with all classes that conform to the RuggedJ object modelpping classes main-
tain the inheritance hierarchy of the original through tlg@nerated interface. That the
local classes also subclass the relevant local class islyremnvenience—if they did
not, every wrapper would have to implement redirect metHfodshe methods of every

superclass, rather than just those in its base.

50

| Interface gen.S |<l-—{ Interface gen.T |<l-—{ Interface gen.U |
R R A
| Class gen.S_local | | Class gen.T_local | | Class gen.U_local |

System Boundary

\4 A\

Class S 4—@

Figure 3.10.: Extending class hierarchy

The System Wrapping template can be considered the “unh&sbaent” for system
classes. We can generate wrappers for any system clasd) amscires that all objects
in the application can conform to our object model. Unfosatiaty, the System Wrapping
template also carries the highest overhead (as objects lmeustapped and unwrapped,

which can be expensive), making the other templates moreatés

System Extending

The System Extending template is an alternative means dllingrsystem classes that
eliminates the overhead of unwrapping. Under this tecleidgioe generated local class
extends the original base class, as shown in Figure 3.10g&herated interface and local
class conform to our object model, while the base class mgnaichanged. Note that in
this case there is no inheritance relationship betweerota tlasses; this is not important
because the interfaces maintain the class hierarchy ahevgystem boundary, while the
base classes maintain it below.

An extending class can be passed to system or native codeuwidmy conversion
process, since it extends the unmodified base. However wmtareate a new instance of
an extending class within system code (as we cannot revagtaltocation site to refer to
T_l ocal rather tharr). This limits the applicability of this template to systehasses that
are only ever allocated above the system boundary. Funifiele we obviously cannot

extendfinal classes, we can also not overritienal methods. This may be an issue

51

| Interface gen.S |<l-—{ Interface gen.T |<l-—{ Interface gen.U |
R x R
[Class gen.S_local |« Class gen.T_local |« Class gen.U_local |

System Boundary

Figure 3.11.: Promotable class hierarchy

if a fi nal method includes an old type as an argument or return valeephfect model
requires that such methods be overridden in order to beddajleiser code, which only uses
new types. Thus, while the System Extending template isspabfe to System Wrapping,

due to its lower overhead it can be used only in limited cases.

Promotable

Promotable classes are a subset of system classes that aeéenenced by any other
non-Promotable system class or by native code. In this casknew that any reference
to a Promotable class will either be in user code or in othenm@table classes. We can
therefore move Promotable classes above the system bguilnyarenaming their classes
to form part of thegen package), and treat them as we do any other user class. Sence w
can rewrite all references to the Promotable class we camretisat the original class is
never referred to, and so is never loaded by the bootstrap Mader.

Promotable classes often exist in cliques within the sysileraries, with no external
uses from other classes in the libraries. An example thatave bncountered is the Java
XML processing library. If an application uses XML processi much of the library is
loaded into the VM. However these classes refer only to onéhan Thus, we capromote
these classes en-masse.

The structure of a Promotable class is shown in 3.11. Thikasntost straightfor-

ward implementation of the object model, with each locasslinplementing its interface.

52

System Boundary

Figure 3.12.: Direct class hierarchy

While the inheritance hierarchy is maintained by generategtfaces, the local classes re-
tain the original relationship. In the System Wrapping anteBding templates the actual
method implementations were located in the base classasdfable local classes contain
complete implementations of all their methods. Thus, Pitaivle classes must extend their
parent so as to have their parent’s methods available.

The Promotable template is similar to the Twin Class Hiena(@CH) approach pro-
posed by [Factor et al., 2004], in that it loads system ckasge the user space in order to
perform transformations. However there is one importaffiédince: the TCH system al-
lows both modified and unmodified versions of the code to eitsin a VM. We promote
only those classes that are not used by other system codeg goamoted version is the

only one in the system.

System Direct

The final set of classes, System Direct, do not conform to trggBdJ object model.
This template exists as an optimization; as we have seenclasg can conform to the
object model through the System Wrapping template. Howé&eetare classes for which
it is not necessary to conform to the object model. For examphen distributing an
application with RuggedJ, we do not want to transform immietajects. If we know

that an object will never change, we can replicate it on mpldthodes, and eliminate the

53

Table 3.1: Subclassing between templates

Wrapping Extending | Promotable Direct

] Cannot wrap Cannot wrap)
Wrapping || Can subclass No interface
superclass| superclass

) Cannot alter Cannot alter
Extending i Can subclas .
base hierarchy base hierarchy

No interface

[2)

Cannot extend _
Promotablg Can subclass Can subclass No interface
wrapper

Direct No interface | No interface| No interface | Can subclass

overhead of remote method calls. Similarly, there are ekagisat are closely tied to the
individual VM (such ag ava. | ang. C ass) that do not make sense to reference remotely.
Those classes we designate to be System Direct are notdranesf in any way (as
shown in Figure 3.12). As such they do not incur any overheaut$ can be freely passed
between system and user code, as well as to native methodsevielp since they do
not conform to the RuggedJ object model, they cannot be mddifiextend the original

application’s functionality.

3.4.4 Subtyping

Since all of the transformation templates described abewete classes differently, we
cannot freely “mix and match” techniques between super-sadlasses. Each rewriting
technique therefore imposes restrictions on the classis bierarchy. The relationships
are shown in Table 3.1.

Since System Direct classes do not conform to the Ruggeddtab@del, we must
ensure that they have only other Direct classes in theiahgly. To do otherwise would
violate our rule that inheritance is maintained througleifatices; a Direct class has no

interface, and so cannot fit into this scheme.

54

Likewise, System Wrapping classes can have only other Wrgppasses in their hi-
erarchies. A Wrapping class cannot extend an Extending an&table class in case it is
returned to user code from system code. There would be no evpyotduce a new-type
representation of the Extending or Promotable supercldssargument as to why a Wrap-
ping class can only be extended by other Wrapping classesikssi An Extending class
that extends a Wrapping class removes our ability to tram$tam an old type to a new.
In the case of a Promotable subclass, the local class woukldthasubclass the Wrapping
subclass (since a Promotable object does not have a basg dlas relationship would be
lost when the base class was unwrapped.

A System Extending class can extend only another Extend#sg csince the local class
must directly extend the base, and we cannot change thectagehierarchy of the base
class. However an Extending class can act as the superolaasPromotable class; the
System Extending template does not require unwrapping,Fomotable local class can
extend a System Extending local class without any loss @frmétion should the object
be passed to system or native code. This further indicagesgbfulness of the System Ex-
tending template over System Wrapping. Promotable clagtsnoore options when ex-
tending an application’s functionality, and by increasihg number of Extending classes,
we likewise increase the number of potentially Promotalaseses.

Our discussion of subtyping must also consider the origitalfaces implemented by
classes (as opposed to those generated as part of the Rupgsd Jreodel). We rewrite in-
terfaces in much the same way as classes: user-level icgsrf@ntain signatures using new
types, while system-level interfaces contain old typesuslsystem-level interfaces must
be System Direct (if they contain only primitive or Direcgaments and return values) or

System Extending (if they contain Extending, Wrapping, arfotable arguments).

3.4.5 Classification

We refer to the process by which templates are chosen foradass aslassification

A given class’s classification may be determined by its sagsds or its references from

55

Returned by
native code?

Passed to interface
implemented by or
method overridden by
user class?

Accessible field

I laas? Superclasses al
of system class?

Extending or
Promotable?

Returned to user
code by system
code?

Argument or
return value of
system class?

Hierarchy
contains
rapping %

Extending in
Hierarchy?

Subclasses all
Promotable?
Yes
Promotable

Figure 3.13.: Classification for system classes

System
Direct

Wrapping

elsewhere in the system, so we require knowledge of theeeagiplication. We run the
classification algorithm only on the classes that make upagy@ication; analyzing the
entire Java class libraries would introduce false deperidenand limit our flexibility in
transforming the application. We compute classificationrdpa pre-processing phase,
which we run once per application for a given set of clasalies.

We arrange the various classification templates using adodaring. Direct classes
are handled first, as they are an optimization and othenalsmfo at least one other clas-
sification. Next we find Promotable classes, which maxintieeflexibility of our rewrites,
then Extending classes that handle the remaining classbdess overhead. Wrapping
classes account for the remainder.

The algorithm is iterative, since changes to the classifinatf one class may affect
others. We present the algorithm as a decision graph, whinthuges the classification

for a given class, assuming that all other classes havedsgliesen correctly classified. To

56

generate a full classification, we simply run the algorithntilua fixed point is reached.

The decision graph for system classes is shown in Figure 3.13

3.4.6 System Class Static Singletons

Extracting static members from a class is a simple procesnvitansforming user
code, but is not possible for system classes. Since we caawote system code, we
cannot change static referencesvokeSt at i c, Get St ati c, etc.) to use static singletons.
Thus, we implement the static local class differently foerusnd system code.

We refer to the static local class generated for a user or &abte class as mobile
static singletonMSS). This local class functions as described in Secti@b3and con-
tains implementations of each static method from the caigifass, as well as versions of
each static field. The methods and fields are transformed dtatit to instance members,
allowing the singleton to implement the static interfaceddAionally, by transforming
static methods to instance methods we remove the dependareyarticular VM: static
data is usually stored in a VM-specific manner and cannotyelasimoved from node to
node, while instance data is stored in the heap and can bateigthencenobile static
singleton).

While system classes cannot use static singletons therssaleenake their static state
available to remote user code by generatimyed static singletanThis implements the
same interface as a mobile static singleton, but can exishiynone node. The static local
class contains an instance method with the signature of #ath method. In this case it
simply acts as a redirector, calling the static method okifstem class, allowing that data
to be accessed remotely.

Pinned static singletons pose a major barrier to distidoutNot only must all objects
of a class with a pinned static singleton be allocated on éimeesnode, but so must any
other system classes that refer to the static parts of taas cFortunately static singletons

are required only for classes with static data. As we will iseSection 3.6.1, we do not

57

need static singletons in most cases; ultimately, only 12%\@erage of the classes we

consider require a pinned static singleton.

3.5 User Classes

The transformation of system classes constrains that ofasske. As we discussed in
Section 3.4.4, the classification of a given type can affeettassification of its super- and
sub-classes. This requirement extends above the systemddgy meaning that we need
to create equivalent versions of the four templates witlser elasses. Additionally, native
code can be present in user as well as system code, whick bonitability to rename and
rewrite classes.

The four templates for rewriting user code closely mirras for system code. Classes
can be User Wrapping, User Extending, User Unconstrainedugkr-level equivalent of
Promotable), or User Direct. As might be expected, occegsmf user-level native code
or the subclassing of system classes are rare. As we showviioi$8.6, the vast majority

of user classes are either User Direct or User Unconstrained

3.5.1 Rewriting

User code differs from system code in one important manherclasses are loaded by
our user-level class loader, and so can be rewritten. Thasrhglications for User Direct
classes, as well as the base classes for User Extending, appivy.

When rewriting user code, we define two invariants:

1. Values with generated interfaces (User Wrapping, Extendr Unconstrained) are
always typed using that interface. This allows us to varyrifdementations of these
interfaces among several alternatives (as discussed tio8&c2). If we know that
these instances will always be manipulated through thefage methods then any
implementation of those interfaces is safely encapsulatebwe can freely decide

on that implementation without worrying if that decisionpacts other code.

58

2. User code exclusively refers to new types. By strictly eingthat all rewritten code
uses new types, we define a clear separation between old antypes. We can
maintain this invariant because instances cross the sysbemdary in well-defined
places (passed as arguments, returned from methods, Btcly, we never need to
check dynamically if an instance is of an old or new type; thietext from which the
instance is referenced (system or user) decides statit#iky instance has an old or

new type.

We occasionally break the second invariant to optimize bisses. However, these viola-
tions are always localized transformations (an old-tyferesce never escapes the method

in which it is used), and so do not impact the system as a whole.

3.5.2 Native and Reflective code

When transforming user code, we must make allowances forenatide (for which we
do not assume that we have source code) and for reflective &vdeobserve that either
native or reflective code can break any large-scale seriearadfformations by introspecting
on any class in the system. Should a class, field, or methodrzared or removed, hard-
wired assumptions in native or reflective code may fail. Weegt that an adversarial
programmer, or one that makes extensive use of such codeligrapt our system. We
focus instead on permitting the widest possible range ofsomusages of both native and
reflective code.

In the case of reflection, we do this at by intercepting reffeatnethods that refer to
rewritten code and converting the results to the apprapmnaiv types. We will discuss
this mechanism in Section 4.3.2. In the case of native codegxploit the heuristics laid
down in J-Orchestra [Tilevich and Smaragdakis, 2006] tleémnine which classes are
most likely to be accessed by native code. They define clagsiesmative methods to be
unmodifiable as well as the types of their fields and superclasses (dgndispatch can
result in calling an overridden method indirectly from matcode). These heuristics are

adequate for the applications we consider. We ensure tlyatlagses that are likely to be

59

exposed to native code conform to the User Direct, Wrappirgxtending templates. This

way they retain a base object upon which native code can @pera

3.5.3 Base Classes

User Wrapping and Extending classes are largely similaré¢o 8ystem equivalents,
with the difference that their base classes are above ttliersylsoundary and so can be
rewritten. Following the second invariant, we rewrite thethod signatures and bodies of
the base class to use new types rather than old. This singplifeelocal classes that wrap
or extend the base, since they do not have to translate bewml@and new types.

However, since user-level base classes may be passedvesmatisystem code (typed
as system-level interfaces or superclasses), a base clegsr@tain thesignatureof its
unmodified original. New fields and methods may be added anddties of methods may
be rewritten, but the class cannot be renamed, and its fialllsn@thods must retain their
original names and types. This violates our second invarthat user code exclusively
refer to new types.

We overcome this for methods by providing old-type impletagans that simply redi-
rect to their new-type equivalents. For fields this is mofgadilt. We ensure that any field
that may be accessed by native code is not classified as Usenbtmained by the defi-
nition of unmodifiable classes above; a field of an unmodi&athss is itself considered
unmodifiable, and so can not be classified as User Unconstraile observe that system
code cannot directly access the fields of user classes,tbiegare loaded by different class
loaders. Of the remaining templates, Direct and Extendiagses are trivially compatible
with system and native code (although we must type Extenclagses as their base, and
then cast upon use in user code). User Wrapping classes argypésl by their base, but
since the wrapper is a separate object, we maintain a cadpdaf the wrapper as an
additional field. System or native code use the base clast wker code uses the new

wrapper field. Note that the casting and wrapping of fieldeagaiired only in the base class

60

itself; all other user classes refer to the object by intexfand so can never access the field
directly.

Another violation of our invariant occurs when a method &ses its hi s pointer. The
type of thet hi s pointer in a base class is an old type. We must therefore cotive
reference to a new type, either by casting if it is a User Editemn class or by wrapping
if it is User Wrapping. This way the invariant is maintainednefe are, however, some
situations in which this is not desirable and some in whiak itot allowed. If the hi s
reference is loaded to the stack in order to execute a fieldsacéor example, we would
rather perform the access directly rather than going tHrdligget method of the interface.
More importantly, if the pointer is loaded in preparationdcsuperclass constructor call (as
required in every constructor) it would be incorrect to wtag reference. Doing so would
lead to the constructor being called on the wrapper rattzer tihe base, which would cause
a run-time error.

We determine which hi s references to convert using a def-use analysis. If the ref-
erence escapes the current method (by being passed as ameatgur stored as a field)
we convert it, otherwise we do not. While this violates ouraimant that rewritten code
exclusively refers to new types, it does so only in a localizeanner. Note that we can also

use this optimization when accessing local fields within dirstrained classes.

3.5.4 Classification

The classification of user code follows a similar approackhtd of system classes.
Figure| 3.14 shows the decision graph for user classes. Tdrecdmssification process
uses the same ordering as the system; Direct classes aledhéirgt, then Unconstrained,

Extending, and Wrapping.

3.6 Classification Evaluation

We evaluate our classification system using experimergaltseobtained from RuggedJ.

We examine the output of our classification algorithm on aewanf benchmark applica-

61

Exposed to
native code? No <— No Start
ves No Yes

No Yes
Superclass s Sbuglaer and I
Wrapping? ubclasses a
pping No Direct?
° Subclasses Extending in
all Unconstrained? Hierarchy?
v No

es
User User
Unconstrained

Direct
Figure 3.14.: Classification of user classes

Returned by class
exposed to native?,

No
Superclass
Wrapping?

No
Yes

Any Subclass
Wrapping?

Yes

No
v
User
Extending

User
Wrapping

tions, and provide some insight into the sources of overhreeztuced by our system. Note
that we evaluate classification on several standard ben&srtfzat we will not discuss in
our overall performance evaluation in Section 5.3. The nitgjof standard benchmarks
are unsuitable for distribution, either through low leveisoncurrency or through bottle-
necks in data organization. However they serve to illusttlae¢ distribution of the various
classifications.

All classifications were generated on an Apple computengusfac OS X 10.5.6, and
version 1.6.007 of Apple’s Hotspot-based Java VM. This affects the resoftthe clas-
sification; different implementations of the standard slhisraries may produce slightly
different classifications.

