
International Workshop on Aliasing in Object-Oriented Systems, Lisbon, Portugal, June 1999

Partial Redundancy Elimination for Access Path Expressions

Antony L. Hosking Nathaniel Nystrom David Whitlock
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-1398, USA

Quintin Cutts
Department of Computing Science

University of Glasgow

Glasgow G12 8QQ, Scotland

Amer Diwan
Department of Computer Science

Stanford University

Stanford, CA 94305-9030, USA

Abstract

Pointer traversals pose significant overhead to the ex-
ecution of object-oriented programs, since every ac-
cess to an object’s state requires a pointer dereference.
Eliminating redundant pointer traversals reduces both
instructions executed as well as redundant memory ac-
cesses to relieve pressure on the memory subsystem. We
describe an approach to elimination of redundant access
expressions that combines partial redundancy elimina-
tion (PRE) with type-based alias analysis (TBAA). To
explore the potential of this approach we have imple-
mented an optimization framework for Java class files
incorporating TBAA-based PRE over pointeraccess ex-
pressions. The framework is implemented as a classfile-
to-classfile transformer; optimized classes can then be
run in any standard Java execution environment. Our
experiments demonstrate improvements in the execu-
tion of optimized code for several Java benchmarks run-
ning in diverse execution environments: the standard
interpreted JDK virtual machine, a virtual machine us-
ing “just-in-time” compilation, and native binaries com-
piled off-line (“way-ahead-of-time”). We isolate the im-
pact of access path PRE using TBAA, and demonstrate
that Java’s requirement of precise exceptions can notice-
ably impact code-motion optimizations like PRE.

1 Introduction

Pointer traversals pose significant overhead to the exe-
cution of object-oriented programs, since every access
to an object’s state requires a pointer dereference. Ob-
jects can refer to other objects, forming graph structures,
and they can be modified, with such modifications vis-
ible in future accesses. Just as common subexpressions
often appear in numerical code, common access expres-
sions are likewise often encountered in object-oriented
code. Where two such expressions redundantly com-
pute the same value it is desirable to avoid repeated
computation of that value by caching the result of the
first computation in a temporary variable, and reusing
it from the temporary at the later occurrence of the ex-
pression. Eliminating redundant computations in this
way certainly eliminates redundant CPU overhead. Per-
haps just as important for modern machine architec-
tures, eliminating redundant access expressions also has
the effect of eliminating redundant memory references,

which are often the source of large performance penal-
ties incurred in the memory subsystem.

In this paper we evaluate an approach to elimina-
tion of common access expressions that combines par-
tial redundancy elimination (PRE) [Morel and Renvoise
1979] with type-based alias analysis (TBAA) [Diwan
et al. 1998]. To explore the potential of this approach
we have built an optimization framework for Java class
files incorporating TBAA-based PRE for access expres-
sions, and measured its impact on the performance of
several benchmark programs. An interesting aspect of
the optimization framework is that it operates entirely as
a bytecode-to-bytecode translator, sourcing and target-
ing Java class files. Our experiments compare the ex-
ecution of optimized and unoptimized classes for sev-
eral SPARC-based execution environments: the inter-
preted JDK reference virtual machine, the Solaris 2.6
virtual machine with “just-in-time” (JIT) compilation,
and native binaries compiled off-line (“way-ahead-of-
time”) to C and thence to native code using the Solaris
C compiler.

We have measured both the static and dynamic im-
pact of bytecode-level PRE optimization for a set of
Java benchmark applications, including static code size,
bytecode execution counts, native-instruction execution
counts, and elapsed time. The results demonstrate gen-
eral improvement on all measures for all execution en-
vironments, although some benchmarks have degraded
performance in certain environments.

The remainder of the paper is organized as follows.
Section 2 introduces the approach to elimination of
redundant access path expressions based on partial-
redundancy elimination and type-based alias analysis.
Section 3 describes our implementation of the analysis
and optimization framework that supports transforma-
tion of Java class files using TBAA-based PRE. Sec-
tion 4 describes our experimental methodology for eval-
uation of TBAA-based PRE for several Java benchmark
applications. The experimental results are reported and
interpreted in Section 5. We conclude with a discussion
of related work and speculate on directions for future
work.

This research is supported in part by the National Science Foundation under Grant No. CCR-9711673, and by gifts from Sun Microsystems, Inc.
Authors’ email addresses:fhosking;nystrom;whitlockg@cs.purdue.edu, quintin@dcs.gla.ac.uk, diwan@cs.stanford.edu

Table 1: Access expressions

Notation Name Variable accessed

p:f Field access Field f of class in-
stance to which p
refers

p[i] Array access Component with sub-
script i of array to
which p refers

2 PRE for Access Expressions

Our analysis and optimization framework revolves
around PRE over object access expressions. We adopt
standard terminology and notations used in the specifi-
cation of the Java programming language to frame the
analysis and optimization problem.

2.1 Terminology and notation

The following definitions paraphrase the Java specifica-
tion [Gosling et al. 1996]. Anobjectin Java is either a
class instanceor an array. Reference values in Java are
pointersto these objects, as well as the null reference.
Both objects and arrays are created by expressions that
allocate and initialize storage for them. The operators
on references to objects are field access, method invoca-
tion, casts, type comparison (instanceof), equality
operators and the conditional operator. There may be
many references to the same object. Objects have muta-
ble state, stored in the variable fields of class instances
or the variable elements of arrays. Two variables may
refer to the same object: the state of the object can be
modified through the reference stored in one variable
and then the altered state observed through the other.
Access expressionsrefer to the variables that comprise
an object’s state. Afield access expressionrefers to a
field of some class instance, while anarray access ex-
pressionrefers to a component of an array. Table 1 sum-
marizes the two kinds of access expressions in Java. We
adopt the termaccess path[Larus and Hilfinger 1988;
Diwan et al. 1998] to mean a non-empty sequence of
accesses. For example, the Java expressiona:b[i]:c is
an access path. Without loss of generality, our notation
assumes that distinct fields within an object have differ-
ent names (i.e., fields that override inherited fields of the
same name from superclasses are trivially renamed).

A variable is a storage location and has an associated
type, sometimes called itscompile-timetype. Given an
access pathp, then the compile-time type ofp, written
Type(p), is simply the compile-time type of the variable
it accesses. A variable always contains a value that isas-
signment compatiblewith its type. A value of compile-
time class typeS is assignment compatible with class
typeT if S andT are the same class orS is a subclass
of T. A similar rule holds for array variables: a value
of compile-time array typeS[] is assignment compati-

b
a+b

b

a+b

a a
bb

t a+b t a+b

t

a a

(a) Before PRE (b) After PRE

Figure 1: PRE for arithmetic expressions

ble with array typeT[] if type S is assignable to type
T. Interface types also yield rules on assignability: an
interface typeSis assignable to an interface typeT only
if T is the same interface asSor a superinterface ofS;
a class typeS is assignable to an interface typeT if S
implementsT. Finally, array types, interface types and
class types are all assignable to class typeObject .

For our purposes we say that a typeS is asubtypeof
a typeT if S is assignable toT.1 We writeSubtypes(T)
to denote all subtypes of typeT, including T. Thus,
an access pathp can legally access variables of type
Subtypes(Type(p)).

