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1 Introduction

A motivating factor in the development of object-oriented databases is that they reduce the impedance
mismatch [Copeland and Maier 1984] between programming languages and database systems. One ben-
efit is that a straightforward mapping between the type system of the programming language and that of
the database reduces the conceptual barrier for the developer’s of database applications. Object-oriented
databases also represent an opportunity for more efficient implementation of the language/database inter-
face, since it is possible for the type system of the language to make guarantees about the safety of programs
executing against the database. A type-safe program can freely manipulate permanent data without fear of
corrupting the database – the type system guarantees it. Thus, there is no need for an unwieldy interface
between program and database for the manipulation of data. So long as mechanisms exist to make database
objects directly available to the program in memory, the program can access and modify that data directly,
without making calls to the underlying database system. In effect, data are cached by the application pro-
gram for efficient manipulation.

Persistent programming languages [Atkinson et al. 1982; Atkinson, Chisholm, Cockshott, and Mar-
shall 1983; Atkinson, Bailey, Chisholm, Cockshott, and Morrison 1983; Atkinson and Buneman 1987]
epitomize this ideal by viewing the database as a stable, persistent, extension of volatile memory, in which
data may be dynamically allocated, but which persists from one program invocation to the next. The lan-
guage allows traversal and modification of the persistent data structures transparently, without explicit calls
to read and write the data. Rather, the language implementation and run-time system contrive to make per-
sistent data resident in memory on demand, much as non-resident pages are automatically made resident
by a paged virtual memory system. Moreover, a persistent program can modify persistent data and commit
the modifications so that their effects are permanently recorded in persistent storage.

Atkinson, Bailey, Chisholm, Cockshott, and Morrison [1983] characterize persistence as “an orthogo-
nal property of data, independent of data type and the way in which data is manipulated”. This particular
characterization has important ramifications for the design of persistent programming languages, since it
encourages the view that a language can be extended to support persistence with minimal disturbance of
its existing syntax.



The notion of persistent storage as a stable extension of the dynamic allocation heap allows a uniform
and transparent treatment of both transient and persistent data, with persistence being orthogonal to the
way in which data is defined, allocated, and manipulated. This characterization of persistence allows us
to identify the fundamental mechanisms that any such persistent system must support, as the basis for any
study of the performance of persistent systems.

To be widely accepted, orthogonal persistence must exhibit sufficiently good performance to justify
its inclusion as an important feature of any good programming language. Ideally, such persistence ought
not to require any unusual support from the underlying hardware or operating system, so that persistent
programming can be extended to the widest possible community.

2 Essential persistence mechanisms

As in traditional database systems, a persistent system must cache frequently-accessed data values in mem-
ory for efficient manipulation. Because memory is a relatively scarce resource, it is likely that there will be
much more persistent data than can be cached at once. Thus, the persistent system must arrange to make
resident just those persistent values needed by the program for execution. Without knowing in advance
which data is needed, the system must decide dynamically when to retrieve needed data from secondary
storage into memory (although any advance knowledge that is available should be used to guide prefetch-
ing). Updates can be made in place, in memory, but ultimately must be propagated back to stable storage.
Thus, a persistent system must provide mechanisms for the detection and handling of references to persis-
tent data and for the propagation of any modified data back to stable storage. Efficient implementation of
these mechanisms is the key to implementing a high-performance persistent programming language, since
they provide the fundamental database functionality of retrieval and update.

2.1 The read barrier: object faulting

The first mechanism mediates retrieval of data from stable storage into memory for manipulation by the
program. Any operation that directly accesses a data value whose residency is in doubt must first check
that the value is available in memory. Such residency checks constitute a read barrier to any operation
that accesses persistent data: before the operation can read (or write) the data it must first make sure it is
resident.

2.2 The write barrier: detecting and logging updates

The second key persistence mechanism ensures that updates to cached (i.e., volatile) persistent data are
reflected in the database. Making updates permanent means propagating them to stable storage. Thus, ev-
ery operation that modifies persistent data requires some immediate or subsequent action to commit the
modification to disk. A persistent system might write the modifications straight through to disk on every
update, but this is likely to be very expensive if updates are frequent or otherwise incur very little overhead.
Instead, updating the stable store is typically held over to some later time, usually at the instigation of the
programmer through the invocation of a transaction commit or a checkpoint primitive operation. Either
way, any operation that modifies persistent data in memory must arrange for the update to be made perma-
nent, directly by writing the modified data to disk, or indirectly by asking the system to remember that the
update was made. Recording updates in this way constitutes a write barrier that must be imposed on every
operation that modifies persistent data; writes require additional overhead to record the update.