We ran the classification algorithm on applications fronfedént benchmark suites,
show in Figure 3.1: ten benchmarks from the the DaCapo suésipn 2006-10-MR2
[Blackburn et al., 2006]), nine from the SPECjvm2008 suiteHSRmM98, 2008], plus
SPECjbb2005 [SPECjbb2005, 2005]. In addition, we analyzeddbthe applications that
we will present in Chapter 5.3: a re-implemented distriblgtabrsion of the SPECjbb2005
workload, a DNA database matching application [Keane andgRton, 2005] and dis-

62

antlr
s M System Classes
bloat O User Classes

chart

eclipse

fop
hsqldb
jython
luindex
lusearch

pmd

xalan

compiler

compress

crypto

derby

mpegaudio

scimark

serial

sunflow

xml

SPECjbb2005
Re-implemented SPECjbb2005
DNA Database
Monte Carlo
Molecular Dynamics

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 3.15.: Percentages of system vs. user classes

tributable versions of the Monte Carlo and Molecular Dynab@achmarks from the Java
Grande suite [Mathew et al., 1999, The Java Grande Forum].

To obtain an accurate count of the classes referred to by #@apo applications, we
analyzed them without the DaCapo harness. This way we ckdfily those classes
referred to by the application, not by the harness.

As Figure 3.1 shows, the majority of classes (78% on avelag®) application belong
to the standard libraries. This is due to the degree of intena between system classes:
a single reference can cause a large closure of classegitoTlbe strongly demonstrates
the need to handle system classes within a rewriting system.

Figure 3.16 shows that the majority of user classes arelsgtiiteen User Direct (42%
of user classes and 10% of the total application) and Useokbsirained (53% of user
classes 13% of the total application). Very few classes a&er Bxtending or User Wrap-
ping. There was no user-level native code in the applicatwa studied, so these two

classifications were used only for user classes that extesylem classes. We see that

63

antlr n |
S B User Direct
bloat O User Unconstrained [
chart M User Extending [
eclipse [l C User Wrapping |

fop |
hsqldb |
jython |

luindex

lusearch

pmd |

xalan |

compiler |

compress |

crypto |
derby I

mpegaudio |

scimark |

serial |

sunflow |

xml |
SPECjbb2005 |
Re-implemented SPECjbb2005
DNA Database |
Monte Carlo

Molecular Dynamics

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 3.16.: Classification of user classes

only four classes in any of the benchmarks were classifiedsas Bxtending. While the

number of User Extending classes seems insignificant, we ratan the classification

template for these classes. Recall that an Extending clas®taxtend a Wrapping class,
so eliminating the User Extending template causes moremsystasses to be Wrapping
rather than Extending, which we wish to avoid due to the wiragppverhead.

Figure 3.17 shows that, below the system boundary, SysterpWia classes are the
most common, representing 57% of the system classes and #P¥total application on
average. This can be attributed to the need to wrap objeatsatk passed or returned to
user code. System Extending classes are less common,gefingsl 8% of system classes,
while 20% of system classes are System Direct. Finally, 3%lasfses on average can be

promoted.

64

antlr I
bloat I W System Direct L
chart] OSystem Unconstrained | |
eclipse - B System Extending .
fop . OSystem Wrapping 7
hsqldb |
jython I
luindex I
lusearch I
pmd |
xalan -
compiler -
compress []
rypto |
derby -
mpegaudio -
scimark -
serial -
sunflow -
xml l
SPECjbb2005 []
Re-implemented SPECjbb2005 []
DNA Database ‘
Monte Carlo
Molecular Dynamics
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 3.17.: Classification of system classes

3.6.1 Static Singletons

While we present a mechanism for handling static data withdis&ributed system
in Sections 3.2)5 and 3.4.6, we recognize that static dimggepose a major source of
overhead. At best, a local static method invocation requadditional work to locate and
insert a reference to the static singleton, while at worstyestatic method invocation could
become a remote call. We aim, therefore, to eliminate statgletons in those cases where
they are not strictly necessary (for classes that have tio state, or for which static state
is immutable). Figure 3.18 shows that we are able to comgletininate static singletons
for 82% of classes on average across our applications, 12€asées require a pinned

static singleton and the remaining 6% of classes need a enstailic singleton.

65

antlr S wNo Static Singleton
bloat OPinned Static Singleton

[l Mobile Static Singleton
chart

eclipse

fop -
hsqldb _
jython
luindex _
[]
[|
[|

lusearch
pmd

xalan

compiler

compress

crypto
derby

mpegaudio

scimark

serial

sunflow

xml

SPECjbb2005
Re-implemented SPECjbb2005
DNA Database

Monte Carlo

Molecular Dynamics

0% 20% 40% 60% 80% 100%

Figure 3.18.: Elimination of static singletons

3.7 Contributions

The RuggedJ object model borrows concepts from several cfytftems presented in
Section 2. The master/proxy model that we implement in aulp sind local classes is a
common theme in distributed systems; the majority of systtrat refer to remote objects
do so through some form of delegating stub. Where we diffen ithe flexibility of our
interface-based model. We type references as interfalbesjray us to switch the imple-
mentation of an object from local to stub in the case of migratWe combine this ability
with our dedicated proxy object that allows us to dynamycaliange the implementation
of an object at run time, while retaining the ability to eli®Xxies for performance reasons
when we know them to be unnecessary. No other object modelhatudied has this

flexibility.

66

Of the systems that we examined, Addistant had the mostasiagiproach to handling
system classes. Their Extending template was similar te, aunile their Copy template
was equivalent to our Direct. However we allow more flextpikvhen placing system
objects; Addistant clusters objects together by clasdh wiit instances of a given class
colocated, while we allow system objects to be allocateditberdnt nodes so long as they
do not refer to one another. Our whole-program rewritingesysis also more flexible than
those that we have seen. We allow programmers to overritle stassification decisions
within an application’s partitioning policy to take accauwi domain-specific knowledge.
Thus we can declare objects to be functionally immutable@ @milar manner to Emerald,
although within the context of Java) allowing them to be iegied. Similarly we can
eliminate rewrites completely on key performance-critidasses, allowing them to run
without the overhead from our rewrites; we have not seendpignization performed by

other systems.

3.8 Concluding Remarks

Bytecode transformation allows RuggedJ to integrate origipplication code with our
infrastructure. In this chapter we have described a sefiggtoalizing transformations
that can be applied to the various classes that comprise @icapon to allow them to
conform to a unified object model, as well as the classifiogimcess to determine which
template should be applied to each class. We have discusségtecode transformations
that we apply to method bodies to integrate with this new abfeodel, as well as the
supplementary classes we generate to handle system caoddly,Rive have described the
implementation of our prototype system, and presented atysis of the classification

process when applied to several benchmarks.

67

4 RUN-TIME SUPPORT

RuggedJ’s run-time system links the rewritten classes arthennetwork, creating a single
unified application. It perform the dynamic aspects of tstion; where the bytecode
rewriting class loader transforms classes to handle rewlgects, the run-time system
creates, tracks and dispatches to those objects. It poaid@bstract interface to library
functionality, allowing complex tasks to be moved from riten bytecode to pure Java
implementations, and it manages global operations sudteabrdination of static data or
synchronization between objects. Finally, the run-time @gtimize an application without
modification to the original source, improving data logality migrating or replicating
objects.

The RuggedJ run-time is made up of separate library instancesng on each node in

the network. The major functions of each node’s run-timévide:

Library functionality. Transformed code calls out to the run-time library to perféasks
that would be laborious to implement in bytecode. For exanphen a wrapped
object is returned from system code to user code it must beped re-using a
previous wrapper object if one exists (as described in 8@&i4.3). This wrapping
operation can take various forms, depending on the objess#r code maintains a
typed reference to previous wrappers, system code cordainbject reference that
must be cast, and primordial classes can not hold additi@i@tences, and so the
wrapper must be located in a hash table. Finally if a wrappesadhot already exist, a
new wrapper object is reflectively created and then storetufare lookups. Rather
than providing the bytecode sequence to perform these tipresaat every wrapping

point we simply call out to the run-time library.

Network communication. When a RuggedJ network is created, the run-time systems on

each node negotiate to form a communication hierarchydged in Section 4.1.2.

68

This communication system is used to query network statenmdtion (such as the
existence and location of static singletons) and to brostamatrol messages (such as
the global termination command). As the application exeguhe run-time systems

coordinate to create and invoke methods on remote objects.

Remote Object Tracking. The RuggedJ run-time tracks remote object references, both
when external object references are introduced as argsrf@rhcoming messages
or when local references escape the node. Mobile objedidmsaare updated using

broadcast communication, and nodes redirect requestsuedmata.

Replication and migration. Data locality is essential for performance in a distribuggst
tem. Since network accesses are orders of magnitude sloareldcal memory reads
and writes, a very few key remote objects can devastatenpeafuce. Our run-time
system supports objentigration, allowing data to move to the node upon which it is
to be used. Additionally weeplicateimmutable data on each node in the network,

allowing local read-only access to those parts of an obfettriever change.

Threading and synchronization. The run-time system preserves the identity of threads
in the original application by mapping each logical globdaktd to a specific Java
thread on each node. Thilsread affinityensures that application behavior that re-
lies on thread identity, such as the acquisition of monjtoperates correctly in the

distributed application.

The final component of the run-time system is the partitigretrategy. This deter-
mines how the application is divided between the RuggedJarkisvnodes, and con-
trols the location and migration of objects. PartitionimgRuggedJ is performed by an
application-specific plug-in written by the applicatiorvdper. This allows the program-
mer to leverage domain-specific knowledge of the applic&istructure and behavior,
while benefitting from the powerful tools provided by RuggedJ

The remainder of this chapter is structured as follows: i8eiét.1 describes the RuggedJ
network, both in terms of architecture and specificatiortti®a 4.2 discusses the primitive

components upon which RuggedJ’s run-time system is buit Sattion 4.3 describes how

69

we compose these primitives to implement some of the Jagu&ge’s features. Finally,

Section 4.4 describes the design and capabilities of Ru@ggeaiditioning interface.

4.1 The RuggedJ Network

RuggedJ is designed such that the configuration of the netis@upplied as a final
step in the deployment of the system. A given applicationi\&iwell-written partitioning
strategy) can be executed on an arbitrary network withoatigp modification. In this
section we describe the specification and configuration tforks within RuggedJ, as

well as the mechanism by which we communicate between nodes.

4.1.1 Network Configuration

RuggedJ requires that all nodes in a network are capable afnmgia fully-featured
Java virtual machine, and that each node implements thewansien of the standard class
libraries. Differences between library versions may leaéhtompatible code executing
on different nodes. Beyond this requirement, RuggedJ is déigrtosthe virtual machine
implementations upon which it runs. A single RuggedJ netwoay run on nodes with
different architectures, operating systems and virtualhime implementations.

Nodes within a RuggedJ network communicate over Java sqoekefsund simple Java
sockets to perform better than MPJ [Baker and Carpenter, 280@jva implementation of
the MPI specification that we had used through much of theldpreent of RuggedJ.
At present network configuration is supplied as a text file nvtiee network is created,
although future versions may detect peer nodes autongtiddle network configuration
specifies the host name for each virtual machine, as welleapdht upon which it listens.
This way a single host may run multiple RuggedJ nodes. When eagdb starts up it
ensures that it can reach all other nodes in the network atdathnodes are running a
compatible virtual machine. This guarantees that the ndtugoready before we begin

execution of the application.

70

Global } Head
Message ‘\

e Node-to-Node

-) Message
—_ | Node Global Node
Global \ Response
\\

Node-to-Node
Gilobal \ Message
Global

AN
AN
Response
m E
7 / N\
Message 4 N

7 Global \ /

/ A N
7. Response >)
- Node-to-Node >
Message

Figure 4.1.: Communication between RuggedJ nodes

4.1.2 Communication

When each node has determined that the others in the netwenrkald and reach-
able, the nodes organize themselves into a binary treetsteestablishing parent and
child relationships with other nodes in the network (Figdrg). The hierarchical struc-
ture is determined dynamically by the nodes in the netwonkl ia not supplied as part
of the network configuration. This simplifies the configuratbf the network, and leaves
opportunities to tailor the communication hierarchy bagedn run-time network-specific
factors such as host location and connection speed. By amgatite nodes in this manner
we simplify the dissemination of run-time information assdhe nodes; a node need only
exchange run-time information with its parent and childraher than broadcasting to the
network as a whole.

The node at the root of this tree is designatedhiibad node This node has several
responsibilities beyond those of a regular node. Firststantiates the application by
invoking themai n method on the appropriate application class. Addition#tly head node
serves as a canonical source for global information, antiraids global activities (such
as the allocation of static singletons, discussed in Seeti8.3). Since the head node sits

at the root of the communication hierarchy, we can be cettahany requests for global

71

information passed up the tree will eventually be fulfill€ahally, the head node manages
the standard input and output streams, displaying all egfitin output to a single console.
Communication within RuggedJ is performed by passiagsage objects between

nodes. Messages are split into two categorglebal messages that concern the status
of the network as a whole, antbde-to-nodanessages that communicate between arbi-
trary nodes. Global messages include class loading reqjtiegttensure the uniqueness of
static data, queries as to the status of other nodes, or dastrutmessage when the main
method exits or in response tosgst em exi t invocation. Global messages make use of
the communication hierarchy; updates and queries passupethto the head node, while
responses and relevant information passes back down froentda child. Most messages
within the system are node-to-node messages. These indotdg#e method invocations,
object replication and migration, and requests to alloohbjects remotely. These messages

are passed directly between the nodes concerned, withalving the head node.

4.2 Run-Time Primitives

The RuggedJ run-time system provides the functionality weaheed to correctly dis-
tribute an application. In this section, we discuss thesmaifives, while in Section 4.3 we

describe how we exploit them to support Java’s semantics.

4.2.1 Object Management

Objects within RuggedJ do not have a direct one-to-one oglship to those within the
original application. As discussed in Section 3.2, the enpéntation of an object depends
on whether it is local or remote to the current node, and wdrathmay migrate (in which
case it requires a proxy). The RuggedJ run-time library eeahd maintains these various
representations.

Any object that may be referred to from a remote node is givem@ue global identifier
(UID). UIDs are created on-demand when an object reference s$rapes a node; we do

not need to create UIDs for purely local objects. A UID comps d ong (the encoding

72

is based on the creating node’s network identifier so UlDslezacreated locally) and a
bool ean indicating whether it requires a proxy. Whenever an objefetremce is passed
between nodes (as part of a method invocation, for examegter to the object by UID.
UID references are resolved immediately upon receptionrnyde. This way we know
that all references within rewritten bytecode correspanthé RuggedJ object model, and
do not have to check for UIDs. When a UID is encountered in aarmng message, the
node’s run-time system first checks whether this UID has lssem before. Each node
maintains a map of all UIDs that it has sent or received ta tlegiresentative local or stub
instance on the current node. This way we ensure that maltgslolutions of a given UID
result in the same instance. Should an incoming UID not bedanthe map, we know that
the object to which the UID refers has not yet been seen byufrert node. This implies
that the object is remote; a local object’s UID is logged ia thap when a reference to it
first escapes the node. We therefore create a stub (and gnoggeassary) to represent the

object on this node.

4.2.2 Immutable Objects

By far, the largest source of overhead in RuggedJ stems froessity remote data.
Each remote field access, as well as method invocations ooteenijects, requires the
creation and delivery of a network message, along with tls®e@ated marshaling and
unmarshaling of target objects, arguments and return saM#& have found that the cost
of sending a message overwhelms the cost of transferriregy dethus, we can improve
performance of the system as a whole by reducing the numbenuste object accesses,
even if it means transferring more data per message thardwtherwise be the case. The
simplest way to do this is to exploit immutability. If an objas known to be immutable
(i.e., that its fields are never modified after initializafjave can safely replicate the object
on any node that refers to it. The state of these copies witmehange, meaning that no

coherence mechanism is needed to keep them up to date.

73

We identify immutable objects at the class level using a ehmbgram analysis, ex-
amining the bytecode of every method in the transitive alef the application to find
occurrences of theet Fi el d bytecode. We could have decided immutability simply by
using thef i nal keyword, but it is common even that nonnal fields can be statically in-
ferred immutable, so our our analysis produces a largeif s@outable classes. The static
immutability analysis comes at minimal marginal cost, sim@ must statically analyze the
whole program anyway to determine interactions betweenarsgsystem code (discussed
in Section 3.13). We do not generate local, stub or proxysela$or immutable classes (a
replicated class does not need a stub, since it will neveefeeanced remotely).

Replicas of immutable objects are created in the same wayls f&ir remote objects.
Each immutable object has a globahg identifier (ID) similar to a UID. As an optimiza-
tion we do not use actual UIDs for immutable objects becaheg hever need a proxy
and so there is no need to track that information. When an imipheitiD is received, a
node first checks whether that immutable object has beenksdere, and if not it creates
areplica.

Replicas are created in one of two ways. If the object to beaaeld implements
Serial i zabl e, we use Java’'s serialization mechanism to transfer its, datastructing
a byt e array that can be sent across the network. Otherwise we rsestefiection to
extract each of its fields, and send a map of field/value phasdllow the object to be
reconstructed reflectively at the destination. Of these@ghes, Java’'s serialization is
preferable; the serialization mechanism is consideradoyef than reflection over fields.
However serialization is appropriate only when an objettsisitive closure can be se-
rialized. The object cannot contain fields that should bestmatted as UIDs, otherwise
serialization will erroneously make a copy of the stub oalambject. Thus, serialization is
limited to objects with primitive or immutable fields.