2.2 Partial redundancy elimination

Our approach to optimization of access expressions is
based on application ofpartial redundancy elimination
(PRE) [Morel and Renvoise 1979]. To our knowledge
this is the first time PRE has been applied to access
paths. PRE is a powerful global optimization technique
that subsumes the more standard common subexpres-
sion elimination (CSE). PRE eliminates computations
that are only partially redundant; that is, redundant only
on some, but not all, paths to some later re-computation.
By inserting evaluations on those paths where the com-
putation does not occur, the later re-evaluation can be
eliminated and replaced instead with a use of the pre-
computed value. This is illustrated in Figure 1. In Fig-
ure 1(a), botha and b are available along each path
to the merge point, where expressiona+ b is evalu-
ated. However, this evaluation is partially redundant
sincea+b is available on one path to the merge but not
both. By hoisting the second evaluation ofa+ b into
the path where it was not originally available, as in Fig-
ure 1(b),a+b need only be evaluated once along any
path through the program, rather than twice as before.

Consider the Java access expressiona:b[i]:c, which
translates to Java bytecode of the form:

aload a ; load local variable a
getfield b ; load field b of a
iload i ; load local variable i
aaload ; index array b
getfield c ; load field c of b[i]

1The term “subtype” is not used at all in the official Java language
specification [Gosling et al. 1996], presumably to avoid confusing the
type hierarchy induced by the subtype relation with class and interface
hierarchies.

2

i
a:b[i]:c

i

a:b[i]:c

a a
ii

t a:b[i]:c t a:b[i]:c

t

a a

(a) Before PRE (b) After PRE

Figure 2: PRE for access expressions

Traversing the access path requires successively loading
the pointer at each memory location along the path and
traversing it to the next location in the sequence. Be-
fore applying PRE to access path expressions, one must
first disambiguate memory references sufficiently to be
able safely to assume that no memory location along the
access path can be aliased (and so modified) by some
lexically distinct access path in the program. Consider
the example in Figure 2. The expressiona:b[i]:c will be
redundant at some subsequent reevaluation so long as
no store occurs to any one ofa, a:b, i, a:b[i] or a:b[i]:c
on the code path between the first evaluation of the ex-
pression and the second. In other words, if there are
explicit stores toa or i (local variables cannot be aliased
in Java) or potential aliases to any one ofa:b, a:b[i] or
a:b[i]:c through which those locationsmaybe modified
between the first and second evaluation of the expres-
sion, then that second evaluation cannot be treated as
redundant.

2.3 Type-based alias analysis

Alias analysisrefines the set of possible variables to
which an access path may refer. Two distinct access
paths are said to be possiblealiasesif they may refer to
the same variable. Without alias analysis the optimizer
must conservatively assume that all access paths are
possible aliases of each other. In general, alias analy-
sis in the presence of references is slow and requires the
code for the entire program to work.Type-based alias
analysis(TBAA) [Diwan et al. 1998] offers one possi-
bility for overcoming these limitations. TBAA assumes
a type-safe programming language such as Java, since
it uses type declarations to disambiguate references. It
works in linear time and does not require that the en-
tire program be available. Rather, TBAA uses the type
system to disambiguate memory references by refining
the typeof variables to which an access path may refer,
since only type-compatible access paths can alias the
same variable in a type-safe language such as Java. The
compile-time type of an access path provides a simple
way to do this: two access pathsp andq may be aliases
only if the relationTypeDecl(p;q) holds, as defined by

TypeDecl(AP 1;AP 2)

Subtypes(Type(AP 1))\Subtypes(Type(AP 2)) 6= /0

Table 2:FieldTypeDecl(AP 1;AP 2)

Case AP 1 AP 2 FieldTypeDecl(AP 1;AP 2)

1 p p true
2 p:f q:g (f = g)^TypeDecl(p;q)
3 p:f q[i] false
4 p[i] q[j] TypeDecl(p;q)
5 p q TypeDecl(p;q)

A more precise alias analysis will distinguish accesses
to fields that are the same type yet distinct. This more
precise relation,FieldTypeDecl(p;q), is defined by in-
duction on the structure ofp andq in Table 2. Again,
two access pathsp andq may be aliases only if the re-
lation FieldTypeDecl(p;q) holds. It distinguishes ac-
cesses such ast:f and t:g that TypeDeclmisses. The
cases in Table 2 determine that:

1. Identical access paths are always aliases

2. Two field accesses may be aliases if they access the
same field of potentially the same object

3. Array accesses cannot alias field accesses and vice
versa

4. Two array accesses may be aliases if they may ac-
cess the same array (the subscript is ignored)

5. All other pairs of access expressions (when none
of the above apply) are possible aliases if they have
common subtypes

2.3.1 Analysing Incomplete Programs

Java dynamically links classes on demand as they are
needed during execution. Moreover, Java permits dy-
namic loading of arbitrary named classes that are stat-
ically unknown. Also, code for native methods cannot
easily be analysed. To maintain class compatibility, no
class can make static assumptions about the code that
implements another class. Thus, alias analysis must
make conservative assumptions about the effects of stat-
ically unavailable code. Fortunately, bothTypeDecland
FieldTypeDeclrequire only the compile-time types of
access expressions to determine which of them may be
aliases. Thus, they are applicable to compiled classes
in isolation and optimizations that use the static alias
information they derive will not violate dynamic class
compatibility.

Diwan et al. [1998] further refine TBAA forclosed
world situations: those in which all the code that might
execute in an application is available for analysis. The
refinement enumerates all the assignments in a program
to determine more accurately the types of variables to
which a given access path may refer. An access path
of typeT may yield a reference to an object of a given
subtypeS only if there exist assignments of references
of typeSto variables of typeT. UnlikeTypeDecl, which
always merges the compile-time type of an access path

3

with all of its subtypes, Diwan’s closed world refine-
ment merges a typeT with a subtypeS only if there
is at least one assignment of a reference of typeS to a
variable of typeT somewhere in the code.

In general, Java’s use of dynamic loading, not to men-
tion the possibility of native methods hiding assign-
ments from the analysis, precludes such closed world
analysis. Of course, it is possible to adopt a closed
world model for Java if one is prepared to restrict dy-
namic class loading only to classes that are known stati-
cally, and to support analysis (by hand or automatically)
of the effects of native methods. Note that a closed
world model will require re-analysis of the entire clo-
sure if any one class is changed to include a new assign-
ment.

2.4 Java constraints on optimization

Java’s thread and exception models impose several con-
straints on optimization. First, exceptions in Java are
precise: when an exception is thrown all effects of state-
ments prior to the throw-point must appear to have taken
place, while the effects of statements after the throw-
point must not. This imposes a significant constraint
on code-motion optimizations such as PRE, since code
with side-effects (including possible exceptions) cannot
be moved relative to code that may throw an exception.2

In regions of the code where program analysis can show
that exceptions will not occur code motion is uncon-
strained. For example, the first access to an object via
a given reference ensures that subsequent accesses via
that reference cannot throw a null pointer exception.

Second, the thread model prevents movement of
access expressions across (possible) synchronization
points. Explicit synchronization points occur atmon-
itorenter/monitorexit bytecodes. Also, without inter-
procedural control-flow analysis every method invoca-
tion represents a possible synchronization point, since
the callee, or a method invoked inside the callee, may
be synchronized. Thus, calls and synchronization points
are places at which PRE must assume all non-local vari-
ables may be modified, either inside the call or through
the actions of other threads. Common access expres-
sions cannot be considered redundant across these syn-
chronization points.

Naturally, one must also respect thevolatile dec-
laration modifier, which forces synchronization of the
variable’s state across threads on every access.