2



Implementation of the write barrier is intimately tied up in assurances of database resilience in the face
of system failures. When a user commits to a set of updates they want to be certain that all of the updates
are permanently reflected in the database. Unfortunately, a crash results in the loss of the volatile part of the
database (the cached persistent data), including all updates to persistent data that have not yet been propa-
gated to stable storage. Recovering from such a failure involves restoring the database to some consistent
state from which processing can resume. Any implementation of the write barrier must take into account
the mechanism by which programmers specify database consistency and the information that must be gen-
erated for recovery.

3 Fine-grained persistence and the performance problem

Conventional non-persistent programming languages, such as those in the Algol family (including Pascal,
C, Modula-2, and their object-oriented cousins C++, Modula-3 and even Smalltalk) have a fine-grained
view of data — they provide fundamental data types and operations that correspond very closely to the
ubiquitous primitive types and operations supported by all machines based on the von Neumann model of
computation. Such a close correspondence means that many operations supported in the language can be
implemented directly with as little as one instruction of the target machine.

Orthogonality mandates that even data values as fine-grained as a single byte (the smallest value typ-
ically addressable on current machines) may persist independently. Clearly, this situation is significantly
different from that of relational database systems, where the unit of persistence is the record, usually con-
sisting of many tens, if not hundreds, of bytes. Where a relational system can spend hundreds or thou-
sands of instructions implementing relational operators, an Algol-like persistent programming language
must take an approach to persistence that does not swamp otherwise low-overhead and frequently executed
operations.

Thus, implementations of the read and write barrier for such languages must be sufficiently lightweight
as to represent only marginal overhead to frequently executed operations on fine-grained persistent data.

4 Benchmarking persistent programming languages

As described above, a persistent system embodies an extremely tight integration of programming language
and database. Such systems will succeed or fail as much on their performance as programming languages
as on their performance as database systems. Thus, benchmarking a persistent system requires a holistic
approach that focuses on both language and run-time behavior as well as underlying database functional-
ity. Performance metrics should include fine-grained (i.e., instruction-level) overheads in addition to the
coarse-grained features typically measured by database benchmarks (e.g., transaction throughput, commit
latency, disk accesses, etc.). Examples of the former include the instruction-level overheads for the read
and write barriers elucidated above.

As a case study for discussion, we offer the following brief description of the performance evaluation
of a persistent Smalltalk implementation [Hosking et al. 1993; Hosking and Moss 1993a; Hosking and
Moss 1993b; Hosking 1995]. We present performance results for alternative implementations of the read
and write barrier, running the OO1 Traversal benchmark [Cattell and Skeen 1992] and its Update analogue
[White and DeWitt 1992], respectively, against the “small” OO1 database. The benchmarks were run on a
40MHz SPARCstation 2 (unified instruction and data cache). All figures quoted are significant to within a
90% confidence interval.
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Table 1: Traversal: key cold/warm/hot results

Scheme Cold Warm Hot
elapsed time (s) elapsed time (s) elapsed time (s) I refs I misses R misses W misses

non-persistent 0.056 0.056 0.0547 1016219 6983 9109 50

ID, lazy 2.3 0.11 0.066 1303593 7083 10584 323
ID, opportunistic 2.5 0.11 0.056 1039126 6823 9361 271
FB, opportunistic 2.5 0.12 0.0553 1027172 6866 9445 251
ID, eager 3.9 0.13 0.055 1016224 6771 8969 230
FB, eager 3.9 0.14 0.055 1016230 6785 8957 234
trap, eager 4.7 0.16 0.055 N/A N/A N/A N/A

I refs = instruction references; I misses = instruction cache misses
R misses=data cache read misses; W misses= data cache write misses

4.1 The read barrier: object faulting

The object faulting results compare the following alternative implementations of the read barrier:

� non-persistent: non-persistent Smalltalk, with the database entirely resident

� ID: tagged persistent identifiers

� FB: pointers to tagged resident proxies (fault blocks)

� trap: pointers to page-protected resident proxies

In addition, the eagerness to swizzle is varied (where applicable):

� lazy: obtain a direct pointer only when traversing the reference (source locations are not updated)

� opportunistic: intra-segment references are swizzled when a segment of objects is made resident

� eager: all references to a target object are swizzled when the target is first made resident

The results (Table 1) illustrate a clear tradeoff as the system warms up, with the up-front overheads of
swizzling paying off only for warm and hot iterations. Hot performance reveals the payoff to be obtained
through swizzling, with significantly reduced overheads (as highlighted by the number of instructions ex-
ecuted per iteration), and performance very close to that of non-persistent.