In addition to immutable objects, certain parts of otheemsutable objects can be
replicated. Individual fields within a mutable class mayntiselves be immutable; we can
cache these values on each node, meaning that we do not needkéarepeated network

calls to read the data.

74

We implement this caching within the stub class. During tia¢ic analysis we deter-
mine theimmutable contentf each class. When we generate the stub for a given class, we
include state for its immutable content. We supplement dreecatedjet /set methods to
check whether the immutable content has been loaded, antwerequest the immutable
content from the original object. Caching immutable contantiemand rather than when
the stub is created at a node avoids transferring statesthaver accessed. However, all the
immutable state for an object is requested at once to avoltipleurequests for different
immutable fields. These decisions minimize the number afesty for immutable state.

We further observe that we need only execute methods on thleegumtaining an object
if that method contains synchronization or modifies the afgdields. Thus, we locate
unsynchronized methods that do not access any of the mutalls of the target object
and replicate their bodies in the stub class. We can exdoeise imethods on the local node

without the overhead of a remote method invocation.

4.2.3 Migration

Data locality is key within any distributed application. Mpulating remote objects re-
quires a network transaction, which is more expensive theal biccesses by orders of mag-
nitude. Therefore, we minimize non-local accessesnigyrating objects between nodes.
Migration can exploit shifting spatial locality; a good exgle is the allocation of a large
array on one nodel, followed by its use on a different node. Without migration, one
must either create the array @nand perform remote accesses fréinor, conversely, cre-
ate it onB and populate it fromA using remote accesses. Either case suffers significant
performance degradation. Instead we allocate and popihl@terray on nodel, then mi-
grate it to nodeB, requiring only one network access. The cost of sending aages (the
message creation time, and the time taken to marshal andrsinah#s arguments) greatly
outweighs the time taken to actually transfer the data aceofast network connection.

Therefore, migrating an object to cut down on remote methweddations, while involving

75

a single large data transfer, is significantly cheaper tepaated remote invocations on that
object.

The run-time system must determine which objects can nagratmigratable object
must have a proxy in order to redirect references from th@éoly local object to its stub.
We determine which objects require a proxy by querying théitmaing policy. Further,
an object can be migrated only if all references to that dlgechrough the proxy. This
means that objects manipulated by either system or natide cannot migrate; such code
is unaware of the RuggedJ object model, and so cannot refentote objects. Finally, we
cannot migrate objects with close ties to the JVM (suchaas. | ang. d ass); in practice
migrating such objects would be meaningless. These camistralow us to migrate the
vast majority of user-level objects, as well as systemtletgects referred to only from
user code (such as utility objects drawn fromjthea. uti | collections framework), which
generally make up the parts of an application that we woltltb migrate.

Deciding which objects are to be migrated and when they shwoigrate is determined
by the partitioning strategy. We provide tools that presienelopers with the results of the
static partitioning analysis, determining which objeats geferenced from which classes.
However the constraints imposed by a static analysis arergiy more stringent than
those needed in practice; partition developers can fratjuewverride these limitations to
improve the performance of their applications.

The partitioning policy interface provides several medsiaus by which object migra-
tion can be triggered. The policy author can indicate cema@thods whose results should
be migrated. This gives a mechanism to implement the eali@mple; a large array may
be created, initialized, and returned by a given method) theggrated to the node upon
which it will be manipulated. The run-time library also mi@ims a count of remote ac-
cesses to a given object. The partitioning policy can ddterra threshold number of
accesses before it is given the option to migrate an objdas dan be useful if an object
is alternately referenced by multiple nodes. It can migtatéhe node currently making

use of it, and then move to the next node after reaching theshiotd. Finally, migration

76

can be triggered through user-defined callbacks to thetipartig strategy. These will be
discussed further in Section 4.4.

Migration builds upon the same primitives as object repitcca When the partitioning
policy determines that an object should migrate, both thecsand destination nodes are
notified. We update the proxy reference on the source noaddoto a newly-created stub
object. Any new accesses to the object during the migratiefawarded to the desti-
nation node, which will block them until the migration is cplate. The proxy maintains
a count of threads entering each method (including gergergte'set methods), and so
can wait until all outstanding invocations on the objecténasmpleted. This has the po-
tential to create deadlock if a thread recursively invokethods on the same object; new
method invocations will be forwarded to the remote node angknreturn. This must be
avoided by taking appropriate care when defining a partigmpolicy, although we have
not encountered such a situation in the applications thdtave distributed.

Once all threads have exited all methods on the migratingabbihe local object is
copied using the same mechanism as in object replicationnWigecopy is complete, the
source node forwards any waiting invocations to the destinaFinally, the new location
information is transmitted to the head node, from where dppgates to all nodes in the
network. Subsequent invocations received by the source froch third-party nodes are

forwarded to the destination, and the third party inform&the change.

4.3 Java Semantics

Preserving source-level Java semantics in a distributatexbis a challenge, and re-
quires explicit run-time support to ensuwsbject identity appropriate reflective behavior,

uniqueness of static state, proper thread synchronizatidrexception handling.

4.3.1 Object Identity

Since an original application object can be represented Wiipte generated objects

within RuggedJ (local, proxies and stubs), we must mainthjaa identity. Comparisons

77

between objects (e.g== and. equal s()) must produce the same result in the distributed
version of the application as in the original. The desigrhefRuggedJ system ensures this
property with no additional effort.

Consider mutable objects that conform to the RuggedJ objedemdethod-based
comparisons will trivially produce the correct outcome:y anethod invocation upon a
remote object is forwarded to that object’s local instanoettte remote node, where it
executes like any other method. Of more interest istheperator. The map from UID to
instances on the current node (as discussed in Sectior) 4réslires correct execution of
==. We cannot have a stub and a local version of the same obj¢be@ame node, and we
cannot have two stubs referring to the same remote objetteosame node. Additionally,
a local or stub object for which a proxy is created is neveenagiced without that proxy.
These properties, plus the uniqgueness of each local olijgad(finition) ensures that
comparison simply works. Any two references that repreiemtsame UID object on a
given node will be reference identical.

The argument for immutable replicated objects is similare &isure that only one
copy of an immutable object is created per node by maintgiaimap of all previously
encountered immutable identifiers. Since a direct objeghiquely represented by a sin-
gle instance on each node, comparison methods and refddaméy (=) comparisons

produce the proper results.

4.3.2 Reflection

Reflection allows Java application code to introspect orif itsel to execute arbitrary
methods. The difficulty that this poses for any dynamic reagisystem is clear; if an
application should reflectively access code which has bemtified or removed, the effect
on the system will be unpredictable or catastrophic. Fatiely, however, applications
generally use reflection sparingly and RuggedJ is able towhehe common uses which

we have experienced.

78

Handling reflective code in RuggedJ involves both the byteaedriting class loader
and the run-time system. During the rewriting process, veeklfor reflective calls, filter-
ing by class name. For example, when we find a method invokexj ama. | ang. C ass
object we handle it using our reflection mechanism. We rewvihié invocation to be a static
call to our reflection manager within the run-time systenthmcase of an instance method
we pass the target object as the first argument to the stdifielaainating the need to mod-
ify the stack. In the run-time library we attempt to repliedhe intent of the call within
the context of our rewritten system. For example, shouldpgti@ation invokeget Met hod
on a class object, we return the result of that call on thel e@asion. We have found this
approach to work well in practice.

There is, however, a fundamental problem with such reflectansformations. An au-
tomated system cannot accurately know the intent of theloeee and so we may return
the wrong resultin some instances. For example, should@itapon callc ass. f or Nane
to obtain adl ass object, the developer may want the new type (e.g. a user\leapper
class) to invoke a method, or may want the base type to obtaitkaon the class. In such
cases our system may produce incorrect results. Devel@pbejter system for handling

reflective code could be an interesting research projetidtiture.

4.3.3 Static Data

When distributing a Java application we must retain the séinsaof static data, ensur-
ing that a static field maintains a single, global, value réigas of the node from which it
is accessed. In RuggedJ we encapsulate static data usinglagsstatic singletorobject
that holds the canonical version of the static fields of tlas<l

The structure of a static singleton (shown in Figure 3.7se&lp mirrors that of the
transformed instance parts of a class (from Figure 3.3).s Blibws a static singleton
to be remotely accessed in the same way as any other objecsabjdct to partitioning
constraints, to migrate. The static singleton structufieidi slightly from that shown in

Figure 3.3 in that the static proxy does not implement thicsilaterface. This is because

79

1 public class X static_proxy {
2 private static StaticGeneratedC ass singleton;

3 public static StaticCeneratedC ass get Si ngl et on()

a A

5 if (singleton == null)

6 singl eton = StaticSi ngl et onManager. get Si ngl eton("X");
7 return singleton;

s}

o }

Listing 4.1: Getting a static singleton via the static proxy

a static singleton does not represent an object from thénatigpplication, and can never
have its reference stored. We use the static proxy as a mealbgming the static singleton
when necessary, but we do not cache it in rewritten code.

The classes of an application fall into three categorieb vaspect to static data. First
are those that contain no mutable static fields. In this caséave no need for a static
singleton, since there is no static data to manage. Forlestatd benchmarks such as
SPECjvm2008, SPECjbb2005, and DaCapo, approximately 82%sdes$ do not require
a static singleton [McGachey et al., 2009b]. Of the rem@ralasses, we split static sin-
gletons intamobileandpinned Mobile static singletons can be allocated on and refeince
from any node in the network, while pinned singletons hauea éaposed to system code
and so have constraints upon their locations. Untransfolensystem code referring to
static data is a problem inherent to Java distribution, ireguthat the application be par-
titioned in such a way as to avoid duplication of fields. Weeddb the developer of the
partitioning strategy for a correct partitioning, guideddur classification tools.

The RuggedJ run-time library tracks the locations of both iteodnd pinned static
singletons, and ensures that only one instance is creatkd imetwork. Rewritten code ob-
tains a reference to a given static singleton through iticgieoxy, as shown in Listing 4.1.

The st ati cSi ngl et onManager class coordinates with its counterparts on various remote

80

nodes to obtain a reference to the static singleton, or taterene if it does not already
exist. It first sends alass loading queryo its parent in the network to find the singleton.
If the parent has a reference it returns it, otherwise thaestcontinues up the tree until
it reaches the head node. If the head node does not have eneddp the singleton it as-

signs the original requester to create one (logging thetdgatevent race conditions should
two nodes simultaneously request a singleton for the saass)cIThis way, the head node
maintains a record of the location of all singletons, and restirect future class loading

gueries to the correct node.

4.3.4 Threading and Synchronization

RuggedJ distributes applications by transferring threadrobflow between nodes.
This generally occurs by invoking a remote method; the sonozle waits while the desti-
nation executes the method, returning control to the souhem the method completes. In
this way we aim to execute a method on the same node as itgalduer, than bringing the
data to the appropriate node and suffering the overheadjetimigration. A néve ap-
proach to remote method invocation would be to maintain d pbihreads on each node,
and use these threads to execute any incoming method reqtistever doing so would
violate Java’s synchronization semantics.

Javasynchr oni zed blocks and methods expres®nitor synchronization with respect
to an object instance or class [Gosling et al., 2005]. Theitaoinstance or class) is
named explicitly insynchr oni zed blocks. Insynchr oni zed methods, the monitor is im-
plicitly the method receiver (i.ethi s) for instance methods or the declaring class for
static methods. At the bytecode level;nchroni zed blocks translate to blocks delim-
ited by Moni t or Ent er /Moni t or Exi t bytecodes. Only one thread at a time can acquire a
monitor, though the same thread may recursively acquiredh® monitor multiple times.
This allows a thread to call multipgynchr oni zed methods from within the same monitor

without complication.

81

1 public class X {

2 private Y vy;

3 public synchronized void ni(){
4 y. met hod(t hi s);

s}

6 public synchronized void n2(){

1 public class Y {
12 public void nmethod(X x){
13 x.n2();

Listing 4.2: Examplesynchr oni zed methods

Recursive monitors force threads executing remgtehr oni zed methods somehow
to retain the identity of their calling thread, even when tiadler is on a different node.
Consider the situation in Listing 4.2. A thread that invokesi () obtains the monitor for
the appropriate instance, then callg. met hod(t hi s) . Whennet hod invokesx. n2() the
thread must be able to re-enter the monitor forxhestance, and successfully execnite

However, under RuggedJ it is possible for the objects in tkasrgle to be distributed
as shown in Figure 4.2. In that case, the threadiafe A enters the monitor for the ap-
propriatex_| ocal instance, then waits for the remote method invocation. @&t hod(X)
to return. The thread oode B makes a remote call back kde A. If a random thread
is assigned to execute this call then it will deadlock waitio acquire the monitor on the

X_| ocal instance.

82

- ——————— e —————— - ——————— e ——————

x.m2 ()

AN Node A | ! Node B |
| x.ml() | | |
I I I I
: ! Remote I :
I x.m2 () |
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

| Remote
! v.method (X) :
Figure 4.2.: Problemsynchr oni zed deadlock

Thread Affinity

We solve this issue by implementitigread affinityfor remote method calls. We define
logical global threadghat capture the control flow of a single thread in the oribappli-
cation. We map each global thread to exactly one Java thneadch node; any remote
method call performed by a given global thread is executettisbgssigned thread on that
node. This ensures that the situation in Figure 4.2 canrmtroc

Since we have built our thread affinity implementation on édur custom network
library we do not rely upon Java RMI to assign threads to remoé¢hod invocations.
Thus we can use a simpler thread affinity system than that lsgaddOrchestra [Tilevich
and Smaragdakis, 2004]. We can control which thread exgcateote methods so we do
not need to map threads to equivalence classes like J-Graldegs, and we are able to use
the JVM’s internal monitor implementation rather than trga custom synchronization
library.

To minimize the number of Java threads running on each nodenlyecreate local
threads on demand. If a global thread invokes a method onem giede for which it
currently has no local thread assigned, then one will betedeta carry out the work. We
must also intercept remote invocationsTtaf ead. st art () to create a new global thread,
and detect termination of a thread when its initiah() method exits. This triggers a

clean-up process that frees the corresponding local thiesaairces on each node.

83

Implementation of thread affinity requires that method catoons be non-blocking;
the sequence of calls in Figure 4.2 would lead to deadlodieifirst remote invocation (of
y. met hod) blocked, since the Java thread would be unavailable toutgecn?. Instead,
once a thread initiates a remote method call it proceeds tbfaeraincoming messages,
allowing it to execute any incoming method calls.

Listing |4.3 sketches the implementation of our non-blogkaalls: i nvokeRenot e-
Met hod is called from a stub object, indicating that a running mdthas attempted to
invoke a method on a non-local object. The stub createsiaskeMet hodMessage object
that describes the method to be invoked, as well as its tafgett. After sending the
invocation request in line 2, control passesdt For Messages.

Each global thread has a unique thread identifier (TID) thabnstant throughout the
network. We use the TID to determine the thread for which asags is intended. When
a message arrives for a thread (line 9 in Listing 4.3) we clufréen the type whether the
message is a response to an outstanding remote call or aeremoptest for a new method
to be executed locally. If the former, we simply return theueaand control proceeds from
the site of the initial remote invocation. If the latter, weeeute the incoming method on the
local node (line 15). Any subsequent remote method invonatin the method body will
result in a call ta nvokeRenot eMet hod, which will call wai t For Messages. Thus, we can
see that successive remote invocations for a given threaddstack ofwai t For Messages

calls, ensuring that return values are properly matchekeio tespective invocations.

Remote Monitors.

When acquiring a monitor in a distributed context, we mustuenshat the correct
objectis locked. In RuggedJ this requires two conditions:ntfonitor must consistently be
acquired on a specific node, and the monitor must always hé&radoon the same object
within that node.

This second condition arises from the various implemeonatof the RuggedJ object

model, outlined in Section 3.2. In order to make untranstii®a system code conform

84

1 public Object invokeRenoteMethod(IlnvokeMet hodMessage nsqg) {
2 nsg. send(thread_id);
3 bj ect result = waitForMessages();

4 return resul t;

7 public Cbject waitForMessages() ({

s for(;;) {

9 Message nsg = Message.recv(thread_ id);

10 if (msg instanceof MethodResult Message) {

1 return ((MethodResul t Message) msg) . get Resul t () ;
12 }

13 if (msg instanceof |nvokeMet hodMessage) {

14 hj ect result

15 = ((I nvokeMet hodMessage) nmsg) . i nvokeLocal 1 y();
16 new Met hodResul t Message(resul t). send(nsg. source,
17 thread_id);

18 }

1}

20 }

Listing 4.3: Non-blocking remote method invocation

to the object model we create user-level wrappers aroundainged system class objects.
Thus we must ensure that user-level code locks the systeectphbather than the wrap-
per. This way both user and system code acquire monitorsessathetarget object; user
code by selecting the correct object, and system code whiohtiaware of the user-level
wrapper.

Additionally, we optimize immutable objects within Ruggdxdreplicating them across
the network. For these we define a replicated objéxiime nodas the node upon which it

was first allocated, and use that copy as the canonical tangetking. Immutable objects

85

locked by untransformable system code are by default ndiceged (though this can be
overridden by the partitioning strategy), so they do noeparsy problem.