3 Implementation

The Java virtual machine (VM) specification [Lindholm
and Yellin 1996] is intended as the interface between
Java compilers and Java execution environments. Its

2Of course an optimizing Java implementationcouldsimulate pre-
cise exceptions, even while performing unrestricted code hoisting, by
arranging to hide any such speculative execution from the user-visible
state of the Java program (see page 205 of Gosling et al. [1996]).

standard class file format and instruction set permit mul-
tiple compilers to inter-operate with multiple VM im-
plementations, enabling the cross-platform delivery of
applications that is Java’s hallmark. Conforming class
files generated byanycompiler will run inanyJava VM
implementation, no matter if that implementation inter-
prets bytecodes, performs dynamic “just-in-time” trans-
lation to native code (JIT), or precompiles Java class
files to native object files.

The bytecodes of the Java VM specification serve as a
convenient target for optimization of Java applications.
As the only constant in a sea of Java compilers and vir-
tual machines, targeting the Java class files for analysis
and optimization has several advantages. First, program
improvements accrue even in the absence of source code
for both libraries and applications, and independently of
the source-language compiler and VM implementation.
Second, Java class files retain enough high-level type
information to enable many recently-developed type-
based analyses and optimizations for object-oriented
languages. Finally, analysing and optimizing bytecode
can be performed off-line, permitting JIT compilers to
focus on fast native code generation rather than expen-
sive analysis. Indeed, off-line analysis may expose op-
portunities for fast low-level JIT optimizations. Thus,
we have chosen to implement a framework for TBAA-
based PRE over access expressions based on classfile-
to-classfile transformation.

Our Java class file optimization tool is called BLOAT
(Bytecode-Level Optimization and Analysis Tool). The
analysis and optimization framework implemented in
BLOAT is based on several recent developments in the
field. Notably, we use control flow graphs and static
single assignment (SSA) form as the basic intermediate
representation [Cytron et al. 1991; Wolfe 1996; Briggs
et al. 1998]. On this foundation we have built several
standard optimizations such as dead-code elimination
and copy/constant propagation, and SSA-based value
numbering [Simpson 1996], as well astype-based alias
analysis[Diwan et al. 1998] and the SSA-based algo-
rithm for PRE of Chow et al. [1997].

3.1 SSA form

SSA form provides a concise representation of the use-
definition relationships among the program variables.
Efficient global optimizations can be constructed based
on this form, including dead store elimination [Cytron
et al. 1991], constant propagation [Wegman and Zadeck
1991], value numbering [Alpern et al. 1988; Rosen
et al. 1988; Cooper and Simpson 1995; Simpson 1996;
Briggs et al. 1997], induction variable analysis [Gerlek
et al. 1995] and global code motion [Click 1995]. Opti-
mization algorithms based on SSA all exploit its sparse
representation for improved speed and simpler coding
of combined local and global optimizations.

4

3.2 SSA-based PRE

Prior to the work of Chow et al. [1997], PRE lacked an
SSA-based formulation. As such, optimizers that used
SSA were forced to convert to a bit-vector represen-
tation for PRE and back to SSA for subsequent SSA-
based optimizations. Chow et al. [1997] removed this
impediment with an approach (SSAPRE) that retains
the SSA representation throughout PRE. The specific
details of their algorithm are not relevant here, save to
say that the algorithmic complexity is respectable: for a
program of sizen, SSAPRE’s total time is O(n(E+V)),
whereE andV are the number of edges and nodes in the
control flow graph, respectively.

3.3 Analysis

For each method in a class, BLOAT first builds a
control flow graph over the bytecode instructions and
then transforms each basic block into expression trees.
The trees are constructed through a simulation of the
operand stack.

Two simple transformations are then applied to ease
later analyses and optimizations. The first converts
methods that initialize static arrays from the form emit-
ted by the JDKjavac compiler, comprising a straight-
line sequence of array stores for every element of the
array, into a form more amenable to later analysis, con-
sisting of a loop that reads from a static string defined
in the constant pool of the class. This transformation
eliminates the unnecessarily large basic blocks emitted
for static array initializers in such core classes asChar-
acter, significantly cutting the time for later analysis
of these initializers. The second transformation iden-
tifies loops [Havlak 1997] and converts each “while”
loop into a “repeat” loop preceded by an “if” condi-
tional. This provides a convenient place immediately
after the “if” to hoist loop-invariant code out of the loop
body. Code that is loop-invariant apart from possibly
throwing exceptions can thus be treated as invariant in
the new loop body and will be eliminated by PRE.

After construction of the control flow graph both lo-
cal and operand stack variables are converted to SSA
form. This requires computation of the dominator
tree and dominance frontier of the control flow graph
[Cytron et al. 1991]. We also removecritical edges
in the graph by inserting empty basic blocks on such
edges. Critical edge removal is required to provide a
place to insert code during PRE and when translating
back from SSA form.

Java bytecode has two forms of control flow which
complicate SSA construction: exception handlers and
method-local subroutines. To support exception han-
dling, we must propagate local variable information
from the protected area to the exception handler. We
extend SSA to more easily distinguish all values of a
variable that are live within the protected region.

Subroutines within a method are formed with thejsr
andret bytecodes. Thejsr bytecode pushes the current
program counter, a value of typereturnAddress, onto

the operand stack and branches to the subroutine. The
ret bytecode loads a savedreturnAddress from a local
variable and resumes control at that code location. To
permit verification ofjsr subroutines the Java VM spec-
ification imposes a restriction that eachjsr can have at
most one correspondingret. This allows eachjsr to be
tied to theret that returns to it. Thus, for SSA construc-
tion we treat each subroutine such that, if a variable is
not redefined within the subroutine, the use-definition
information for the variable is propagated from each
jsr site to its corresponding return site. This avoids
unnecessarily merging information from multiple paths
through the subroutine. Our SSA-based solution is es-
sentially the same as the “variable splitting” approach
proposed by Agesen et al. [1998] in support of accurate
garbage collection.

TBAA uses the compile-time type of every expres-
sion in the method, but local and operand stack variables
in Java bytecode are not declared. Thus, after SSA con-
struction we infer their types using an intra-procedural
variation of the algorithm of Palsberg and Schwartzbach
[1994].

PRE operates by recognizing common subexpres-
sions. Rather than basing equivalence of expressions
purely on their lexical equivalence, we use the SSA-
based value numbering approach of Simpson [1996].
We assign value numbers to everyfirst-order expres-
sion. These are expressions for values that cannot be
aliased, such as the contents of method local variables,
constants, and non-access expressions over these. Using
value numbering avoids the need for repetitive iteration
of PRE interleaved with constant/copy propagation.

Finally, we identify alias definition points: those code
locations where potentially-aliased variables may be
modified. For example, an assignment to a (non-local)
variable redefines every access expression that may alias
that variable. Calls and monitor synchronization points
redefineall access expressions.

3.4 Optimization

After the analyses, BLOAT performs the following op-
timizations:

1. Partial redundancy elimination. BLOAT imple-
ments the SSA-based PRE algorithm of Chow et al.
[1997], extended to support TBAA-based PRE of
access paths by treating alias definition points for a
given access expression as redefining that expres-
sion. This forces reevaluation of the expression af-
ter the alias definition point. We also restrict PRE-
induced code motion to respect the constraints on
Java optimizations due to precise exceptions and
threads, except that where analysis shows a given
bytecode will never throw an exception we are free
to move code with respect to that bytecode.

2. Constant/copy propagation. This is based on stan-
dard techniques for constant folding, algebraic
simplification and copy propagation [Wolfe 1996].