4.2 The write barrier: detecting and logging updates

The write barrier results compare the following alternative implementations:

� objects: on update set bit in object header; on checkpoint scan for changed objects

� remsets: on update enter object reference into a hash table data structure called a remembered set
(cf. [Ungar 1984; Ungar 1987]); on checkpoint iterate over set

� cards-n (16 � n = 4k � 4096 bytes): on update set bit in dirty card table; on checkpoint process
objects and fragments in dirty cards

� pages (4096 bytes): same as cards-4096 but driven by virtual memory page protection traps on
first write to a page
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Figure 1: Update: checkpoint latency

All schemes write only object differences to the log, for minimal log volume. We report hot results for
long-running transactions so as to focus on the intrinsic costs of each scheme.

The first set of results (Figure 1) concern the latency of checkpoints. The factor that has most impact
on checkpoint latency is the granularity of the information recorded by the update mechanism, since that
determines the amount of data that must be compared to generate the difference log. The pages scheme is
most expensive, both because of the large granularity it implies, but also because of the overhead to reset
page protections on checkpoint – the system call to do this has very high cost. The cards schemes are
essentially ordered by granularity, with 16-byte cards having performance almost as good as remsets –
the difference is mostly due to the overhead of scanning the card table versus the compactly-represented
remembered set.

Run-time overheads come into play only when transactions are long enough for computation to dom-
inate checkpoint overhead. The intrinsic run-time overheads of each scheme are reported in Table 2 (for
details as to the derivation of these results see [Hosking 1995]). Note that the results for pages have been
adjusted to account for an anomaly in the hardware cache behavior present in the raw results for that scheme
(the unified cache led to contention between one data location and one instruction). Given these results and
the earlier checkpoint latencies it is straightforward to calculate the minimum number of Update traversals
that must be performed per checkpoint before the trap-based pages implementation outperforms the equiv-
alent software-driven cards-4096 implementation. Note how the frequency/density of update affects the
tradeoff: amortization of the up-front per-checkpoint overheads occurs with fewer Update traversals for
higher update probabilitis. Moreover, pages is preferable only in extreme cases, when transactions are
particularly long or updates extremely frequent and dense.

5



Table 2: Long-running Update: run-time overheads

per part modified Net (per update)
Scheme Time (cycles) Instructions Time (cycles) Instructions

non-persistent 159�90%0 81�90%0 0�90%0 0�90%0
scan 159�90%1 81�90%0 0�90%1 0�90%0
objects 173�90%1 89�90%0 7�90%1 4�90%0
remsets 249�90%4 139�90%1 45�90%2 29�90%1
cards-16 188�90%2 89�90%0 15�90%1 4�90%0
cards-64 185�90%1 89�90%0 13�90%1 4�90%0
cards-256 183�90%2 87�90%0 12�90%1 3�90%0
cards-1024 184�90%1 89�90%0 13�90%1 4�90%0
cards-4096 185�90%2 89�90%0 13�90%1 4�90%0
pages (raw) 219�90%1 81�90%0 30�90%1 0�90%0
pages (adjusted) 169�90%1 81�90%0 5�90%1 0�90%0

net overhead per update=
overhead per part�scan overhead per part

2

Table 3: Long-running Update: break-even points for cards-4096 versus pages

update checkpoint latency (seconds) parts modified break-even point
probability pages (p) cards-4096 (c) per traversal (m) (traversals, t)

0.00 0.152�90%0.006 0.077�90%0.006 0 ∞
0.05 0.282�90%0.008 0.135�90%0.004 98 2308�90% 366
0.10 0.358�90%0.009 0.184�90%0.005 252 1062�90% 167
0.15 0.42 �90%0.01 0.221�90%0.008 490 625�90% 105
0.20 0.43 �90%0.01 0.229�90%0.005 632 489�90% 74
0.50 0.60 �90%0.01 0.350�90%0.004 1577 244�90% 32
1.00 0.744�90%0.008 0.455�90%0.003 3280 136�90% 16

t =
p� c

13 cycles per update
40MHz �m�2 updates per traversal

6



5 Conclusions

We argue that benchmarking persistent programming languages requires consideration of both coarse- and
fine-grained performance metrics, including instruction-level measurements typical within the program-
ming language community, as well as measurements of database functionality. In particular, it is useful to
explore the difference in performance between non-persistent languages and their orthogonally persistent
counterparts, since that measurement is likely to be one of the deciding factors in the acceptance of persis-
tent programming languages. Moreover, benchmarks for object-oriented databases should be amenable to
these sorts of measurements.
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