We implement remote monitor acquisition as an extensioruof@mote method invo-
cation mechanism. When a remote monitor is acquired or reteas send a message to
the appropriate node, specifying the object to be opergted.uThis message is handled
similarly to a remote method invocation; if a representatlava thread does not yet exist
for the global thread we create it. Otherwise, we know thatttiread is waiting inside
thewai t For Messages method. Thus, we can add a mechanismetiot For Messages that
obtains and releases monitors for the global thread.

The design of this mechanism is complicated slightly by thedode-level semantics
of Java monitors [Lindholm and Yellin, 1999]. Eachni t or Ent er /Moni t or Exi t pair
must be balanced within their method’s body; every contmVfpath through the method
must have exactly one monitor exit operation for every nwrentry. This means that we
cannot simply generate a method that acquires the monit@rf@bject. Such a method
would have to release the monitor before exiting, which wWaiblate its purpose, or would
generate a run-time error. Instead we nest remote monitoiesrand exits within the
remote method infrastructure, as shown in Listing 4.4.

We extendai t For Messages by handling two new message types:Eamner Moni t or -
Message at line/ 10 and arxi t Moni t or Message at line/ 13. When a remote node enters a
monitor, it callsent er Moni t or . First it finds the target monitor object (line 20). For the
sake of clarity, we assume that the target is local to the ndtiés is normally the case,
since the requesting node must necessarily have obtaireddramce to the object in order
to acquire its monitor, and so will also have obtained larathformation. We handle the
corner case in which the requesting node’s information idated (due to migration of the
target) through th@enot eoj ect Manager service.

Given the appropriate local object, line 21 ensures that @ld the canonical object
(rather than a wrapper, as discussed earlier). We thenracipa object’s monitor with a
synchroni zed block, and make a nested call wai t For Messages. Execution then pro-

ceeds as before, with remote method invocations formingekstf nested calls. Even-

86

1 public Object waitForMessages() {

2 for(;;) {

3 Message nsg = Message.recv(thread_id);

4 if (msg instanceof MethodResult Message) {
5

6 }

7 if (msg instanceof |nvokeMet hodMessage) {
8

o }

10 if (msg instanceof EnterMnitorMessage) {
1 ent er Moni t or ((Ent er Moni t or Message) nsQ) ;

12 }

13 if (meg instanceof ExitMonitorMessage) ({

14 return null;

15 }

6}

v}

18 private void enterMnitor(EnterMnitorMessage nsg) {
19 Cbj ect nonitor

20 = Renot eObj ect Manager. fi ndCbj ect (nonitor.getU D());
22 nmonitor = NbnitorManager. get Lockabl eCbj ect (nonitor);
22 synchr oni zed(noni t or) {

23 wai t For Messages() ;

Listing 4.4: Remote monitor acquisition

tually the remote method will encounter a monitor exit ofiera(guaranteed by byte-
code semantics), at which point it will send Bxi t Moni t or Message, returning from the

wai t For Messages invocation at line 23.

87
4.3.5 Exception Handling

When executing a remote method in RuggedJ we must preserveeaptens thrown
by that method. An exception thrown by a remote method mayahgtt by a locatat ch
clause, and so to preserve the semantics of the originaicaiph we must ensure that
such an exception is thrown.

Java’s exception handling mechanism limits our rewritiagabilities for exceptions.
An object thrown or caught as an exception or error must ibfrem Java’'sThr owabl e
class. This rules out the Wrapping rewriting template, s\ivcapped types do not preserve
the inheritance hierarchy of the original type. Recall thataing is the mechanism
by which we ensure that all system classes can conform to tiygdRiJ object model; a
Thr owabl e subclass in the Java standard libraries which could notwatten using any
other template could therefore fail to conform to our obj@ctdel. No such class exists
within any of the standard libraries that we have examinadprhctice, allThr owabl e
subclasses that we have examined are classified as Direct.

We treat the exceptional exit from a method in a similar matma standard return. All
remote method invocations are performed as reflective oalkthe executing side. Under
Java’s reflective semantics, any exception that remaingugit in reflectively called code
is wrapped in anvocat i onTar get Except i on and thrown to the invoking code. We wrap
our reflective method invocations intay/cat ch block that catches this exception. We
unwrap the original thrown exception and pass it back asgbdéine response to the original
method invocation message. On the invoking node we cheoketiod message responses
for exceptions, re-throwing any that have been raised. Whigthe original exception is
thrown and can be caught by any calling context.

The re-throwing mechanism contains an interesting sybtlgtrown exceptions must
be declared in method signatures to statically ensure #ilit@ code can handle any such
exception. Thus, our remote invocation method must detheatet throwseExcept i on (as
it can throw any subclass @kcept i on). Normally, this would require that every possible

control flow path to this method containcat ch block that can handlexcepti on. This

88

is not an issue within RuggedJ, since the remote method itieoceode is called only by
stub object, which are generated at the bytecode level. é@setblasses are never compiled,
the requirement that thrown exceptions be catchable ishestked.

One unfortunate limitation of our exception handling metba is that stack trace in-
formation is not correctly preserved. The stack trace foexreption starts at the point
where it was thrown on the local machine (inside RuggedJ'ssagesg system), losing
any trace from the remote execution. We could solve this verseé ways. First, rather
than re-throwing the originathr owabl e object we could create a new object of the same
type, and chain the original exception object as a “causéis Would preserve the stack
trace information, albeit with some additional frames fogBedJ’s remote invocation in-
frastructure. However such an approach would risk losindjtexhal information stored
in the exception object, and so could alter the semanticheobtiginal application. Al-
ternately, we could insert correct stack trace informatita theThr owabl e object before
it is re-thrown, composing the current stack trace with trathe remote machine. This
would give accurate stack trace information, but wouldcéine overhead of generating

unnecessary stack traces for all remote exception whosesteae not examined.

4.4 Application Partitioning

In order to distribute an application across a RuggedJ n&weoe must determine
which objects are to be allocated upon which nodes. We retbig process gzartitioning
the application. RuggedJ provides a partitioning interfaacerhich developers can write
a partitioning policy. We believe that the application deper is in the best position to
provide an optimal partitioning, guided by the output of ainole-program static analysis.

While creating a partitioning policy for an application mages to be a daunting task,
we have found that simple policies generally perform weie policies for each of the
benchmarks discussed in Section| 5.3 never required moreattiaw dozen lines. As a
general strategy, we first locate the root object of a distidn unit (typically arunnabl e

object that contains the work for an individual thread), afidcate instances of this ob-

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

public class DatabasePartitioning extends Partitioning {

private int allocated = O;

protected int | oadTi nmeAll ocationPolicy(AllocationSite site) {
if (site.getTargetd ass().equal s("search. Conpari sonThread"))

return ALLOCATE DYNAM CALLY,;

return ALLOCATE_LOCAL;

}

protected int runTi neAl |l ocationPolicy(AllocationSite site) {
if (++allocated > NodeManager.get MyNode() . avai | abl eProcessors())

return ALLOCATE REMOTE;

return ALLOCATE LOCAL;

}

protected Node runTi neAl | ocati onNode(All ocationSite site) {
int id =1+ (allocated % (NodeManager. get NodeCount() - 1));
return NodeManager. get NodeByl D(i d) ;

}

protected List<RIType> get Decl aredRepl i cabl e() {
Li st <RIType> replicable = new ArrayLi st <RIType>();
replicabl e. add(RJType. get("char[]"));
return replicabl e;

}

prot ected bool ean copyTransitiveC osure(Cbject obj, RIType t) {
return t.equal s(RIType. get ("search. Chunk")) ||

t.equal s(RIJType. get ("search. ResultSet"))

}

protected List<String> getNonRewritable() {
Li st<String> local = new ArrayList<String>();
| ocal . add(" neobi o. al i gnnent . *");

return | ocal;

Listing 4.5: Partitioning policy for DNA database matchiagplication

90

ject on remote nodes. By default, any subsequent allocaionperformed locally, so

objects related to that distribution unit are automaticalaced on the same node. List-
ing 4.5 shows the partitioning policy for one of our benchksaa DNA database matching
application, excluding those parts related to migration.

Remote allocation is decided in stages, to afford maximumbiléy. During the
bytecode rewriting phase the partitioning policy is expegsfor each static allocation
site using method oadTi neAl | ocati onPol i cy. Using the supplied allocation-site in-
formation, the policy can determine whether objects atledat that site should be al-
located locally, remotely, or dynamically. In the case ohadwic allocation, the policy
is queried again at run-time, whenever that allocation isitexecuted, as expressed by
methodr unTi meAl | ocat i onPol i cy. At that point, the policy can determine whether to
allocate locally or remotely, depending on the dynamic doordof the network. Remote
allocations, whether determined statically or dynamycaause the partitioning policy to
be queried an additional time to determine the node at wiiehrémote object should be
allocated, as specified by methoghTi meAl | ocat i onNode. The policy has access to the
run-time library’s network metadata, including the numbfnodes and the capabilities of
hosts on the network, so an informed decision can be madendime. Here the policy
cycles between all nodes other than the head node (number 1).

The partitioning policy also allows a developer to declgpes to be immutable, allow-
ing them to be replicated. One of the uses of this mechanigrhas the instances of a class
undergo a population phase, after which they are not modified static analysis cannot
detect that the object is not modified after a certain poirthenapplication, and so marks
the class as mutable. However, based upon knowledge of tthisepbehavior, the devel-
oper can declare the class to be immutable for the purposbstabution, allowing it to be
replicated across the network, using tfee Decl ar edRepl i cabl e method. The database
matching application operates over large character attetsare initialized early in the
application, and then used unmaodified. Line 19 allows thesg/s to be replicated. Note
that this occurs at the type level, and so requires thathali[] arrays in the application

are immutable.

91

ThecopyTransi tived osure method allows the developer to designate classes that
should be copied using Java’'s serialization mechanisnerdttan RuggedJ’s reflective
copying technique. This offers several key advantagesalgation is much faster than
RuggedJ’s marshaling and unmarshaling process, and itsaittavitiple objects to be copied
in a single operation. However, the classes that can be @¢opiéhis way are limited.
Clearly, such classes mustimplementshei al i zabl e interface. Additionally, all classes
in an instance’s transitive closure must be direct (i.eey thre not rewritten to implement
the RuggedJ object model). Serializing instances of a clagmt does implement the
RuggedJ object model would copyl ocal instances, which violates the rule that every
local instance represents a unique object.

The final method in Listing 4.5get NonRewr i t abl e, allows the developer to specify
classes that will not be rewritten. We treat these objects/stem classes, and load them
into the JVM without modification. This mechanism exists a®ptimization to allow key
performance-critical sections of code to execute withbatdverhead of interface indirec-
tion, such as accessing public members and array elemengetvand set methods. These
non-rewritable classes may not reference any rewrittesselg as they will be unaware of
the RuggedJ object model. Additionally, they may not refeeamon-final static data, since
they cannot access static singletons.

The partitioning policy is also responsible for managingeobmigration. Listing 4.6
shows the migration policies for the DNA database applicatiThe partitioning policy
must first declare which classes may have migrating instafegM gr at). This allows
us to allocate proxies only for those classes that may nesad,thvoiding the indirection
overhead for all other accesses. Migration can be triggerédloree ways. The first is to
migrate the return value back to the callerdr at eMet hodRet ur nval ue). In this case, the
return value of a method called from another node is immeljiahigrated to that node,
allowing it to be operated upon locally.

The second trigger is after a remote object has been invoke slumber of times

up to a fixed thresholdn{ gr at eFr equent | yCal | ed). This allows objects to migrate to

92

1 prot ected bool ean mayM grate(RIType t) {

2 return t.equal s(RIType. get ("sear ch. Sequence")));

s}

4 prot ect ed bool ean m grat eMet hodRet ur nval ue(Ul D ui d,

5 String nethodnane, String nethoddesc, Object[] args) {
6 return false;

7}

8 prot ect ed bool ean mi grat eFrequent| yCal |l ed(Ohj ect obj,

9 RJType type, UDuid, int callcount) {

10 return false;

uo)

12 protected List<M grationTrigger> getMgrationTriggers() {
13 Li st<M grationTrigger> triggers

14 = new ArrayList<M grationTrigger>();

15 triggers.add(new M grationTrigger("search. Sequence",

16 "popul ate", "(Ljaval/iol/BufferedReader)V', Position. End,
17 "this"));

18 return triggers;

1}

20 prot ected Node
21 nm grationTriggerCall back(M grationTrigger trigger, U D uid)

2 |

23 int id

24 =1 + (allocated % (NodeManager. get NodeCount () - 1));
25 return NodeManager . get NodeByl D(i d);

%}

Listing 4.6: Migration policy for DNA database matching épation

whichever node is currently accessing it most frequenthcéothe threshold is reached),
letting the partitioning strategy account for phase bebravi
Finally, a partitioning policy can install callbacks at thiart or end of arbitrary meth-

ods in the applicationget M grati onTri ggers). The policy specifies the class, method

93

name and signature into which a callback is to be insertedieisas the position (start or
end) within the method. Additionally, it gives a variablenmathat may be migrated. A
callback to the partitioning policy is inserted in the sfied method when the bytecode
is rewritten, so the policy is called when the method execaterun-time. The callback
method (i grati onTri gger Cal | back) allows the partitioning policy to supply a node to
which the referenced object should migrate. This mechaalfows arbitrary values (such
as local fields or method arguments) to be migrated, ratlaershmply the return values of

methods.

4.5 Contributions

The primitives upon which we build our run-time infrastruiet have some similarities
to those implemented in other systems. Redirecting remotbadenvocations through
stub objects is a common theme in object-oriented disiohu@although our implemen-
tation does not rely on RMI as does several other projects. Beimenting our own
communication layer we are afforded more flexibility in oun#time, allowing us to im-
plement thread affinity. RuggedJ’s communication system al®ws different forms of
message passing for different goals; broadcast messagestiee-based communication
hierarchy, while method invocations go from node to nodeis Tual-mode messaging
system significantly reduces communication overhead.

RuggedJ’s network configuration is also a key difference \pitevious work. The
majority of transparent distribution systems (J-Orcleesftddistant and AIDE) focus on
small networks with fixed computing resources. The only oflystem that targets larger
clusters of machines is Terracotta. However, Terraco®s assimilar distribution model
to the simpler systems, with a client/server architectbesd offloads work from a central
server to worker nodes. RuggedJ deemphasizes the head madsgary to coordinate a
few global activities), while storing canonical versiorfsobjects across the network and

implementing a peer-to-peer configuration.

94

The idea of object migration for spatial locality is also argoon theme within dis-
tributed systems, going back to an early implementationnreald. However RuggedJ’s
unique partitioning plug-in interface allows developeysdmbine application knowledge
with a level of dynamic introspection that is not commonhaidable within transparent
distribution systems. In addition, some other distribatsystems (including Emerald and
Addistant) allow immutable objects to be replicated on pidtnodes. However they de-
fine this immutability at the object level, whereas we detigtermine immutable fields

which we replicate using caching in our stubs.

95

5 DISTRIBUTED APPLICATION DEVELOPMENT

The bytecode transformations and run-time infrastructbhe¢ we have presented in the
previous chapters allow us to support the vast majority v dgoplications. However, not
all applications benefit from distribution. We target a sla$ applications that we refer to
asdistributable applications that can be broken into multiple discretésjmach of which
is operated upon by a dedicated node. In this chapter we esitiibe some of the design
decisions that can impact the distributability of an apgien, based upon our experiences
while writing and modifying applications to run on RuggedJ Will then discuss some
concrete examples, detailing how we modified and partitidhe applications to maximize
performance under RuggedJ.

Many of the application characteristics that we discussis thapter are applicable
to distributed systems in general, while others exist ataats of RuggedJ’s distribution
mechanisms. We therefore approach this issue in two paestiof 5.1.1 outlines the
concept of distributability in Java and discusses some @ffiihdamental properties that
distributable applications must demonstrate. Sectior?8dlks more specifically about
targeting applications to the RuggedJ infrastructure, awd thesign decisions in the ap-
plication can make the most of our distribution platformci8® 5.2 describes the general
strategies that we use when partitioning applicationsaliinn Section 5.3 we describe
some large, realistic applications that we have eithegdesi or modified to distribute with

RuggedJ.

5.1 Distributability

The constant CPU performance improvements implied by Medag/ [Moore, 1965]
have meant that developers have traditionally been cotuestiale their applicationgerti-

cally. Vertical scaling is achieved by adding more and fasterward to a single machine;

96

improvements in the platform lead to better performanceoatast to the developer. Such
a scaling model is clearly attractive. We can simply waittfee next generation of hard-
ware to improve our applications’ performance. Modern hane trends, however, do not
offer the same vertical scaling opportunities. Clock spde& reached a plateau, with
additional computing capacity coming from additional corather than from increases in
monolithic processor horse-power.

This shift in hardware design must be met by a correspondiagge on the software
side. Rather than scaling vertically, applications must ésighed to scalborizontally,
finding performance gains by executing across multiplesarel machines. Developing
such applications requires a new way of thinking for thosedu® vertical scaling; not
only must applications be multi-threaded, but data stmestand access patterns must be
designed to produce discrete work units that can be opetgted independently of one
another. Decomposing applications in this way requiresenadiort at the design phase,
and may require more complex synchronization than a simptgesthreaded system. To
compensate, however, horizontal scaling allows a weligthesl application to scale out to

a virtually limitless degree.