5

3. Dead code elimination. This is the standard SSA-
based algorithm [Cytron et al. 1991].

3.5 Code generation

Following the optimizations, SSA temporaries are
mapped back to Java VM local variables, before gen-
eration of bytecode instructions from the (optimized)
intermediate code trees. Liveness analysis and regis-
ter coloring with coalescing [Chaitin 1982; Briggs et al.
1994] ensure a good allocation, packing as many SSA
variables into the same physical local variable as pos-
sible. Priority is given to coalescing loop-nested local
variables ahead of others. Peephole optimizations re-
move redundantload andstore bytecodes for better uti-
lization of the operand stack.

4 Experiments

To evaluate PRE for access path expressions we took
several Java programs as benchmarks, optimized them
with BLOAT and compared the results of the optimiza-
tion with their unoptimized counterparts, using several
static and dynamic performance metrics. To isolate the
effects of access path PRE we considered 3 successively
more powerful levels of optimization: PRE over scalar
expressions, TBAA-based PRE over both scalar and ac-
cess expressions, and TBAA-based PRE that does not
respect Java’s precise exception requirements. Each op-
timization level subsumes all optimizations that are per-
formed by lower level optimizations. In the following
we will refer to results for the unoptimized code as
base, and to the successive levels of PRE-based opti-
mization aspre, tbaa andloose, respectively.

4.1 Platform

Our experiments were run under Solaris 2.5.1 on a
Sun Ultra 2 Model 2200, with 256Mb RAM, and two
200MHz UltraSPARC-I processors, each with 1Mb ex-
ternal cache in addition to their on-chip instruction
and data caches. The UltraSPARC-I data cache is
a 16Kb write-through, non-allocating, direct-mapped
cache with two 16-byte sub-blocks per line. It is virtu-
ally indexed and physically tagged. The 16Kb instruc-
tion cache is 2-way set-associative, physically indexed
and tagged, and organized into 512 32-byte lines.

4.2 Benchmarks

The benchmarks we use are summarized in Table 3.

4.3 Execution environments

We took measurements for three different Java execu-
tion environments: the standard Java Development Kit
(JDK) version 1.1.6, the Solaris 2.6 SPARC JDK with
JIT version 1.1.3 (JIT) and Toba version 1.1 (Toba)
[Proebsting et al. 1997]. In each environment we ran

Table 3: Benchmarks

Name Description Sizea

Crypt Java implementation of the
Unix crypt utility

650

Huffman Huffman encoding 435
Idea File encryption tool 2284
JLex Scanner generator 7287
JTB Abstract syntax tree builder 22317
Linpack Standard Linpack benchmark 584
LZW Lempel-Ziv-Welch file com-

pression utility
314

Neural Neural network simulation 1227
Tiger Tiger compiler [Appel 1998] 19018

aLines of source code (including comments).

all four variants (base, pre, tbaa and loose) of the
classes for each benchmark. Where Java source code
for a benchmark was available, it was compiled using
the standard JDK 1.1.6javac compiler (without the-O
optimization flag since in many cases this generates er-
roneous code; our observations indicate that this flag has
little impact on the performance of our benchmarks).

4.3.1 JDK

JDK is the standard 1.1.6 Java virtual machine. It uses
a portable threads package rather than the native So-
laris threads and the bytecode interpreter loop is im-
plemented in assembler. We optimized the class files
of each benchmark against the JDK version 1.1.6 core
Java classes [Gosling et al. 1996] at each optimization
level, to form the closure of optimized classes necessary
to execute the benchmark in JDK. Similarly the unop-
timized benchmark classes were run against the unopti-
mized core classes.

4.3.2 JIT

JIT refers to the Solaris 2.6 SPARC JDK with JIT ver-
sion 1.1.3. This VM translates a method’s bytecodes
to native SPARC instruction on first execution of the
method, along with the following optimizations:

1. elimination of some array bounds checking
2. elimination of common subexpressions within

blocks
3. elimination of empty methods
4. some register allocation for locals
5. no flow analysis
6. limited inlining

Interestingly, programmers are encouraged to perform
the following optimizations by hand [SunSoft 1997]:

1. move loop invariants outside the loop
2. make loop tests as simple as possible
3. perform loops backwards
4. use only local variables inside loops
5. move constant conditionals outside loops

6

6. combine similar loops
7. nest the busiest loop, if loops are interchangeable
8. unroll loops, as a last resort
9. avoid conditional branches

10. cache values that are expensive to fetch or compute
11. pre-compute values known at compile time

These suggestions likely reveal deficiencies in the cur-
rent JIT compiler which our optimizations may address
prior to JIT execution.

We used the same sets of class files as for JDK for
execution in the JIT environment.

4.3.3 Toba

Toba compiles Java class files to C, and thence to na-
tive code using the host system’s C compiler. The Toba
run-time system supports native Solaris threads, and
garbage collection using the Boehm-Demers-Weiser
conservative garbage collector [Boehm and Weiser
1988]. We started with the same sets of classes as for
JDK for execution in Toba. These class files were then
compiled to native code using the SunPro C compiler
version 4.0, with the-O2 compiler optimization flag. C
optimization level 2 performs basic local and global op-
timization, including induction variable elimination, al-
gebraic simplification, copy propagation, constant prop-
agation, loop-invariant optimization, register allocation,
basic block merging, tail recursion elimination, dead
code elimination, tail call elimination and complex ex-
pression expansion. We use this level since it does not
“optimize references”, nor “trace the effect of pointer
assignments”, and therefore will best reveal the impact
of our pointer optimizations.

4.4 Metrics

For each benchmark we took measurements for both the
optimized and unoptimized classes. We use both static
and dynamic metrics to expose the effects of optimiza-
tion:

� static code size: this is the size in bytes of the
benchmark-specific (non-library) class files (ex-
cluding debug symbols) for JDK/JIT, and static ex-
ecutables for Toba

� bytecodes executed: dynamic per-bytecode execu-
tion frequencies, obtained via an instrumented ver-
sion of the C-coded interpreter loop in the JDK
source release

� globally redundant (i.e., cross-activation)
bytecode-level memory accesses: dynamic
per-bytecode counts of all accesses that reload
values from unmodified variables, also obtained
via the instrumented JDK VM

� native SPARC instructions executed: dynamic per-
instruction execution frequencies using the Shade
performance analysis toolkit [Cmelik and Keppel
1994]

� counts of significant performance-related events:

– processor cycles to measure elapsed time

– instruction buffer stalls due to instruction
cache misses

– data cache reads
– data cache read misses

using software3 that allows user-level access to the
UltraSPARC hardware execution counters

For the dynamic measurements each run consists of two
iterations of the benchmark within a given execution
environment. The first iteration is to prime the envi-
ronment: loading class files, JIT-compiling them and
warming the caches. The second iteration is the one
measured.

The physically addressed instruction cache on the
UltraSPARC means that programs can exhibit widely
varying execution times from one invocation to the next,
since each invocation may have quite different map-
pings from virtual to physical addresses that result in
randomized instruction cache placement. Thus, the
elapsed time and cache-related metrics were obtained
for 10 separate runs and the results averaged. We ran
each benchmark with sufficient heap space to eliminate
the need for garbage collection, and verified that no col-
lections occurred during benchmarking.

5 Results

Our presentation normalizes all optimization results
with respect to thebase metrics. Reporting the results
in this way exposes the relative effects of the succes-
sive levels of optimization. Error bars in our graphs
represent 90% confidence intervals; these display the
variation in performance due to factors beyond our con-
trol, such as the varying virtual-to-physical page map-
pings. Grouped by benchmark, the adjacent columns in
the graphs represent the transition to higher optimiza-
tion levels frombase, throughpre andtbaa to loose,

In the following discussion we consider each execu-
tion environment in turn: JDK, then JIT, and lastly Toba.