5.1.1 General Distributability

In this section we discuss some of the design decisionstbatan application to scale
horizontally. We focus here on general principles that hnlé regardless of the distribu-

tion mechanism used. We will discuss RuggedJ-specific tqaesiin Section 5.1.2.

Application Structure

Distributable applications must be structured with ndtdistribution points, with each
distribution unitperforming a subset of the application’s workload. Scabag thus be
achieved by executing more distribution units on addititiaadware resources, rather than
by increasing the workload for a single unit. This standsontrast to the traditional

single-threaded application model, where vertical sgaéilows a single unit to perform

97

more work in a single machine. Each distribution unit shdagdoperated upon by one or
more dedicated threads. By binding threads to a specific pére@pplication’s data and
workload we can partition distribution units among the saemachines of a system while
preserving spatial locality in a given thread’s accesses.

The application should be structured with minimal intei@ctbetween distribution
units. When scaling to a large number of units we may not betalpeedict the latencies
between any two; the data from a remote unit may be locatddmiite shared memory of
the local machine, in a distant memory bank in a NUMA archites; or on a remote ma-
chine. Thus, itis likely that any cross-talk between dttion units in a large application
may translate to expensive network operations.

Finally, the design of data structures within a distribugggblication is crucial. Data
must be allocated close to the thread that will use it in otol@wvoid costly remote accesses
or migrations. Thus data structures that can be decompogesinaller units are preferable
to single indivisible data structures. For example, lamgayes pose a barrier to distribution;
such a structure must be allocated on a single node, whelsa®tsmaller arrays could

be spread across the network.

Distribution Bottlenecks

We have encountered several common bottlenecks that kedipagons from scaling
horizontally. The most common is mutable static state (p®s@d to immutable static data
such as class constants which can be replicated, and so diopsse an issue to distribu-
tion). An application’s mutable static data must be glopatnsistent across the system.
This means that the state must either be stored on a singés witth all updates and reads
being performed on that node, or it must be subject to sonma ffrcoherence mecha-
nism to ensure that updates on one machine are reflected othats. RuggedJ uses the
former mechanism. Either one of these approaches leadsitei@ase in network traffic
and can slow down data accesses, causing a deterioratigstans performance. Appli-

cation designers can alleviate this overhead by minimitlireguse of mutable static data,

98

using shared locally-consistent data rather than glolalhsistent statics where possible.
A similar restriction affects the usage of the Singletongiepattern [Gamma et al., 1995].

By encapsulating a class’s state in a single object, devedosk such an object becoming

a bottleneck for distribution.

Similarly, data sources that conform to the data accesscb{®AO) pattern can
present difficulties in a distributed system. Forcing atbd@ccesses to go through a single
DAO instance requires that all data is accessed from a singtghine. In the same vein,
several construction design patterns can lead to bottksneBuilders and factories that
maintain internal state must result in remote calls to coesibbjects. Such construction
patterns could also produce extra migration overhead, @si¢wly-created object must

then be relocated to the node upon which it is to be used.

Immutability

Immutable data offers the largest performance improveinemtistributed application
of any factor beyond basic application structure. Sinceviilae of immutable data will
never change after an initial setup phase we can replicatesaich node in the network, al-
lowing local read access to all threads. Application dgvets can increase the immutable
content of their applications by factoring out the mutaldatent of a class. This allows
the immutable content to be stored locally, while the mugataintent is subject to remote
invocations. Note that the RuggedJ run-time system maks®ftimization unnecessary
by identifying and caching immutable state in the stub; grening such a transformation
by hand could be error-prone in case of later modificatiorteeapplication.

The design of class initialization can also increase theutafrle content of a class. By
setting immutable fields in a class’s constructor such fields be marked afs nal , and
so can be picked up by analysis tools. Contrast this to setti@dields in an initializing
method that is called after the object is created. While tHddiare still immutable, it is

not as clearly obvious without a more involved control flovalysis.

99

Object Migration

A factor to consider when designing data structures is obpebility. Migration allows
us to exploit shifting access patterns and maximize spiattality. However, the act of
migrating itself may cause unacceptable overhead. Shaaat more threads on remote
machines refer to a single object, there is a risk that theablpay “ping-pong” between
the machines, migrating from one to the other depending esdlirce of the most recent
access. While this can be alleviated in part by a sensibleatnogr policy, a better approach
would be to avoid this behavior in the application’s design.

One approach to limiting spurious migration is to define psasithin the application
or object’s life cycle. The object is then bound to a paracudistribution unit for the
duration of the phase, preventing it from migrating befdre next phase boundary. Note
that this does not affect the reachability of the object;aih still be accessed by remote
machines, just not migrated. An example of this would be tieation and use of a large
data structure. The structure would be bound to the creatiitgintil it has been populated,

and then to a different unit that makes use of it after it is plate.

Serial Sections

An issue that can seriously limit the distributability ofapplication is sections of serial
code. The maximum performance gain of a distributed syssdimited by the percentage
of the application that is parallel [Amdahl, 1967]. Thus,ibyroducing serial sections of
code we limit the benefit that we can see from horizontal sgali

Some serial code is unavoidable. Itis frequently necedsagysingle controller thread
to handle global tasks such as creating distribution upésgjtioning work between them,
merging results, and so forth. However, there are some ¢aseBich serial execution
is unnecessary. Threads in Java are implemented as clagsiesnienting therunnabl e
interface; calling thet art method on a thread associated with such an object will cause
theRunnabl e class’sr un method to execute in a new thread. Only code invoked from the

run method is executed in the new thread; the object’s consirigcexecuted by the parent.

100

We have seen cases where a series of worker threads areldrgatsingle controller, with
substantial work performed in ea@annabl e object’s constructor. Moving this work to
the start of the un method has increased the distributability of the applcgtand brought

considerable performance improvements.

5.1.2 Designing for RuggedJ

RuggedJ offers significant advantages to developers ofliitible applications, in-
cluding a shared-memory abstraction, flexibility in netkorfrastructure, caching of im-
mutables and straightforward object migration. If a depelplans to leverage the RuggedJ
infrastructure, there are some additional design choltascan be made to maximize the

benefit from the infrastructure.

Language Features

There are several features of the Java language that we dmport within applica-
tions, and others for which we provide limited support.

We do not support applications that define their own usestiglass loaders. This is the
case for two reasons. We rely on the fact that we transformsalt classes to implement
our object model. Allowing applications to install their nwlass loaders could violate this
constraint, allowing unmodified classes to exist in theays(for similar reasons, we do
not allow applications that use the JVM Tool Interface). Bleeond cause to disallowing
custom class loaders is that we use a full-program analgsietermine which template
should be used to transform each class and to identify infoleidata. The result of this
classification depends on all the classes in the system tingthesult for one affecting the
classification of others. Generating unprocessed classas-ame through a custom class
loader may invalidate the results of this classificatiord ean lead to mutable data being
replicated.

We also do not support Java’s security policies. RuggedJ jpdeimented entirely at

the user level, but performs some minor modifications toesystlasses using the JVMTI.

101

To avoid security exceptions, we have defined our own, hidgjblsral, security policy.
Application-level security policies may be more strictrih@ur own, and so can prevent
RuggedJ from functioning properly.

We offer limited support for reflection within RuggedJ. As wavh described in Sec-
tion/4.3.2 we use a heuristic-based system that intercefixtive calls and rewrites them
to work within our rewritten infrastructure. However we dotiguarantee that these trans-
formations preserve the behavior of the original applarati Thus, while many uses of
reflection will work as intended in our system, we cannotyfdlipport all reflective se-

mantics.

Simplifying the Object Model

The RuggedJ object model as described in Section 3.2 alldwsystem classes to
operate within a RuggedJ network. It does this using a rangeémentation techniques
that work around the limitation that we cannot directly somm library code. Since we
can rewrite user code, we have far more freedom in transfaysuch classes. However
there are two instances in which we must apply the Wrappingxterteling template to
user classes.

First, as we discussed in Section 3.5, a user class must e@d&'dpping template if
its superclass is classified as Wrapping. This can come abthé user class extends a
Wrapping system class; the user classes and any subcladides elassified as Wrapping,
and will incur extra wrapping and unwrapping overhead. Idifficult to predict ahead
of time how a given class will be classified (classification éach class depends on the
classification of other classes in the closure; adding nestesy classes can change the
classification of existing classes). Thus it is advisableninimize subclassing of system
classes.

The other way in which a Wrapping or Extending template maydptied to user code
is through exposure to native code. As we have previouslgdtaative code can break our

transformed applications, should a rewritten class or negrbb referenced. To minimize

102

this risk, if our heuristics should suggest that a class nagxposed to native code we
do not rename it, and so must use the Wrapping or Extendingla¢epAdditionally,

exposure to native code limits code mobility, as an objeat thay be referred to by native
code cannot migrate. We therefore recommend that apgitatargeting RuggedJ do not

include native code.

Replication

RuggedJ offers more flexibility in identifying immutable @than is available through
the Java language alone. First, we use our whole-progratgsaéo identify immutable
data, rather than relying on the nal keyword. More importantly, however, we allow
developers to identify functionally-immutable data thgbuhe partitioning policy. This
takes advantage of the developer’s application-specibedadge; a class may be statically
determined to be mutable, but may have its contents froziem ah initial setup phase,
allowing it to be replicated safely. This maximizes the didiat we can replicate in a
distributed application. Developers can take advantagaisffact when designing their
objects’ life cycles.

As a further optimization, developers can declare immetaldsses to implement the
Seri al i zabl e interface where practical. This way we can take advantafjeedaster data

transfer gained by serializing objects, as discussed itidet.2.2.

Direct Field Access

Contrary to most Object-Oriented development best praetisgce, fields in RuggedJ
should be accessed directly, rather than ug#tigandset methods. The reason for this is
subtle: the RuggedJ class loader rewritesallFi el d bytecodes to be method invocations
on generated interfaces (with a symmetrical implememdbtosSet Fi el d bytecodes). The
get method is implemented differently depending on the olbgdcitation; aget method
in a local class simply returns the field, while the corregfiog method in a stub performs

a remote method invocation. However, we optimize stub nosththe case of immutable

103

fields. Should a field be determined to be immutable we caaheatue in the stub, and so
save the overhead of a remote method invocation. TdE; el d bytecodes on immutable
fields are purely local operations, regardless of the oligeettion.

In the contrary case, a user-defingd method in the original application is not ac-
cessed using theet Fi el d bytecode, but is called usingwokeVi rtual . It is therefore
not redirected to our generatget method. In the local case, the user-defiged method
performs in the same way that the generated version wouldieker, the stub implemen-
tation of such a method simply performs a remote method emvoc on the local object to
execute the method. Thus, even if a field is immutable caliggg method in the original

application can lead to a remote invocation.

Performance-Critical Sections

While the RuggedJ object model allows all data to be remotdreaced, it incurs
some performance overhead. Redirecting all field accessmsgtinget andset methods
carries a performance penalty, particularly when itegatimough the elements of an array.
RuggedJ allows developers to avoid this run-time overheaddsygnating performance-
critical classes to be System Direct. This means that swadses are loaded into the VM
with minimal transformations, and so run at the same spetgtegsvould without RuggedJ.

We can perform the System Direct modification on any cladsasare known to be
immutable or purely local. Any remote reference to a SystenedD class leads to its
replication, which would cause lost updates in the case ofiaiote object. This require-
ment is not particularly arduous — the performance-critgsctions of well-partitioned
applications should be purely local (otherwise such sestwould require frequent remote
invocations, making the indirection overhead insignifi¢an

Of more concern is the fact that System Direct code cannet teftransformed types.
The transformations that would make System Direct code tefeew types (indirection
through interfaces, callinget andset methods in case of remote data, etc.) are exactly

the performance-affecting transformations that we seekvtod. Thus, we can use this

104

optimization only on those performance-critical clas$ed tlo not refer to shared objects.
By structuring their applications to take this considematioto account, developers can
maximize the classes that they designate System Direcs@ndnimize the performance

impact of the RuggedJ transformations.

5.2 Partitioning Strategies

We have generally found simple partitioning strategies twkwvell. In each of the
applications that we discuss in Section 5.3 we have detedrarclear point for decompo-
sition into distribution units. We found that distributiemits are normally anchored in a
Runnabl e object (i.e., the root of the distribution unit is bound targée thread).

Once we have identified the distribution units, we must deitee the nodes upon which
to place each unit. This will generally depend on the resssiavailable to each host; we
want each distribution unit to have a roughly equal levelahputing resources. This way
we do not have one unit lagging behind the others, leadingvtel overall performance.
Our partitioning strategies begin by introspecting inte tlodes of the network, determin-
ing the number of cores available to each. We aim to assigroat ane distribution unit
to each core to avoid thread switching (naturally this issgme only until the cores of all
nodes are saturated). The allocation of distribution unitsodes depends on the number
of units in the system, as well as the capacity of individuades. We consider three load

levels:

Light load. A system is lightly loaded when the number of distributiontsiis less than
or equal to the number of cores available to the head nodkidase we allocate all
distribution units to the head node. The head node is thealgilace to allocate the
first distribution units; we know that the application is h&@hed on the head node,
and standard input and output streams are redirected teetigeriode’s console. By
allocating the maximum number of distribution units on tleadh node we eliminate

remote references between those units. The only excemtitimstis where there is

105

considerable work performed by a controller thread thates to the head node. In

this case the head node may be saturated before we allogadéstnbution units.

Medium load. A medium load is when the number of distribution units is nvaatly
greater than the number of cores available to the head node d&finition of
“marginal” in this case depends on the level of inter-nodeneetivity. Under a
medium load we allocate units on the head node until it isecknscapacity, and
place the remaining distribution units on the second noded@hot completely sat-
urate either node since there will be incoming remote methwatations that must
be handled; allocating units to every core of a node would teahread switching
should an incoming method request arrive. The more crélssgkat exists between

distribution units, the more cores should be left availdbltilfill remote requests.

Heavy load. A heavily loaded system is one where the number of distidoutinits is far
greater than the number of cores available to the head nodkislcase we allocate
the distribution units evenly across the nodes. This allovesimum flexibility for
handling interactions between distribution units. If sutleractions are few, there is
little penalty for allocating units on remote nodes. If raetions are more common
this approach spreads the targets for remote method ingasacross the network,

and leaves the maximum number of cores available to handberimg requests.

These strategies are general guidelines, rather thanamakdiast rules. They make
assumptions about the application (such as a uniform patteaccess to remote data)
that may not hold true for any given circumstance. For exapgbme of the applications
that we studied had a central controller object to which Itesare returned after each
distribution unit completed its work. In this case it was adtbageous to saturate the head
node (to avoid copying results from one node to another) exen the system was under
a medium or heavy load. This is one of the major benefits of auitpning system; an

application developer can easily specify a customizectation policy for an individual

application.

106
5.3 Applications

Clearly, not all applications meet the distributability vegments laid out in the previ-
ous section. Many computational tasks have data deperegetiat make them inherently
serial, or limit their scalability to a finite number of thasa Others would appear to be
distributable, but have serial sections that overwhelmspgedup gained by distribution.
However, we have identified a number of classes of applicatioat demonstrate the qual-

ities that we rely upon for distribution:

Scientific computation. Scientific calculations such as physics simulation, finanan-
alytics, genetic computation or fluid dynamics lend thenehell to distribution.
Such problem sets generally have a small amount of data upimh wxpensive com-
putation must be performed. These calculations can oftggeldermed in parallel,

taking advantage of extra processing capacity.

Rendering. Rendering a three-dimensional scene by ray-tracing is a atatipnally in-
tensive process in which individual rays of light are sinethinteracting with ob-
jects. Rays are independent of one another, and so can bd inessmparate distribu-

tion units.

Business software.There are many accounting and middleware applicationscia
distribute under our system. For example, tax accountirfigvace requires many
independent calculations based on individual transastidhese calculations could
be performed in parallel. Additionally, financial tradingnfis make use of complex
models to simulate markets; such scenarios can be simulatearallel. Finally,
many businesses produce complex reports that must be ¢guhéram large data

sets that can be decomposed to run on separate machines.

Functional-style programming. A final class of applications are those written in a func-
tional style, with few side-effects to methods. An impottexample of this program-
ming style is map/reduce, implemented by Google’s intanfedstructure [Dean and

Ghemawat, 2008] or by the open-source Hadoop framework fifaehe Software

107

Foundation]. This programming paradigm is ideally suitedistribution, at it makes

explicit the requirement that work units be independent.

In this section, we will examine several applications framedse problem domains. We
will discuss how each was designed or modified to distribuiden RuggedJ, demonstrat-
ing the principles outlined in Section 5.1. We will outlirfeetpartitioning and migration
policies for each application and, where appropriate,grethe scalability characteristics
when each application is run on a RuggedJ network. Our reselts gathered on a small
cluster of three machines. Each 16-way host had eight dual-8MD Opteron proces-
sors, running at 4.5GHz, and 32Gb of RAM, in a NUMA arrangemefiie machines
were connected on a private Gigabit Ethernet switch. We ared$oth the untransformed
application running on a single host, and then the Ruggedsftramed version as it runs
on multiple hosts. We present results showing 95% confidenieevals, gathered from 30
iterations for each data point. We normalize scalabilitgves to the untransformed wall-
clock run time of the application using four threads; noimadg) to the execution time
with a single thread would produce a similar curve, but gatigesingle-core execution
times for the large applications that we run over multipégations would have taken an
unreasonable length of time (on the order of weeks per dait)po

Our benchmark applications come from a number of sources:

Java Grande. We studied two of the large-scale applications from the &nende multi-
threaded benchmark suite [The Java Grande Forum]: MolDgmglacular dynamics
n-body simulation, and MonteCarlo, a financial simulatiomgsiionte Carlo pric-
ing techniques. RayTracer, the third application, was uablé because its memory
access patterns on our NUMA architecture lead to such laagations in execution

time that performance cannot be measured consistently.