5.1 JDK

Figure 3(a) illustrates the anticipated increase in dy-
namic bytecode execution counts for many of the
benchmarks, mainly due to introduction of extra loads
from and stores to temporaries introduced by PRE for
partially-redundant expressions whose values are not
used on all paths. As we shall see, execution envi-
ronments that map method local variables to registers
(e.g., JIT and Toba) do not suffer unduly from this over-
head. The impact on elapsed time for interpretation by
the JDK (Figure 3(b)) can be severe (notably for Huff-
man and Tiger), though for some benchmarks the ex-
tra load andstore bytecodes are offset by elimination
of partially-redundant code and replacement of many
expensive longload/store bytecode forms with their
cheaper short alternatives.

3See http://www.cs.msu.edu/�enbody/

7

(a) Bytecodes executed

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

base
pre
tbaa
loose

1.
00

1.
01 1.
02

1.
02

1.
00 1.

05 1.
09

1.
08

1.
00

1.
00

1.
00

1.
00

1.
00 1.

06 1.
07

1.
07

1.
00 1.

04 1.
08

1.
07

1.
00

0.
96

0.
96

0.
95 1.

00
1.

01
1.

01
1.

01

1.
00

1.
00

0.
96

0.
92

1.
00

1.
09 1.

13
1.

12

(b) Time (cycles)

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

base
pre
tbaa
loose

1.
00

0.
98

0.
97

0.
98 1.

00 1.
04 1.
07

1.
04

1.
00 1.
01

0.
98

0.
99 1.

00
0.

98
0.

99
0.

98 1.
00 1.
02 1.

04
1.

02

1.
00

0.
97

0.
95 0.
96 1.

00
0.

99
1.

00 1.
02

1.
00

1.
00

0.
98

0.
96 1.

00 1.
08 1.
08

1.
07

(c) Data reads

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

base
pre
tbaa
loose

1.
00

0.
97

0.
93

0.
93 1.

00 1.
01

0.
99

1.
00

1.
00

0.
98

0.
98

0.
98 1.
00 1.
01

1.
01

1.
01

1.
00

1.
00

1.
02

1.
01

1.
00

0.
96

0.
95

0.
94 1.

00
0.

98
0.

97
0.

97 1.
00

1.
00

0.
96

0.
92 1.

00 1.
03

1.
04

1.
04

Figure 3: JDK metrics

Figure 4 highlights these conversions. The effect is
most notable with LZW where the frequency of theload
bytecodes decreases from 11% to 1% of the total byte-
codes executed and the frequency ofloadn increases
from 20% to 28%. These effects result in less overhead
in the interpreter’s bytecode dispatch loop. The impact
on data cache reads (remember, bytecodes are data) is
revealed in Figure 3(c). The large increase in stores for
Linpack is due to PRE’s elimination of significant num-
bers of redundant arithmetic expressions.

The most dramatic effects of PRE over access paths
are directly revealed in the results for the access byte-
codes given in Figure 5. Here, we show the total number
of access bytecodes performed, broken down into glob-
ally redundant versus non-redundant accesses. The non-
redundant accesses are those that must always be per-
formed. The globally redundant accesses represent op-
portunity for optimization; with perfect inter-procedural
control flow and aliasing information all such accesses

(a) load vs. loadn

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

load_n
load

1.
00

0.
85

1.
00

0.
97 1.

00
0.

93 1.
00

0.
96 1.

00
0.

96 1.
00

0.
92

1.
00

0.
95 1.

00
0.

98 1.
00

0.
981.

03 1.
10

0.
93 0.
96 0.
97

0.
91 0.

95 0.
97 1.
001.
03 1.

10

0.
93 0.
96

0.
97

0.
90 0.

96

0.
92 0.

99

(b) store vs. storen

crypt huffman idea jlex jtb linpack lzw neural tiger
0

2

4

6

8

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

store_n
store

1.
00

1.
03

1.
00

1.
64

1.
00

0.
98

1.
00 1.

63

1.
00 1.

48

1.
00

9.
58

1.
00

1.
09

1.
00

1.
05

1.
00

1.
95

1.
14

3.
18

1.
00

1.
86

1.
95

9.
94

1.
15 1.

42

2.
42

1.
14

2.
78

1.
00

1.
85

1.
89

9.
96

1.
12 1.

38

2.
36

Figure 4: Replacingload/store with short forms

could be removed. It is remarkable how many of these
are removed by our purely intra-procedural analysis.
All benchmarks see a decrease, often significant, in the
frequency ofgetfield bytecodes (Figure 5(a)) due to
TBAA-based PRE over redundant access expressions
(tbaa). The dramatic reduction for Neural represents
a reduction of redundantgetfield operations from 9%
of total bytecodes executed to 5% of total bytecodes.
Linpack’s reductions are similar, butgetfields represent
just 0.02% of total bytecodes executed so the impact is
minimal. Relaxing Java’s precise exception requirement
(loose) yields little benefit forgetfield.

The array intensive benchmarks (Huffman, Linpack,
and Neural) obtain noticeable reductions inarrayload
frequency (Figure 5(b)). Interestingly, relaxing Java’s
precise exceptions gives significant improvement for
both Linpack and Neural, because freedom from con-
cern over precise delivery of array out of bounds excep-
tions, provides more opportunity for PRE-based code
motion. The Huffman, Linpack, and Neural bench-
marks, which have heavy array use (4%, 9%, and 11%,
respectively), see an elimination of 4–7% of thearray-
load bytecodes for TBAA-based PRE with precise ex-
ceptions (tbaa). Relaxing exception delivery (loose)
sees reductions inarrayloads increase to a peak of22%
for Neural. Further improvement would accrue if array
subscripts could be disambiguated via range analysis on
the subscript expressions for use during array alias anal-
ysis. Fewarrayload bytecodes are eliminated in any of

8

(a)getfield bytecodes

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

redundant
non-redundant

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
97

0.
88

0.
85 0.

91

0.
83

0.
56

0.
95

0.
54

0.
87

0.
99

0.
96

0.
85 0.

91

0.
85

0.
57

0.
95

0.
51

0.
87

(b) arrayload bytecodes

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

redundant
non-redundant

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
96 1.

00

0.
99

1.
00

0.
93 1.

00

0.
96 1.

00

1.
00

0.
96 1.

00

0.
99

1.
00

0.
88

1.
00

0.
78

1.
00

(c) getstatic bytecodes

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

redundant
non-redundant

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
12 0.
13

1.
00

0.
91

0.
82

0.
37

1.
00

0.
50

0.
79

0.
12 0.
13

1.
00

0.
91

0.
82

0.
37

1.
00

0.
50

0.
79

Figure 5: Access bytecodes executed

the other benchmarks, primarily because they their ar-
ray accesses are hidden inside method calls to library
classes, etc.

The most dramatic gains are forgetstatic accesses
(Figure 5(c)), primarily because almost all such ac-
cesses are globally redundant. That we come close to
the limit in eliminating almost all redundant accesses
for Crypt and Huffman demonstrates the effectiveness
of even simple alias analyses such as TBAA. The bench-
marks where PRE doesn’t eliminate many getstatics do
not have many to begin with.