DNA Database Matching. This application was adapted from the DSEARCH application
by the Heterogeneous Distributed Computing group withinkpartment of Com-
puter Science at the National University of Ireland Mayindéteane and Naughton,

2005]. It compares a set of protein sequences against aagatad identify similari-

108

ties. The original application ran under an explicit distition harness, similar to the

BOINC infrastructure [Anderson, 2004].

SPECjbb2005. We experimented with SPECjbb2005, a standard Java benchimeatrk
simulates transaction processing within a business dsgalbdowever, we found that,
contrary to our expectations, SPECjbb2005 was not distaiidat Instead, we devel-
oped a new application based upon SPECjbb2005 that perfadhmaesime workload

in a distributable manner.

Clue. We developed a multiplayer version of the board g&hesthat we distributed with
RuggedJ. While performance was not an issue in this applicétie time spent by a
player making a move far outweighed any communication eeaalthis application
demonstrates the ease with which complex network protazaisbe encapsulated
by RuggedJ, as well as our capability to distribute applicegithat rely on complex

Java libraries such as Swing [Robinson and Vorobiev, 2003].

5.3.1 Monte Carlo Simulation

Our first benchmark from the Java Grande suite uses a Monte §lartilation to derive
the price of a product from the price of an underlying asskis benchmarks is an example

of the many real-world financial simulation problems that banefit from distribution.

Application Overview

The Java Grande project provides two versions of each besrgtapplication: a multi-
threaded shared memory version and a message passingwiaiaises MPJ. Neither
version of the Monte Carlo benchmark was ideal for transgatistribution. The shared
memory implementation made heavy use of static arraysjrgaasbottleneck as outlined
in Section 5.1. Removing this shared data was required to miiskébution practical; a
straightforward distribution of the shared memory versi@s possible, but took an unfea-

sible amount of time to run due to repeated remote invocati@he MPJ implementation,

109

on the other hand, used localized data structures but bsitiltition around explicit re-
mote calls. We therefore created a hybrid version of the l@iack that used the control
logic of the shared memory version with the non-static datectures of the MPJ version.
This version eliminated the complexity of explicit MPI irsations, while allowing the
application’s data to be split into discrete units.

The Monte Carlo benchmark code also contained significanugibg code which
was controlled by &t ati ¢ bool ean value in each class, as well as a per-Claisst i ¢
St ri ng value that was prepended to any debug messages. Thesewaheeset during an
initialization phase to &al se value hard-coded into a controller class. While inspection
of the code told us that each debug flag could never be setédo ttne fields could not
be cached, as they were not final, and could not be overriddéneipartitioning policy (at
present, partitioning policies can specify immutabilitytee class, not the field level). Thus,
every piece of debug code, while never executed, triggerealldo the static singleton.
To solve this problem, we set the per-class prompt field tatkei c final , using the
value assigned in the initialization phase. This way we @¢aalche the field in the static
stub. We also factored the per-classti c bool ean debug flag fields out to be a single
static final field in the controller class (from where the hard-codedse value was
propagated), allowing it to be referenced from all othessés and cached in the static
stub.

Finally, we modified the benchmark to make it perform moreatiens of the workload.
The Java Grande suite was released in 1999 and reflectssagmifvorkloads for the time.
However, what was a large workload in 1999 can be triviallgeeed by today’s hardware.
We introduced a loop that simply calculated the price forhestock five hundred times;
this way the application ran for approximately one hour gdour threads on one of our

test machines.

110

AppDemo

\4
| AppDemoThread | AppDemoThread AppDemoThread AppDemoThread | AppDemoThread |

| PriceStock | | PriceStock | | PriceStock | | PriceStock | | PriceStock |

| MonteCarloPath | | MonteCarloPath | | MonteCarloPath | | MonteCarloPath | | MonteCarloPath |

Figure 5.1.: Monte Carlo application structure

Partitioning

The core of the Monte Carlo benchmark is structured as shovigure 5.1. A run
of the application is initiated in th&pDeno class, which creates multipkpDenoThr ead
objects. EachppDenoThread is executed in a separate thread, and so form the natural
units for our decomposition. Each of tepDenoThr ead objects processes a part of the
workload, creating locakri ceSt ock objects that perform the Monte Carlo simulation.
Once all stocks have been priced, BppDenoThr eads pass the result back to thgpDeno
object.

We define a distribution unit to be a singlgpDenoThr ead object. Any temporary data
(such agri ceSt ock or Mont eCar | oPat h objects) is allocated locally and so is collocated
with the parentppDenoThr ead object.

The shared data within the Monte Carlo benchmark consist$awfa array offoTask
objects, each of which represents a stock to be priced. Warddbe array typ&oTask|[],
as well as the base typ®Task to be immutable, allowing us to replicate this array. We
can do this because neither the contents of the array norellas fof eachroTask object
change after an initial setup phase. EaphDenoThr ead operates over a section of this
array, defined by a thread identifier passed when it is credtéddle this results in some

unnecessary replication (not all replicatedask objects are operated upon by each node),

111

e | | | -

11~ — RuggedJ N

10—~ |— Untransformed _

Speedup vs. 4 threads

N W A 1 N o ©
[

=
[

0 | | | | | | | | | | | |
0 4 8 12 16 20 24 28 32 36 40 44 48
Number of Threads

Figure 5.2.: Monte Carlo speedup (normalized to untranséoim

we use serialization to make the replicas, resulting inigéxé overhead. Finally, each
thread passes the result of its computation back to the apabeno object, in the form of
an array offoResul t objects. We treat theoResul t array in the same way as theTask
array, replicating the results on the original node.

We declare the majority of classes within the benchmark t&ymstem Direct for per-
formance reasons. The only mutable remotely referencedesdain the system were the
main AppDeno class and the per-threagdpDenoThr ead. These were User Unconstrained,

while the remainder of classes were declared to be SysteatcDir

Performance Evaluation

Figure 5.2 shows speedup for our rewritten Java Grande Meete simulator, running
in both its untransformed form and under RuggedJ. We seehbairttransformed version

of the application experiences performance improvemenitgesadd threads until it reaches

112

16 threads, after which it flattens out. This is to be expecisdeach host has 16 cores.
In contrast, RuggedJ shows steady scaling as it utilizesebensl and third nodes in the
cluster. For this application, RuggedJ incurs no measu@@ehead. We attribute this to
our policy of rewriting only those objects that must be aseesremotely.

We observe a small performance decrease for this benchmd& threads. This is
the point at which the overhead of copying data for an adutidour threads outweighs
the benefit seen by their work. The point at which this occeqsethds on the size of the
workload; the overhead of copying is relatively constantjlevthe benefit of additional

threads increases with the amount of data.

5.3.2 Molecular Dynamics

The second Java Grande application that we studied was Moksolecular dynam-
ics simulator. This application models arbody system where forces from each body
act upon all others in the system. The simulation involvesiansse resolution of forces
that reduces to a single force vector on each particle. Td@ution is iterative as each

particle is affected by the total forces of the system.

Application Overview

As in the case of the Monte Carlo benchmark, Java Grande ieslweb versions of the
MolDyn application: one using shared memory, the othergisiplicit MPJ. We created a
hybrid application, using elements of each. Due to the cerigy of the changes that we
made to the data structures we rewrote much of the applicatiowever, we left the core
computations untouched and verified that our rewrittenivengroduced the same result as
the original.

This large-scale modification of the data structures for Dol was a more involved
process than for Monte Carlo. Where the Monte Carlo simulatieated temporary objects
to perform calculations and return results, the MolDyn ayaion stored all intermediate

results in a central static array. This array could not bégated as it was not immutable.

113

MolDyn

MDThread MDThread MDThread

| ParticleManager | | Forces | | ParticleManager | | Forces | | ParticleManager | | Forces |

v v v

Figure 5.3.: MolDyn application structure

However each thread wrote to a different part of the arragnimgy that they did not read
or overwrite one another’s results. Clearly this array wastddneck, so we modified the
application to store intermediate results in a local, n@atis array. As the results were
only used by the thread that created them, this did not cawselange in the algorithm’s
correctness.

As with the Monte Carlo benchmark, we scaled the workload toimuapproximately
an hour on four threads. We did this by increasing the numbermations for the system,

and so the number of calculations.

Partitioning

Our rewritten version of the MolDyn benchmark is structuasdshown in Figure 5.3.
The eponymous main class of the applicatiorbisbyn, which creates a number of worker
MDThr ead objects, each of which encapsulates a thread. As with Monti® Ghe threads
are the decomposition point for distribution units. Eadle#id creates®arti cl eManager
object which generates thmarti cl e objects under that thread’s control. At the end of
every iteration, eacivDThr ead passes an array @br ces objects to thewvol Dyn object,
which are merged with those from all other threads, and usedsgarting point for the next
iteration. Thus the particles themselves are never passadbn threads, only the forces

that they generate.

114

TheFor ces objects passed between threads contain three large afraygsio e val-
ues, representing the y andz components of force vectors. As the computation of each
iteration, as well as the resolution of forces, would reguteration over these arrays, it
was essential that they be Direct. Iterating over a rematgyaequires repeated remote
invocations, with the associated performance hit. We thezedeclared th€&or ces class
to be immutable, and rewrote any code that would have mugtedces object to instead
create a new instance. This resulted in a slightly incregsedage collection load, but
allowedFor ces objects to be replicated and so operated upon locally.

The bulk of computation in the MolDyn benchmark is performedhe Particl e-
Manager andParticl e classes. We declare these classes to be System Direct,ingmov
the overhead incurred by our object model. While these cdaamemutable, they are not

referenced from an external distribution unit, and so weNer be replicated.

Performance Evaluation

Figurel 5.4 shows the execution times for our rewritten Molac Dynamics bench-
mark. We see similar scaling in this benchmark as in the M@Qatdo application, with a
similar point at 48 threads where the communication cosinsgg overwhelm the benefit
of distribution.

Of interest in Figure 5/4 is a performance improvement whaming RuggedJ with
four threads over the untransformed version. We believilhingais an effect of the NUMA
configuration of our test machines. We do not control whicres@ur application is as-
signed to, and so with a small number of threads the liketihthat data is in a distant
memory bank increases. RuggedJ allocates several addlisonaetimes large, data struc-
tures. By using more memory, the application data is distethilacross more memory

banks, leading to more reliable memory accesses.

115

6 T T T

— RuggedJ
5l [— Untransformeq

Speedup vs. 4 threads
w
[

0 | | | | | | | | | | | |
0 4 8 12 16 20 24 28 32 36 40 44 48
Number of Threads

Figure 5.4.: MolDyn speedup (normalized to untransformed)

5.3.3 DNA Database Matching

Geneticists encode the DNA of plants and animals as charstciegs, with each char-
acter representing a particular amino acid. The DNA Datlpaetching application takes
as its inputs a “database” file of these DNA fragments (eachiha€h is generally on the
order of 1,000 characters), and a second file containingrfjdeagments. The applica-
tion performs string matching on the DNA sequences, findegaest matches (those with
the smallest distance between the strings) from the dagdbagach query. The matching
algorithms used have a high space and time complexity (¢doly somparison i©(mn)
wheremandn are the lengths of each string), and the matching applicatonpares each

database string with each query string.

116

Application Overview

The original DNA matching application (DSEARCH) was writtenuse a distributed
Java framework developed by the Department of Computer &eiahthe National Uni-
versity of Ireland Maynooth [Keane et al., 2005]. This dizition system aims to provide
horizontal scaling for applications, but uses a differgmpraach from RuggedJ. Rather
than our transparent system that provides the illusion afeshmemory, the Maynooth re-
searchers built an infrastructure that simplifies the exptiartitioning and distribution of
work units, and executes applications as plug-ins to tlisiéwork. DSEARCH can thus
be thought of to consist of three parts: the distributiomfesvork, the plug-in component
that partitions the workload, and the back-end logic thafigpens the matching algorithms.

Of these three components, the third part (the back-end)lsgmost interesting to us.
We extracted that part from the application and wrote our dviwer program to partition
the work load and initiate the matching algorithm. Discangthe distribution framework
(which can be though of as performing a similar role to RuggalttJough using a very dif-
ferent approach), we believe that our shared-memory aibistneallows for a simpler driver
application. Our implementation was more concise (422 38.lines), and the DSEARCH
driver had to conform to the many rules of the infrastructstech as file naming conven-

tions.

Partitioning

The structure of the DNA database matching application @svshin Figure 5.5. The
search is launched by tisear chCoor di nat or class, which spawns multiptanpari son-
Thread instances. The database is divided up betweercéhgari sonThr eads, which
calculate the distances between the sequences in eackl'shasaigned portion of the
database and each of the query sequences. The string ngaitcperformed in th@eobi o
package, a biocomputing library. The natural decompasiio this application is at the

Conpari sonThr ead.

117

SearchCoordinator
‘/A/] \
| ComparisonThread | | ComparisonThread ComparisonThread ComparisonThread | | ComparisonThread |

\4

| ParticleManager

\4 \4 \4 \4

| ParticleManager

| ParticleManager | ParticleManager | ParticleManager

\4 \4 \4 \4 A4

neobio neobio neobio neobio neobio

Figure 5.5.: DNA database matching application structure

The input database and query files are read bystae chCoor di nat or, with each
DNA sequence represented byseguence object. The database is divided into equally-
sized arrays ofequences, with one assigned to eacbnpar i sonThr ead. The queries are
represented by a singBequence array, a reference to which is passed to each thread. We
declare bottsequence andSequence[] to be immutable, since they are constant after the
initial database population step, allowing them to be ogpéid on each node.

The output of the DNA database matching program is a serid¢¢esf one for each
guery sequence, that lists the togunt database matches (witlhunt specified in a con-
figuration file). Thus we must not only record the distanceveen each pair of sequences,
we must also output & ri ng that represents the transformations necessary to go frem on
sequence to the other. These matchéngi ngs can be large (depending on the number
of transformations and the length of the original sequencgwring each of these trans-
formations for the fulln x m possible combinations of sequences is unfeasible; even on
fairly modest database sizes the space requirements yex&eed the memory available.
Instead, we compute only the distance scores for each matdhthen as a final act each
Conpari sonThr ead recalculates the matching for its tepunt matches for each query,
storing thest ri ng representation for each. The results from each thread aspsulated

in DirectResul t Set instances, which are collated by thear chCoor di nat or .

118

e | | | -

11 — RuggedJ

— Untransformed .

10

Speedup vs. 4 threads

N w1 OO N 0 ©

(=Y

| | | | | | | |
20 24 28 32 36 40 44
Number of Threads

o

o
N
0
H
N
H
o
A
o

Figure 5.6.: DNA database matching speedup (normalizedtransformed)

Performance Evaluation

Figure 5.6 shows the performance of the DNA database apiplicaDnce again we see
that RuggedJ incurs no measurable overhead for this apphc@ost computation occurs
within the local computation library; by declaring thisrgvy to be Direct we minimized the
overhead from our transformations. The small data set a@edsive computational power
required for this benchmark mean that we do not see a pointeithe cost of copying data
overwhelms the benefit of additional processors on our&tush this case, however, we
do see a decrease in scaling at 48 threads due to saturatioa available cores; remote
accesses increase the number of active threads on eacheamfilegl to increased thread

context switching.

119

itemTable warehouseTable customerTable
Y District Y
Item districts P~ District Customer
Item / District Customer
Item Customer
Item Warehouse District Customer
ltem Warehouse | districts —> District Customer
ltern Warehouse District Customer
ltem \ e Customer
Item districts > B::::z: Customer
Item —— Customer
District

Figure 5.7.: SPECjbb2005’s main database structure

5.3.4 SPECjbb2005

SPECjbb2005 [SPECjbb2005, 2005] is a standard Java benclapglikation that im-
plements the TPC-C workload [TPC], simulating the workflow @bmpany. The bench-
mark creates an in-memory database that tracks the wareshamsl districts that make
up the organization, as well as the customers and inventanaged by each warehouse.
The benchmark then executes a number of different tramseigpes against the database.
It creates and tracks orders, deliveries and payments, amtiliges reports on customers
and stock levels. Each transaction is run on behalf of a veaursdy and interacts with the

database. Performance is measured by transactional tipotigithin a fixed time.