5.2 JIT

The JIT environment is not influenced by conversion of
long bytecode forms to their short variants, since JIT
eliminates the bytecode dispatch overhead that we were
able to reduce for JDK. Nor, since JIT allocates local

(a) Time (cycles)

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

base
pre
tbaa
loose

1.
00

0.
95

0.
85

0.
84

1.
00

1.
00

1.
14

1.
00 1.

00
0.

68 0.
69

0.
69

1.
00

1.
00

0.
99

1.
00

1.
00 1.
01

1.
00 1.
01

1.
00

1.
14

1.
12

1.
11

1.
00

0.
97

0.
95

0.
96 1.
00 1.
02

1.
00

0.
98 1.

00 1.
05

1.
02

1.
00

(b) Data reads

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

base
pre
tbaa
loose

1.
00

0.
91

0.
76

0.
76

1.
00

1.
00

0.
94

0.
95 1.

00
0.

98
0.

96
0.

96 1.
00

0.
99

0.
98

0.
98 1.
00

1.
00

0.
97

0.
97 1.

00
1.

11
1.

07
1.

04

1.
00

1.
00

0.
99

0.
99 1.
00

1.
01

0.
96

0.
93 1.

00
0.

99
0.

97
0.

97

Figure 6: JIT metrics

variables to registers, do the extraload andstore byte-
codes matter much since they are converted to register
accesses. The only exception to this is Linpack, which
we saw earlier suffers from the introduction of large
numbers of temporaries and corresponding stores. Un-
fortunately, the corresponding increase in contention for
register assignment of these temporaries causes most
of them to remain in memory, with the loads turning
into real memory accesses. This may simply be a short-
coming of the register allocation technique used by JIT.
Thus, Linpack’s elapsed time performance after PRE
is disappointing (Figure 6(a)). Of the other bench-
marks, only Crypt and Idea show marked improvement
in elapsed time, although they all have fewer memory
reads (Figure 6(b)). The marked improvement in Idea is
a result of improved data read locality, resulting in many
fewer data cache misses.

5.3 Toba

With Toba all benchmarks but Tiger show reductions in
data reads (Figure 7(b)). Thus, our optimizations ex-
pose opportunities that the C compiler cannot exploit
on its own at optimization level 2. These are reflected in
reduced elapsed times (Figure 7(a)) for all but Huffman,
Idea, LZW and Neural, which are unable to exploit the
reduction in data reads in the face of an uncooperative
instruction cache. This is an artefact of the hardware
platform, and cannot be blamed on the optimizer, since
it almost never increases code size, and actually is ef-
fective at reducing it.

9

(a) Time (cycles)

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

base
pre
tbaa
loose

1.
00

1.
00

0.
90

0.
90

1.
00 1.

04
1.

01
0.

99

1.
00

0.
99

1.
01 1.

04

1.
00

0.
97

0.
94 0.
97 1.

00 0.
98

0.
97

0.
97 1.

00
0.

99
0.

97
0.

93

1.
00

1.
09

1.
02 1.

03

1.
00 1.
02

1.
00 0.

99

1.
00

0.
95

0.
91 0.

95

(b) Data reads

crypt huffman idea jlex jtb linpack lzw neural tiger
0.0

0.5

1.0

O
pt

 c
ou

nt
 /

U
no

pt
 c

ou
nt

base
pre
tbaa
loose

1.
00

1.
00

0.
87

0.
87

1.
00

1.
00

0.
93 0.
94 1.

00
1.

00
0.

97
0.

97 1.
00

1.
00

0.
99

1.
00

1.
00 1.
02

0.
99

0.
99

1.
00

1.
00

0.
96

0.
90

1.
00

0.
99

0.
96

0.
96 1.

00
1.

00
0.

95
0.

91

1.
00 1.

03
1.

01
1.

00

Figure 7: Toba metrics

6 Related work

The recent literature on alias analysis is extensive
[Chase et al. 1990; Landi and Ryder 1992; Choi et al.
1993; Landi et al. 1993; Hummel et al. 1994; Deutsch
1994; Emami et al. 1994; Altucher and Landi 1995;
Wilson and Lam 1995; Ruf 1995; Ghiya and Hendren
1996; Steensgaard 1996; Shapiro and Horwitz 1997;
Debray et al. 1998; Ghiya and Hendren 1998; Hasti and
Horwitz 1998; Jagannathan et al. 1998]. As in Diwan
et al. [1998], our results are distinguished from prior
work by comprehensive evaluation of TBAA with re-
spect to a particular optimization, in this case PRE over
access expressions, and metrics and upper bounds on re-
dundant run-time memory accesses, as opposed to static
measurements.

Budimlic and Kennedy [1997] describe a bytecode-
to-bytecode optimization approach very similar to ours.
They recover and optimize an SSA-based representation
of each class file, much as we do, performing dead code
elimination and constant propagation on the SSA, lo-
cal optimizations on the control flow graph (local CSE,
copy propagation, and “register” allocation of locals),
followed by peephole optimization. They do nothing
like our PRE over access path expressions. Their per-
formance results are similar to ours, showing significant
improvements for JDK and JIT execution. In addition,
they consider the effects of two new interprocedural op-
timizations:object inliningandcode duplication. Sim-
ilar in some respects to the well-known approaches of
cloning and inlining, these optimizations yield factors of
two to five in performance improvement, so are consis-

tent with results reported elsewhere [Chambers and Un-
gar 1989; Chambers et al. 1989; Chambers and Ungar
1990; 1991; Chambers 1992; Dean et al. 1995; Dolby
1997; Dolby and Chien 1998]

Cierniak and Li [1997] describe another similar ap-
proach to optimization from Java class files, involving
recovery of sufficient high-level program structure to
enable essentially source-level transformations of data
layouts to improve memory hierarchy utilization for a
particular target machine. Their results are also con-
vincing, with performance improvements in a JIT envi-
ronment of up to a factor of two.

Our reading of Cierniak and Li [1997] and Budim-
lic and Kennedy [1997] is unable to determine to what
extent they respect Java’s precise exception semantics
and its constraints on code motion. Still, both of these
prior efforts are much more aggressive than us in the
transformations they are willing to apply. We hope that
TBAA-based PRE for access expressions will produce
results as spectacular as theirs when combined with
more aggressive inter-procedural analyses, such as they
describe.

Added evidence for this comes from Diwan et al.
[1998] in their work with elimination of common access
expressions for Modula-3. Their results indicate that ac-
cesses are often onlypartially-redundant across calls,
while their optimizer only eliminates fully redundant
access expressions. Of course, our PRE-based approach
eliminates partial redundancies by definition. Diwan’s
results for elimination of fully redundant accesses with-
out inter-procedural analysis are broadly consistent with
ours.

Several recent papers have focused onregister pro-
motion [Cooper and Lu 1997; Sastry and Ju 1998; Lo
et al. 1998]: the identification of program regions in
which memory-allocated values can be cached in reg-
isters. These techniques also address the issue of elimi-
nating redundant loads and stores by selectively promot-
ing values from memory into registers. Our approach
differs in that we perform analysis and transformation
at a higher level than these other approaches, with full
knowledge of the types of the memory values being pro-
moted. We are currently working to understand the pre-
cise relationship between our approach and these lower
level techniques. Certainly, given the problems we have
with loading and storing of temporaries in some bench-
marks, it seems that our approach might benefit from the
more selective placement of loads and stores that these
promotion techniques employ.

7 Conclusions and Future Work

Our results reveal the promise of optimization of Java
classes independently of the source-code compiler and
the runtime execution engine. In particular, we have
demonstrated improvements using TBAA-based PRE
over access path expressions, with dramatic reductions
in memory access operations. Applying interprocedural
analyses and optimizations should yield even more sig-

10

nificant gains as the context for PRE is expanded across
procedure boundaries, especially since Java program-
ming style promotes the use of many small methods
whose intraprocedural context is severely limited.