Application Overview

SPEC]jbb2005 is designed to be parallel and scalable. Eaehwaase has an associated
thread that executes transactions; by increasing the nuoflvearehouses (and therefore
threads) the system as a whole can execute more transactimisrtunately, while the
application is scalable it is not distributable. Figure shibws SPECjbb2005’s major data

structure. Theconpany object contains three major arrays: iarenTabl e that contains

120

Company }; > itemTable

warehouseTable Item
Iltem

ltem
Iltem

[warehouse | Warehouse | Warehouse | ltem
Item
\ 4 Item
i - Item

districts districts districts
Item

\4

| District | District | District | | District | District | District | | District | District | District |
| customers | | customers | | customers | | customers | | customers | | customers | | customers | | customers | | customers |
Customer Customer Customer Customer Customer Customer Customer Customer Customer
Customer Customer Customer Customer Customer Customer Customer Customer Customer

Figure 5.8.: Rewritten SPECjbb2005 application’s main datalstructure

details of the products available in the companyaeehouseTabl e that holds references
to the company’s warehouses andwat oner Tabl e that lists the company’s customers.
Each warehouse holds an arrayobkt ri ct objects. Elements of this data structure are
referenced exclusively by ID (short orint value that corresponds to an entry in the
appropriate table). Thus a givemst omer requires three indices to reference: the cus-
tomer ID, theDi st ri ct to which it belongs, and thear ehouse containing thabi stri ct .
Obtaining a reference to thatist oner means accessing tl@enpany to get avar ehouse
reference, thear ehouse to get thebi st ri ct reference, and finally tha st ri ct to getthe
Cust oner . And sincecust oner references are not passed between methods, this lookup
process is required every time a givemst oner is referred to. This makes ti@npany
object a clear bottleneck: evewar ehouse, Di strict or Cust oner reference must first
query theConpany.

We restructured the benchmark as shown in Figure 5.8. Saxdeoest omer object is
bound to a particulabi stri ct, we distributed theust omer Tabl e structure between the
Di strict instances, removing the need to indirect throughtthmany. More importantly,

we rewrote the application to refer to instances direcifher than using IDs. Thus we pass

121

120

—— Rewritten JBB
—— Original SPECjbb200%

100

80

60

40

Throughput (x 1,000 transactions/second)

20

0 l l l l l l l l
12 16 20 24 28 32 36

Number of Threads

o
IN
)

Figure 5.9.: Comparing the original SPECjbb2005 and rewrii®B benchmarks

references rather than IDs, eliminating the vast majoffitpakup operations. We modified
thel t emclass slightly to allow it to be declared Direct, and so regiied on each node.

It should be noted that the changes we have made to the SPEOmb2nchmark al-
ter its run-time characteristics in a variety of ways. Foaraple, the new version of the
application touches theonpany object far less often, leading to different caching behav-
ior. Similarly, by passing references rather than IDs weiglate many redundant lookup
operations. This major restructuring affects the bencknraia more profound manner
than the modifications that we performed on the Java Grand®&iA database applica-
tions, in which the data structures changed slightly butctire computation remained the
same. While Figure 5.9 shows that the general scaling piiepet the SPECjbb2005 are
preserved in our rewritten version, and our applicatiorigrers the same workload as the

original (with a small speedup due to fewer lookups), we dbataim to provide a fully

122

accurate representation of SPECjbb2005. The remaindeisadethtion discusses only our

rewritten version of the benchmark (JBB), without refereracthe original.

Partitioning

We define distribution units within JBB to be the threads asd¢ed with each ware-
house. We collocate these threads with the warehouse (aotiakedDi strict and
Cust omer oObjects), ensuring that the majority of transactions pent within a distri-
bution unit are local. The TPC-C specification upon which JBBdsed requires that a
minority of transactions are performed upon non-local Wwatses. This necessitates that
some transactions involve remote invocations. We paraimeteour implementation to
allow us to vary the percentage of remote accesses. As wea&dllwhen discussing the
application performance, such accesses can cause sighpgedormance degradation.

Another consequence of the requirement for non-local &etiens is that any object
in the benchmark’s main data structure can be remotelyerféed. This means that the
Conpany, War ehouse, Di strict andcCustomer classes must all implement the RuggedJ
object model (none of these classes are immutable). Nottmdy this necessitate rewriting
these classes, but it also means thatmhensact i on objects (which perform the bulk of
the work in the application) must refer to transformed otgeand so cannot be declared
System Direct. This affects performance, as all accessssheundirected.

A final interesting feature of JBB’s partitioning concerns thigial setup of the data
structure. AllConpany, War ehouse, Di st ri ct andCust oner instances are initialized using
a data generation framework that creates random entriess gémerator uses a single
seededrandominstance that creates a repeatable set of values. We gemenatlata on
RuggedJ’'s head node during the setup phase. Since the vdatastorage classes are
mutable, we cannot simply replicate them across the netwostead we migrate them at
the end of the creation phase, allowing us to generate therg aglobally unique&andom

instance, but place them on the nodes where they will beaeéed.

4 I T |

123

e—e RuggedJ 0% remote accesses
RuggedJ 0.25% remote accesses
H *— RuggedJ 0.5% remote accesses
== RuggedJ 0.75% remote accespes
RuggedJ 1% remote accesse{
3 H =—= RuggedJ 1.25% remote accespes ,’
+— RuggedJ 1.5% remote accessges,’
~— Unmodified 4

Speedup vs. 4 threads
N
I

0 4 8 12

16

20

24

28

32

Number of Threads

Figure 5.10.: Re-implemented version of SPECjbb2005 pedona

Performance Evaluation

Figure 5.10 shows the performance of this application. JgBnts throughput over a
fixed timing period (we measure for 120 seconds), and we téperesult as transactions
per second. The graph shows the performance of an untramedoversion of this appli-
cation, and the throughput on RuggedJ when we vary the fraofioemote accesses. We
can see that RuggedJ incurs a significant overhead when giania single machine. This
is due to the highly-interconnected nature of the data stra@nd the transactions. Since
the company, warehouse, and district objects are diséibby RuggedJ, they must be
rewritten. And since the transactions refer to these datatsires, they cannot be declared
Direct. Therefore we incur the performance penalties frorgdeaJ’s transformations on
all data accesses in the system.

Figure 5.10 shows the importance of locality within Ruggealdd(indeed, any dis-

tributed application). When no transactions operate upote warehouses, the RuggedJ

124

Board RoundManager Deck

Player > Player < Player

N Y N

| Hand | | Ul | | Hand | | Ul | | Hand | | Ul |

Figure 5.11.: Clue application structure

version significantly outperforms the untransformed \@rss we increase the number of
warehouses. However, as the percentage of remote accessEsses, we see a steady de-
crease in the performance of the distributed version, arfito of accesses are remote, at

which point the distributed version only breaks even at 38ads.

5.3.5 Clue

Our final benchmark was designed explicitly for RuggedJ. Welemented a multi-
player distributed version of the board game Clue in orderdtmine the benefit of
developing applications from scratch with RuggedJ in mindhe Tun-time environment
for this application differed significantly from the preu®benchmarks: the game was de-
ployed across the Internet, with multiple players runniimguitaneous interactive sessions.

Thus performance was less of a concern, so long as the systeaired responsive.

Application Overview

The system contains both client-server and peer-to-peenuamication. This is a natu-
ral model for transparently distributed applications;ome cases objects communicate di-
rectly with one another without indirection through an mtediary controller, while global
activities are performed by a central mediator. The appboastructure was designed as
shown in Figure 5.11.

125

The key management unit in the application iskhendvanager . This creates a series
of Pl ayer objects that interact with users; each user contrdisager through its associ-
atedu (we show a single) object to represent the classes that make up an interface in
Swing). Theu is individual to thePl ayer ; U objects do not communicate directly with
one another. TheoundManager creates @oar d andDeck that encapsulate the major data
structures; theoar d represents the space in which the game is played (includafd, v
invalid and special squares), while tbeck contains the cards that players use during the
game. Eaclpl ayer maintains a set of cards that make up his orHa@w, and refers to the
Boar d andDeck.

A round in the game consists of each player in turn moving ataround the board,
and questioning one other player about the contents oftiaaid. All players observe both
the movement and the question, while only the enquiringgal&gows which card is shown
in response to a query; the other players simply see whetbarcahas been shown. We
model this by a combination of one-to-one interactions amédcast messages. The user
locally updates his position, sends a query to another p(@yeoding the new position; the
gueried player may use this information in choosing the tardveal), receives a response,
and sends a summary of his turn to #wendManager . TheRoundManager broadcasts this

summary to the remaining players, and indicates which pky@rn is next.

Partitioning

The application as presented in Figure 5.11 appears atditst too tightly coupled
for distribution. However, our partitioning policy simfiés the structure, as shown in
Figure/5.12. We declare the board and deck to be immutalbde]l hat the position of
players is encoded in the broadcast turn summary fronRébhedvanager and so can be
locally cached. Thus the natural distribution unit is theyer. This portioning ensures
that theul for eachprl ayer is entirely local to the distribution unit; the applicatibias
no shared Ul state. This is desirable since Swing comporietgsact closely with the

underlying VM and operating system, and so have no meanitgjdeuthe context of the

126

Board Deck

RoundManager

Player |« > Player |- > Player
| Hand “ Board “ Deck “ ul | | Hand “ Board “ Deck “ ul | | Hand “ Board H Deck “ Ul |

Figure 5.12.: Partitioning the Clue application

current node. Finally, we see that the only connections éetvdistribution units are the
necessary communication channels between individuakeptagnd between each player
and theRoundManager . This minimizes communication to that which is necessarth&
application.

We do not present performance numbers for the Clue applicasoany overheads
introduced by RuggedJ are overwhelmed by the time taken foranuplayers to move.
However the Clue application shows how complex applicateamsbe trivially distributed
using RuggedJ, and how sensible partitioning choices catlgimplify the structure of

a distributed application.

5.4 Contributions

RuggedJ’s partitioning interface strikes a balance betvieergrained developer con-
trol and transparent program development, while previgstesns have emphasized one
factor or the other. Distributed programming languages stscEmerald or X10 allow very
precise control of object placement and movement, withiexgalls to reveal location
information. At the other extreme, transparent distribmutsystems such as J-Orchestra or

Addistant have imposed a class-based partitioning thawisible to the developer. Each

127

system has its advantages; explicit object location alkhegleveloper to tune the applica-
tion partitioning, while static partitioning frees the @ésper from locality concerns.
RuggedJ allows both approaches, combining applicatiortswhee written with no

explicit location information with an after-the-fact pigidining policy that affords precise
control of object placement. This way, the majority of deyghent can proceed using a
familiar shared-memory single-machine model, while theettgper retains the ability to
fine-tune his partitioning strategy. Our partitioning pliagsystem also allows develop-
ers to introspect on their applications and the network upbith they are running. By
inserting partitioning call-backs a developer can invdke partitioning policy at arbitrary
points in execution, allowing migration decisions to be matappropriate times. No other

transparent distribution offers this level of control opartitioning.

5.5 Concluding Remarks

Distributable applications scale horizontally and camgarformance improvements
by adding machines. Such applications can be decomposedisitibution units which
can be allocated on remote machines, with minimal intevadbetween the threads and
data of discrete units. Distributable applications can um¢hér tailored to RuggedJ by
following simple optimization rules such as maximizing im@bility and designing with
the RuggedJ object model in mind.

In this section we have examined the properties of apptinatthat make the most of
the RuggedJ transformation and run-time systems, and wedissassed the strategies
by which distribution units can be allocated across a Ruggetidork. Finally, we have
shown that our implementation of RuggedJ can handle largdistie applications, and

discussed how we tuned these applications to perform wdkuour system.

128

6 SUMMARY AND FUTURE WORK

Transparent distribution can allow distributable standalava applications to execute
across multiple machines with minimal programmer overhdadnsformed applications
can show minimal performance degradation on a single hostewdlemonstrating

significantly improved performance on a cluster.

6.1 Summary

In this dissertation we have presented RuggedJ, a spedfielasised transparent Java
distribution framework. RuggedJ transforms standard Jppéications to execute across
a cluster of Java virtual machines with minimal developguin A RuggedJ network is
composed of an arbitrary number of heterogeneous macheaeh,running a compatible
version of Java. Source applications are transformed wsirgyriting class loader, and
interact with a distributed run-time system. Applicatiare partitioned primarily by al-
locating instances of distributable units on the varioudesoof the network, following a
partitioning policy supplied by the developer.

Our rewriting class loader transforms the classes of aniggijgn to conform to the
RuggedJ object model. We generate an interface that alsstrectlass’s protocol, which
is implemented by three classes; one local, one remote angrory that holds a reference
to the local or remote object, allowing for simple migratioNfe have developed a further
set of transformations that allow us to integrate Javaibcade into our rewritten system,
using four templates to transform these classes. We hawfispethe transformations
required, as well as the classification algorithm that medatiass to template.

Our run-time system manages execution of transformed coassathe network. It

tracks remote objects, replicates immutable state andateigiobjects when necessary. We

129

have implemented the run-time system to support Java'srggsawe maintain globally
unique static data, preserve object identity across meltipdes, implement thread affin-
ity and support the Java’s monitor-based synchronizatidre RuggedJ run-time system
also provides a partitioning plug-in interface, to whictpbgation developers can create
partitioning policies. These policies can introspect anlodes of the network, allowing
partitioning strategies to be tuned to the cluster upon lwhit application is executing.
We have also discussed the types of applications that penfail in a distributed en-
vironment. We have identified those features that lend ahcapipn to distribution in gen-
eral, such as a decomposable structure with few serialbsectiimited reliance on global
data and a high level of immutability. We also discuss thasaities that cause an appli-
cation to perform well under RuggedJ, including a simple iithece hierarchy, separating
performance-critical sections from remotely-accessitdsses, and limiting use of certain
language features. Finally, we discussed the implementabf several large, realistic ap-
plications, outlining the techniques that we used to partithem and demonstrating their

performance on a RuggedJ network.

6.2 Future Work

There are several avenues of research that could follow finistwork:

Reliability. As RuggedJ is deployed across larger networks and with lemgering ap-
plications, the likelihood of node failures increases. Ateresting line of research
would be to determine the level to which fault tolerance ddod built into the system,
whether through replication of work or by distributed tractsons. Additionally, the
object model and transformation techniques that we haveedtcould allow data
replication upon a single node, allowing for the possipibf research in transient

failure models.

Changing networks. RuggedJ is currently targeted towards arbitrary networkigara-
tions. Our partitioning plug-in system allows developersgason in terms of abstract

resources rather than partitioning across a concrete netiowever, this flexibility

130

exists only for the static network configuration; we cannatently grow or shrink
networks dynamically, perhaps in response to varying woakl$ or available hard-

ware.

Reflection. RuggedJ’s handling of reflection is presently on an ad-hospagh our run-
time system attempting to integrate reflective code intorewritten classes. This
approach is limited in the long term, and could be replaced byore formal set of

semantics that allow developers to use a strictly-definbdedLof reflective behavior.

Caching. In this work, we have discussed the replication of data onlyerms of im-
mutable content. It would be possible to replicate mutalala dn the system, so
long as the replicas remained globally consistent. Addiogreerence mechanism to
RuggedJ’s run-time would allow this replication, and coulfiggiosignificant perfor-

mance improvements, relaxing some of the requirementsus@t €hapter 5.

Java Memory Model. The Java Memory Model [Manson et al., 2005] provides a relaxe
consistency model in which updates need not be propagateddinately; rather data
values are guaranteed to be consistent only at synchramzpbints. We could
make use of this consistency model to cache local modificatio data, updating the

canonical version only when necessary.

Optimizations. There is room for some optimizations in our implementatidhe major
bottleneck in our rewriting system is the indirection reqdi when obtaining local
values; rather than usingGat Fi el d bytecode, we instead callgg@t method to ob-
tain a field. This can lead to a major performance degradaparticularly when
iterating across a large array. By implementing a staticyaimlor through pro-
grammer input we could determine methods that use puredy tdgects and bypass
indirection in these instances. Another major bottlenedhirige data structures, par-
ticularly arrays, which must be allocated on a single nodesaremotely referenced
by all others. We could break large arrays into smaller Ydets”, increasing the dis-

tributability of such data structures.

131

6.3 Conclusion

We have discussed the design and implementation of a ppstdtgnsparent Java dis-
tribution infrastructure. We have shown how the overhegubised by our rewriting system
can be minimized using a variety of techniques, includirlgdiely omitting rewrites on
performance critical sections. We have demonstratedhismsystem can distribute several
realistic applications, and have shown that these appitatunning on a cluster exhibit

scalability beyond that available to a single machine.