Under some circumstances Java’s precise exception
model is overly constraining for code motion optimiza-
tions such as PRE. Relaxing the constraints can provide
more opportunities for optimization. More evidence is
needed whether precise exceptions are unnecessarily re-
strictive.

The implementation of further analyses and optimiza-
tions to BLOAT is under way and we are close to mak-
ing the tool more widely available. One application
domain we are now focusing on is analysis and opti-
mization of Java programs in a persistent environment
[Atkinson et al. 1996]. The structure access optimiza-
tions we have explored here prove particularly fruitful
in a persistent setting, where loads and stores carry ad-
ditional semantics, acting not just on virtual memory,
but also on persistent storage [Cutts and Hosking 1997;
Hosking et al. 1999; Cutts et al. 1999; Brahnmath et al.
1999].

References
AGESEN, O., DETLEFS, D., AND MOSS, J. E. B. 1998. Garbage

collection and local variable type-precision and liveness in
Java virtual machines. See PLDI [1998], 269–279.

ALPERN, B., WEGMAN, M. N., AND ZADECK, F. K. 1988.
Detecting equality of values in programs. See POPL [1988],
1–11.

ALTUCHER, R. Z. AND LANDI , W. 1995. An extended form of
must alias analysis for dynamic allocation. InConference
Record of the ACM Symposium on Principles of
Programming Languages(Jan.). 74–84.

APPEL, A. W. 1998.Modern Compiler Implementation in Java.
Cambridge University Press.

ATKINSON, M. P., DAYN ÈS, L., JORDAN, M. J., PRINTEZIS, T.,
AND SPENCE, S. 1996. An orthogonally persistent Java.
ACM SIGMOD Record 25,4 (Dec.), 68–75.

BOEHM, H.-J.AND WEISER, M. 1988. Garbage collection in an
uncooperative environment.Software: Practice and
Experience 18,9 (Sept.), 807–820.

BRAHNMATH , K., NYSTROM, N., HOSKING, A. L., AND

CUTTS, Q. 1999. Swizzle barrier optimizations for
orthogonal persistence in Java. InProceedings of the Third
International Workshop on Persistence and Java(Tiburon,
California, August 1998), R. Morrison, M. Jordan, and
M. Atkinson, Eds. Advances in Persistent Object Systems.
Morgan Kaufmann, 268–278.

BRIGGS, P., COOPER, K. D., HARVEY, T. J.,AND SIMPSON,
L. T. 1998. Practical improvements to the construction and
destruction of static single assignment form.Software:
Practice and Experience 28,8 (July), 859–881.

BRIGGS, P., COOPER, K. D., AND SIMPSON, L. T. 1997. Value
numbering.Software: Practice and Experience 27,6 (June),
701–724.

BRIGGS, P., COOPER, K. D., AND TORCZON, L. 1994.
Improvements to graph coloring register allocation.ACM
Trans. Program. Lang. Syst. 16,3 (May), 428–455.

BUDIMLIC , Z. AND KENNEDY, K. 1997. Optimizing Java:
Theory and practice.Software: Practice and Experience 9,6
(June), 445–463.

CHAITIN , G. J. 1982. Register allocation and spilling via graph
coloring. In Proceedings of the ACM Symposium on
Compiler Construction (Boston, Massachusetts, June).ACM
SIGPLAN Notices 17,6 (June), 98–105.

CHAMBERS, C. 1992. The design and implementation of the
SELF compiler, an optimizing compiler for object-oriented
programming languages. Ph.D. thesis, Stanford University.

CHAMBERS, C. AND UNGAR, D. 1989. Customization:
Optimizing compiler technology for SELF, a
dynamically-typed object-oriented programming language.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation (Portland, Oregon,
June).ACM SIGPLAN Notices 24,7 (July), 146–160.

CHAMBERS, C. AND UNGAR, D. 1990. Iterative type analysis
and extended message splitting: Optimizing
dynamically-typed object-oriented programs. See PLDI
[1990], 150–164.

CHAMBERS, C. AND UNGAR, D. 1991. Making pure object
oriented languages practical. In Proceedings of the ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications (Phoenix, Arizona, Oct.).ACM
SIGPLAN Notices 26,11 (Nov.), 1–15.

CHAMBERS, C., UNGAR, D., AND LEE, E. 1989. An efficient
implementation of Self, a dynamically-typed object-oriented
language based on prototypes. In Proceedings of the ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications (New Orleans, Louisiana,
Oct.).ACM SIGPLAN Notices 24,10 (Oct.), 49–70.

CHASE, D. R., WEGMAN, M., AND ZADECK, F. K. 1990.
Analysis of pointers and structures. See PLDI [1990],
296–310.

CHOI, J.-D., BURKE, M., AND CARINI , P. 1993. Efficient
flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. InConference
Record of the ACM Symposium on Principles of
Programming Languages(Charleston, South Carolina, Jan.).
232–245.

CHOW, F., CHAN, S., KENNEDY, R., LIU, S.-M., LO, R.,AND

TU, P. 1997. A new algorithm for partial redundancy
elimination based on SSA form. See PLDI [1997], 273–286.

CIERNIAK , M. AND L I , W. 1997. Optimizing Java bytecodes.
Concurrency: Practice and Experience 9,6 (June), 427–444.

CLICK , C. 1995. Global code motion/global value numbering.
See PLDI [1995], 246–257.

CMELIK , B. AND KEPPEL, D. 1994. Shade: A fast
instruction-set simulator for execution profiling. In
Proceedings of the ACM Conference on the Measurement
and Modeling of Computer Systems (Nashville, Tennessee,
May). ACM ACM SIGMETRICS Performance Evaluation
Review 22,1 (May), 128–137.

Conference Record of the ACM Symposium on Principles of
Programming Languages 1996b.Conference Record of the
ACM Symposium on Principles of Programming Languages
(St. Petersburg Beach, Florida, Jan.).

Conference Record of the ACM Symposium on Principles of
Programming Languages 1998a.Conference Record of the
ACM Symposium on Principles of Programming Languages
(San Diego, California, Jan.).

COOPER, K. AND LU, J. 1997. Register promotion in C
programs. See PLDI [1997], 308–319.

COOPER, K. AND SIMPSON, L. T. 1995. SCC-based value
numbering. Tech. Rep. CRPC-TR95636-S, Rice University.
Oct.

CUTTS, Q. AND HOSKING, A. L. 1997. Analysing, profiling and
optimising orthogonal persistence for Java. InProceedings of
the Second International Workshop on Persistence and Java
(Half Moon Bay, California, Aug.), M. P. Atkinson and M. J.
Jordan, Eds. Sun Microsystems Laboratories Technical
Report 97-63, 107–115.

CUTTS, Q., LENNON, S.,AND HOSKING, A. L. 1999.
Reconciling buffer management with persistence
optimisations. See Morrison et al. [1999], 51–63.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,
AND ZADECK, F. K. 1991. Efficiently computing static
single assignment form and the program dependence graph.
ACM Trans. Program. Lang. Syst. 13,4 (Oct.), 451–490.

11

DEAN, J., CHAMBERS, C.,AND GROVE, D. 1995. Selective
specialization for object-oriented languages. See PLDI
[1995], 93–102.