LIST OF REFERENCES

132

LIST OF REFERENCES

S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K. Shyamasuratad, K. Yelick.
Deadlock-free scheduling of X10 computations with boundessburces. IfProceedings
of the 19th Annual ACM Symposium on Parallel Algorithms anchiectures (SPAA)
pages 229-240, 2007. 22

G. M. Amdahl. Validity of the single processor approach thieging large scale com-
puting capabilities. IiProceedings of the April 1967 Spring Joint Computer Confezenc
pages 483—-485, 1967. 99

D. P. Anderson. Boinc: A system for public-resource comgutind storage. |#Pro-
ceedings of the 5th IEEE/ACM International Workshop on Griagnpating pages 4-10,
2004. 108

Y. Aridor, M. Factor, and A. Teperman. cJVM: A single systemage of a JVM on
a cluster. InProceedings of the 1999 International Conference on Par&llecessing
pages 4-11, 1999. 20

Y. Aridor, M. Factor, A. Teperman, T. Eilam, and A. Schust&ransparently obtaining
scalability for Java applications on a clustdournal of Parallel and Distributed Comput-
ing, 60(10):1159-1193, 2000. 20

M. Austermann, P. Costanza, G. Kniesel, and H. Koch. The JMamgoject. URL
http://roots.iai.uni-bonn.de/research/jmngl er/.[29

M. Baker and B. Carpenter. MPJ: A proposed Java message pas2i@gédenvironment
for high performance computing. hhe IEEE International Parallel and Distributed
Processing Symposium (IPDPS) Workshops, LNCS, i2{fes 552-559, 2000. 69

A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structiréghe Emerald system. In
Proceedings of the 1st Annual ACM SIGPLAN Conference on Gfjeented Program-
ming Systems, Languages and Applications (OOPSiakjes 78-86, 1986. 21

A. P. Black. Supporting distributed applications: Expecemith Eden. InProceedings
of the%Oth ACM symposium on Operating Systems PrincipleSP$@Pages 181-193,
1985./ 21

A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy. The devetent of the Emerald
programming language. Froceedings of the 3rd ACM SIGPLAN Conference on History
of Programming Languages (HOPLlpages 11-1-11-51, 2007./ 21

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinl&; Bentzur, A. Di-
wan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hogk M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefar@vi. VanDrunen, D. von Dincklage, and B. Wie-
dermann. The DaCapo benchmarks: Java benchmarking dewvetd@amd analysis. In
Proceedings of the 21st Annual ACM SIGPLAN Conference on O0jented Program-
ing, Systems, Languages, and Applications (OOPSh#ges 169-190, 2006. 61

http://roots.iai.uni-bonn.de/research/jmangler/

133

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Rgratal Y. Zhou.
Cilk: ’&1 efficient multithreaded runtime systemSIGPLAN Notices30(8):207-216,
1995./ 22

B. Bokowski and A. Spiegel. Barat—a front-end for Java. TedirniReport B-98-09,
Freie Universiat Berlin, Sept. 1998. 30

E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipuiabol to implement
adaptable systems. Adaptable and Extensible Component Sysi@®82. 30

M. Busch. Adding dynamic object migration to the distribgticompiler Pangaea. Mas-
ter’s thesis, FU Berlin, FB Mathematik und Informatik, 20@T.

D. Caromel and J. Vayssie. A Java framework for seamless sequential, multi-teea
and distributed programming. [Fhe Workshop on Java for High-Performance Network
Computing 1998.[24

D. Caromel, W. Klauser, and J. Vaysee. Towards seamless computing and metacom-
puting in JavaConcurrency—Practice and Experiend®(11-13):1043-1061, 1998./24

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. KielstraEBcioglu, C. von Praun,
and V. Sarkar. X10: An object-oriented approach to nonarmf cluster computing.
SIGPLAN Notices40(10):519-538, 2005. 22

X. Chen and V. H. Allan. MultiJav: A distributed shared memewgtem based on mul-
tiple Java virtual machines. Broceedings of the 1998 International Conference on Par-
allel agj Distributed Processing Techniques and Applmagi (PDPTA) pages 91-98,
1998. 20

S. Chiba. Load-time structural reflection in Java.Plimceedings of the 14th European
Conference on Object-Oriented Programming (ECOQfages 313-336, 2000. 29

S. Chiba and M. Nishizawa. An easy-to-use toolkit for effitidava bytecode transla-
tors. InProceedings of the 2nd International Conference on Generddirogramming
and Component Engineering (GPClppges 364-376, 2003. 29

A. F. da Silva, M. Lobosco, and C. L. de Amorim. An evaluationcdava system ar-
chitecture. InSymposium on Computer Architecture and High Performance Gongp
page 91, 2003. 20

M. Dahm. Doorastha—a step towards distribution transpatein JIT, 200Q 2000a. 24

M. Dahm. The Doorastha system. Technical Report B-1-2000e Efeiversitt Berlin,
2000b. 24

M. Dahm. Byte code engineering with the BCEL API. Technical Repet7-98, Freie
Universitat Berlin, 2001, 30

J. Dean and S. Ghemawat. MapReduce: Simplified data progessitarge clusters.

Communications of the ACN1(1):107-113, 2008. 106

P. Eugster. Uniform proxies for Java. Rroceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systemyguages, and Applica-
tions (OOPSLA)pages 139-152, 2006. 26

134

M. Factor, A. Schuster, and K. Shagin. Instrumentation ahgard libraries in object-
oriented languages: The Twin Class Hierarchy approacPRrdoeedings of the 19th An-
nual ACM SIGPLAN Conference on Object-Oriented Programmysgedns, Languages,
and Applications (OOPSLApages 288—-300, 2004. 26,52

E. Gamma, R. Helm, R. E. Johnson, and J. Vlissid&esign Patterns. Elements of
Reusable Object-Oriented Softwaseddison-Wesley, Mar. 1995. 98

J. Gosling, B. Joy, G. Steele, and G. Braclibe Java Language Specificatiohddison-
Wesley, 3rd edition, 2005. 80

D. Hagimont and D. Louvegnies. Javanaise: Distributedeghabjects for Internet coop-
erative applications. IRroceedings of Middleware’98998. 24

S. S. Huang and Y. Smaragdakis. Easy language extensiorMeith-Aspectd. IrPro-
ceedings of the 28th ACM International Conference on Softwagineering (ICSE)
pages 865-868, 2006. 29

Lﬁ.lftode. Home-Based Shared Virtual MemoriyhD thesis, Princeton University, 1998.
19

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained ihtybin the Emerald
system.ACM Transactions on Computer Syste(d):109-133, 1988. 22

T. M. Keane and T. J. Naughton. DSEARCH: Sensitive databagelseg using dis-
tributed computingBioinformatics 21(8):1705-1706, 2005. 61, 107

T. M. Keane, A. J. Page, J. O. Mclnerney, and T. J. NaughtonigA-throughput bioin-
formatics distributed computing platform. Rroceedings of the 18th IEEE International
Symposium on Computer-Based Medical Systems (CBM&s 377—-382, 2005. 116

P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Treak®1 Distributed
shared memory on standard workstations and operatingnsgstén Proceedings of the
Winter 1994 USENIX Conferenggages 115-131, 1994. 20

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, hdter, and J. Ir-
win. Aspect-oriented programming. Rroceedings of the 11th European Conference on
Object-Oriented Programming (ECOOM)997. 29

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palng & G. Griswold. An
overview of AspectJ. IIProceedings of the 15th European Conference on Object-@ien
Programming (ECOOR)pages 327-353, 2001a./29

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palnd %h G. Griswold. Getting
started with AspectlCommunications of the ACM4:59-65, 2001b. 29

G. Kniesel, P. Costanza, and M. Austermann. JMangler—a framkefor load-time
transformation of Java class files.Pnoceedings of the International Workshop on Source
Code Analysis and Manipulation (SCANpages 100 — 110, 2001. 29

P. Launay and J.-L. Pazat. A framework for parallel programgnin Java. InProceed-
ings of the International Conference and Exhibition on Hgrformance Computing and
Networking (HPCN Europepages 628-637, 1998a. 23

P. Launay and J.-L. Pazat. Generation of distributed mrddlva programs. Technical
Report PI-1171, Institut de Recherche en Informatique ete8yss$ Aleatoires, 1998b. 23

135

S. Liang and G. Bracha. Dynamic class loading in the Javaalimachine. InProceed-
ings of the 13th Annual ACM SIGPLAN Conference on Object-@teRrogramming
Systems, Languages, and Applications (OOPSh#Qes 36—44, 1998. 32, 44

T. Lindholm and F. Yellin. The Java Virtual Machine SpecificatiofPrentice-Hall, 2nd
edition, 1999, 85

N. Liogkas, B. Maclintyre, E. D. Mynatt, Y. Smaragdakis, E€Victh, and S. Voida. Au-
tomatic partitioning: A promising approach to prototypungiquitous computing applica-
tions. IEEE Pervasive Computin@(3):40-47, 2004. 14

B. Liskov, D. Curtis, P. Johnson, and R. Scheifer. Implemewtatif Argus. InPro-
ceedings of the 11th ACM Symposium on Operating Systemsglem¢SOSRP)pages
111-122,1987. 21

M. Lobosco. A new distributed JVM for cluster computing. Pnoceedings of the 9th
International Euro-Par Confereng@003. 20

M. Lobosco, O. Loques, and C. L. de Amorim. Reducing memoryisgaverheads in
distributed JVMs. InProceedings of the 1st International Conference on Highdverf
mance Computing and Communications (HPQ@&ges 629—639, 2005. [20

J. Manson, W. Pugh, and S. V. Adve. The Java memory modeldceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programminglages (POPL,)
pages 378-391, 2005. 130

J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis amy&lopment of Java
Grande benchmarks. Proceedings of the ACM 1999 Conference on Java Grapages
72-80, 1999. 62

P. McGachey, A. L. Hosking, and J. E. B. Moss. Pervasive |load-transformation for
transparently distributed Javlectronic Notes in Theoretical Computer Scier2e3(1):
47-64, 2009a. |7

P. McGachey, A. L. Hosking, and J. E. B. Moss. Classifying Jdaasctransformations
for pervasive virtualized access. Rroceedings of the 8th International Conference on.
Generative Programming and Component Engineering (GR@&ges 75-84, 2009b. 79

A. Messer, |. Greenberg, P. Bernadat, D. Milojicic, D. ChenJTGiuli, and X. Gu.
Towards a distributed platform for resource-constrainedaes. InProceedings of the
22nd International Conference on Distributed Computing &yst (ICDCS)pages 43—
51, 2002! 19

G. E. Moore. Cramming more components onto integrated ¢&cttlectronics 38(8),
Apr. 1965. 95

OMG. The Common Object Request Broker: Architecture and Spatidn. Technical
Report 91.12.1 rev 1.1, Object Management Group, 1992. 25

M. Philippsen and B. Haumacher. Locality optimization inalarty by means of static
type analysisConcurrency—Practice and Experiend&(8):613-628, July 2000. 23

M. Philippsen and M. Zenger. JavaParty—transparent renodjects in Java.
Concurrency—Practice and Experien®§11):1225-1242, Nov. 1997. 23

136

M. Robinson and P. Vorobie®wing Second EditiorMannings Publications, 2003. 108

D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatisttéactoring for Java. In
Proceedings of the 25th IEEE/ACM International Conferencoated Software Engi-
neering (ASE)pages 114123, 2005. 126

R. Samanta, A. Bilas, L. Iftode, and J. P. Singh. Home-based $xitbcols for SMP
clusters: Design and performance.Rroceedings of the 4th International Symposium on
High-Performance Computer Architecture (HPCAY98. 19

SPECjbb2005. Java server benchmark, 2005. URIt p://ww. spec. or g/
j bb2005. Standard Performance Evaluation Corporation| 61], 119

SPECjvm98. Java virtual machine benchmarks, 2008. WRLp: // ww. spec.
or g/ j vnR2008/ . Standard Performance Evaluation Corporation. 61

A. Spiegel. Automatic distribution in Pangaea. Rroceedings of the 3rd International
Workshop on Communications-Based Systems (GR8§s 119-146, 2000. 27

A. Spiegel.Automatic Distribution of Object-Oriented ProgranBhD thesis, Freie Uni-
versitat Berlin, Dec. 2002. 27

A. Spiegel. Pangaea: An automatic distribution front-esrdJava. InProceedings of the
IPPS/SPDP Workshoppages 93-99, 1999. 27

G. L. Steele, Jr. Parallel programming and code selectidfoitress. InProceedings of
the 11th ACM SIGPLAN Symposium on Principles and Practica@Rl Programming
(PPoPP) pages 1-1, 2006. 22

F. Steimann. The Infer Type refactoring and its use for fate-based programming.
Journal of Object Technolog$(2), 2007, 25

Sun Microsystems, Inc. Java remote method invocation Bpawon, a.
URL http://java.sun.conijavase/technol ogi es/core/basic/rm/
i ndex. j sp.23

Sun Microsystems, Inc. Dynamic proxy classes, b. URlt p: / /] ava. sun. com
j 2se/ 1. 5.0/ docs/ gui de/ refl ecti on/ proxy. ht ml .25

Sun Microsystems, Inc. The JVM tool interface, c. URLt p://j ava. sun. com
j2se/ 1.5. 0/ docs/ gui de/jvnti .46

E. Tanter, M. &gura-Devillechaise, J. Néy and J. Piquer. Altering Java semantics via
bytecode manipulation. IRroceedings of the 1st International Conference on Genezati
Programming and Component Engineering (GPQi&ges 283-298, 2002. 29

M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A bytecodediator for distributed
execution of “legacy” Java software. Rroceedings of the 15th European Conference on
Object-Oriented Programming (ECOOR001. 18

Terracotta Inc. URIhtt p: //terracotta. org.[17

The Apache Software Foundation. Hadoop. URL p: / / hadoop. apache. or g/ .

http://www.spec.org/jbb2005
http://www.spec.org/jbb2005
http://www.spec.org/jvm2008/
http://www.spec.org/jvm2008/
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://java.sun.com/j2se/1.5.0/docs/guide/reflection/proxy.html
http://java.sun.com/j2se/1.5.0/docs/guide/reflection/proxy.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti
http://terracotta.org
http://hadoop.apache.org/

137

The Java Grande Forum. The Java Grande benchmark suitehtURd: / / www. epcc.
ed. ac. uk/ resear ch/j ava- grande.[62, 107

E. Tilevich and Y. Smaragdakis. J-Orchestra: AutomaticaJapplication partition-
ing. In Proceedings of the 14th European Conference on Object-@deRrogramming
(ECOOP) pages 178-204, 2002. 14, 15

E. Tilevich and Y. Smaragdakis. Portable and efficient iisted threads for Java. In
Proceedings of the 5th ACM/IFIP/USENIX International Middége Conferencepages
478-492, 2004. 16, 82

E. Tilevich and Y. Smaragdakis. Transparent program tcanstions in the presence of
opaque code. IRroceedings of the 5th International Conference on Genesd&rogram-
ming and Component Engineering (GPCBages 89—-94, 2006. 15, 58

E. Tilevich and Y. Smaragdakis. J-Orchestra: Enhancing pavgrams with distribution
capabﬁies.ACM Transactions on Software Engineering and Methodql@gy1):1-40,
2009. 14

E. Tilevich, Y. Smaragdakis, and M. Handte. Appletizing: Rung legacy Java code
remotely from a Web browser. Froceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM)ages 91-100, 2005. 14

TPC. The TPC benchmarks. URit t p: / / www. t pc. or g/ .[119

W. Yu and A. L. Cox. Java/DSM: A platform for heterogeneous pating.
Concurrency—Practice and Experien®§11):1213-1224, 1997. 20

http://www.epcc.ed.ac.uk/research/java-grande
http://www.epcc.ed.ac.uk/research/java-grande
http://www.tpc.org/

VITA

138

VITA

Phil McGachey was born in Glasgow, Scotland, attendingifiridigh School and
St. Aloysius College. He earned a BSc in Software Engineerir@lasgow University,
graduating with a First Class Honors degree in 2002. Philtsfiensecond year of his
undergraduate course at Boston College in Chestnut Hill, Massatts.

On graduating from Glasgow, Phil moved to Purdue Univetsityork with Prof. Tony
Hosking in the Secure Software Systems lab. He completedngurmternships at Sun
Microsystems in 2005 and at Intel's Programming Systems iba®006 and 2007. He
completed his MS degree in 2005 and his PhD in 2010.

Phil's research interests have centered around run-tistersyg, spending time working
on Java VMs, garbage collection and transparent distabutDutside of work, he enjoys

golf, traveling, model ship building, and the acquisitidrtiny power tools.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Overview
	RuggedJ
	Target Applications
	System Design
	Class Transformation
	Run-Time Infrastructure
	Partitioning
	Summary

	Contributions

	Background
	Transparent Distribution
	J-Orchestra
	Terracotta
	Addistant
	AIDE

	Java Distributed Shared Memory
	Language-Based Distribution
	Other Java Distribution Systems
	Work Related to Key RuggedJ Features
	Object Model
	Whole-Program Transformation
	Application Partitioning

	Class Transformation
	Terminology
	System and User Classes
	Transformation

	The RuggedJ Object Model
	Generated Classes
	Referring to Transformed Objects
	Inheritance
	Arrays
	Static Data
	Hand-Coded Classes

	Method and Field Transformations
	System Classes
	Barriers to Transformation
	The RuggedJ JVMTI Agent
	Templates for Rewriting
	Subtyping
	Classification
	System Class Static Singletons

	User Classes
	Rewriting
	Native and Reflective code
	Base Classes
	Classification

	Classification Evaluation
	Static Singletons

	Contributions
	Concluding Remarks

	Run-Time Support
	The RuggedJ Network
	Network Configuration
	Communication

	Run-Time Primitives
	Object Management
	Immutable Objects
	Migration

	Java Semantics
	Object Identity
	Reflection
	Static Data
	Threading and Synchronization
	Exception Handling

	Application Partitioning
	Contributions

	Distributed Application Development
	Distributability
	General Distributability
	Designing for RuggedJ

	Partitioning Strategies
	Applications
	Monte Carlo Simulation
	Molecular Dynamics
	DNA Database Matching
	SPECjbb2005
	Clue

	Contributions
	Concluding Remarks

	Summary and Future Work
	Summary
	Future Work
	Conclusion

	LIST OF REFERENCES
	VITA