DEBRAY, S., MUTH, R.,AND WEIPPERT, M. 1998. Alias
analysis of executable code. See Conference Record of the
ACM Symposium on Principles of Programming Languages
[1998a], 12–24.

DEUTSCH, A. 1994. Interprocedural may-alias analysis for
pointers: Beyondk-limiting. See PLDI [1994], 230–241.

DIWAN , A., MCKINLEY, K. S.,AND MOSS, J. E. B. 1998.
Type-based alias analysis. See PLDI [1998], 106–117.

DOLBY, J. 1997. Automatic inline allocation of objects. See
PLDI [1997], 7–17.

DOLBY, J.AND CHIEN, A. A. 1998. An evaluation of automatic
object inline allocation techniques. In Proceedings of the
ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (Vancouver, British
Columbia, Oct.).ACM SIGPLAN Notices 33,10 (Oct.), 1–20.

EMAMI , M., GHIYA , R.,AND HENDREN, L. J. 1994.
Context-sensitive interprocedural points-to analysis in the
presence of function pointers. See PLDI [1994], 242–256.

GERLEK, M. P., STOLTZ, E.,AND WOLFE, M. 1995. Beyond
induction variables: detecting and classifying sequences
using a demand-driven SSA form.ACM Trans. Program.
Lang. Syst. 17,1 (Jan.), 85–122.

GHIYA , R. AND HENDREN, L. J. 1996. Is it a tree, a DAG, or a
cyclic graph? a shape analysis for heap-directed pointers in c.
See Conference Record of the ACM Symposium on
Principles of Programming Languages [1996b], 1–15.

GHIYA , R. AND HENDREN, L. J. 1998. Putting pointer analysis
to work. See Conference Record of the ACM Symposium on
Principles of Programming Languages [1998a], 121–133.

GOSLING, J., JOY, B., AND STEELE, G. 1996.The Java
Language Specification. Addison-Wesley.

GOSLING, J., YELLIN , F.,AND THE JAVA TEAM. 1996.The
Java Application Programming Interface. Vol. 1: Core
Packages. Addison-Wesley.

HASTI, R. AND HORWITZ, S. 1998. Using static single
assignment form to improve flow-insensitive pointer
analysis. See PLDI [1998], 97–105.

HAVLAK , P. 1997. Nesting of reducible and irreducible loops.
ACM Trans. Program. Lang. Syst. 19,4 (July), 557–567.

HOSKING, A. L., NYSTROM, N., CUTTS, Q.,AND

BRAHNMATH , K. 1999. Optimizing the read and write
barriers for orthogonal persistence. See Morrison et al.
[1999], 149–159.

HUMMEL , J., HENDREN, L. J.,AND NICOLAU, A. 1994. A
general data dependence test for dynamic, pointer-based data
structures. See PLDI [1994], 218–229.

JAGANNATHAN , S., THIEMANN , P., WEEKS, S.,AND WRIGHT,
A. 1998. Single and loving it: Must-alias analysis for
higher-order languages. See Conference Record of the ACM
Symposium on Principles of Programming Languages
[1998a], 329–341.

LANDI , W. AND RYDER, B. G. 1992. A safe approximate
algorithm for interprocedural pointer aliasing. In Proceedings
of the ACM Conference on Programming Language Design
and Implementation (San Francisco, California, June).ACM
SIGPLAN Notices 27,7 (July), 235–248.

LANDI , W., RYDER, B. G.,AND ZHANG, S. 1993.
Interprocedural modification side effect analysis with pointer
aliasing. In Proceedings of the ACM Conference on
Programming Language Design and Implementation
(Albuquerque, New Mexico, June).ACM SIGPLAN
Notices 28,6 (June), 56–67.

LARUS, J. R.AND HILFINGER, P. N. 1988. Detecting conflicts
between structure accesses. InProceedings of the ACM
Conference on Programming Language Design and
Implementation(Atlanta, Georgia, June). 21–34.

L INDHOLM , T. AND YELLIN , F. 1996.The Java Virtual Machine
Specification. Addison-Wesley.

LO, R., CHOW, F., KENNEDY, R., LIU, S.-M.,AND TU, P.
1998. Register promotion by sparse partial redundancy
elimination of loads and stores. See PLDI [1998], 26–37.

MOREL, E. AND RENVOISE, C. 1979. Global optimization by
suppression of partial redundancies.Commun. ACM 22,2
(Feb.), 96–103.

MORRISON, R., JORDAN, M., AND ATKINSON, M., Eds. 1999.
Proceedings of the Eighth International Workshop on
Persistent Object Systems(Tiburon, California,
August 1998). Advances in Persistent Object Systems.
Morgan Kaufmann.

PALSBERG, J.AND SCHWARTZBACH, M. I. 1994.
Object-Oriented Type Systems. Wiley.

PLDI 1990.Proceedings of the ACM Conference on Programming
Language Design and Implementation(White Plains, New
York, June).ACM SIGPLAN Notices 25,6 (June).

PLDI 1994.Proceedings of the ACM Conference on Programming
Language Design and Implementation(Orlando, Florida,
June).ACM SIGPLAN Notices 29,6 (June).

PLDI 1995.Proceedings of the ACM Conference on
Programming Language Design and Implementation(La
Jolla, California, June).ACM SIGPLAN Notices 30,6 (June).

PLDI 1997.Proceedings of the ACM Conference on
Programming Language Design and Implementation(Las
Vegas, Nevada, June).ACM SIGPLAN Notices 32,5 (May).

PLDI 1998.Proceedings of the ACM Conference on Programming
Language Design and Implementation(Montréal, Canada,
June).ACM SIGPLAN Notices 33,5 (May).

POPL 1988.Conference Record of the ACM Symposium on
Principles of Programming Languages(San Diego,
California, Jan.).

PROEBSTING, T. A., TOWNSEND, G., BRIDGES, P., HARTMAN ,
J. H., NEWSHAM, T., AND WATTERSON, S. A. 1997. Toba:
Java for applications – a way ahead of time (WAT) compiler.
In Proceedings of the Third USENIX Conference on
Object-Oriented Technologies and Systems(Portland,
Oregon, June). USENIX. See
http://www.cs.arizona.edu/sumatra/toba.

ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1988.
Global value numbers and redundant computations. See
POPL [1988], 12–27.

RUF, E. 1995. Context-insensitive alias analysis reconsidered.
See PLDI [1995], 13–22.

SASTRY, A. V. S. AND JU, R. D. C. 1998. A new algorithm for
scalar register promotion based on ssa form. See PLDI
[1998], 15–25.

SHAPIRO, M. AND HORWITZ, S. 1997. Fast and accurate
flow-insensitive points-to analysis. InConference Record of
the ACM Symposium on Principles of Programming
Languages(Paris, France, Jan.). 1–14.

SIMPSON, L. T. 1996. Value-driven redundancy elimination.
Ph.D. thesis, Rice University, Houston, Texas.

STEENSGAARD, B. 1996. Points-to analysis in almost linear
time. See Conference Record of the ACM Symposium on
Principles of Programming Languages [1996b], 32–41.

SunSoft 1997.Java On Solaris 2.6: A White Paper. SunSoft.

WEGMAN, M. N. AND ZADECK, F. K. 1991. Constant
propagation with conditional branches.ACM Trans.
Program. Lang. Syst. 13,2 (Apr.), 181–210.

WILSON, R. P.AND LAM , M. S. 1995. Efficient
context-sensitive pointer analysis for c programs. See PLDI
[1995], 1–12.

WOLFE, M. 1996.High Performance Compilers for Parallel
Computing. Addison-Wesley.

12

