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Abstract
We describe how reachability-based orthogonal persistence can be supported even in uncooperative implementations of lan-
guages such as C and C++, where there is no support for accurate discovery of transient roots. Such ambiguous transient
roots preclude the usual copying approach to promotion of objects from transient to persistent by reachability from well-
known persistent roots [Atkinson et al. 1983]. Our approach extends Bartlett’s mostly-copying garbage collector [Bartlett
1988; 1989] to manage both transient objects and resident persistent objects, and to perform the reachability closure nec-
essary for stabilization in a mostly-copying fashion. The only requirement, necessary anyway for persistence, is accurate
discovery of pointers in heap-allocated objects. Such support can be obtained through direct compiler assistance, extracted
from debugging information, or provided explicitly by the programmer. We also consider how the garbage collector can
inform the buffer manager of persistent pages that are likely candidates for removal.
Keywords: mostly-copying garbage collection, persistence by reachability, buffer management

1 Introduction

Orthogonal persistence [Atkinson and Morrison 1995] is widely preferred as the ideal model for persistent languages. Orthog-

onality typically means that persistence is a property independent of type. It is also usually taken to mean that any allocated

instanceof a type has the potential to persist; in other words, programmers are not required to indicate persistence at allo-

cation time. Rather, objects persist by virtue of their being reachable from some set of persistent roots. Typically, persistent

stores allow certain persistent objects to be named, and these bindings themselves persist as gateway objects into the persistent

store; all objects reachable from these persistently-named objects must themselves persist. Thus, persistence is determined by

reachability closure similarly to garbage collection [Atkinson et al. 1983].

In order to retain the ability to reclaim transient storage independently of persistent storage, most orthogonal persistence

implementations call for allocation of new objects in a separately garbage-collected transient region of the allocation heap.

Only when the persistent heap is stabilized are transient objects made persistent, and then only if they are reachable from

other persistent objects or the persistent roots. Usually, this entails physically copying objects from the transient space into the

persistent space. However, objects can only be copied if all pointers to those objects can accurately be determined, and updated

to reflect the relocation of the object. In environments where such information is unavailable objects cannot be moved. Thus,

all previous implementations of persistence for languages such as C and C++ (of which we are aware) break orthogonality, and

require the programmer to distinguish transient and persistent objects whether by type or upon allocation.1 Here, we show that
�See also:http://www.cs.purdue.edu/people/hosking. This work is supported by a gift from Sun Microsystems, Inc.
1Detlefs et al. 1988; Agrawal and Gehani 1989; Agrawal and Gehani 1990; Richardson and Carey 1990; Schuh et al. 1991; Lamb et al. 1991; Singhal

et al. 1992; Richardson et al. 1993; White and DeWitt 1994.



reachability-based orthogonal persistence for such languages and environments is indeed possible using an approach based on

mostly-copying garbage collection.

The casual reader is referred to the background material of Atkinson and Morrison [1995] on orthogonal persistence, and

to Wilson [1992] or Jones and Lins [1996] on garbage collection.

2 Mostly-copying garbage collection

Mostly-copying garbage collection [Bartlett 1988; 1989] represents a hybrid of conservative [Boehm and Weiser 1988] and

copying [Cheney 1970] collection. It is suitable for use in environments lacking accurate information on the layout of the

register, static or stack areas; objects thatappearto have references, termedambiguous roots, from these areas are treated

conservatively and are not moved. The collector does assume that all pointers in heap-allocated objects can be found accu-

rately; objects accessible only from other heap objects can thus be moved during garbage collection. Finding heap pointers

accurately can be achieved using information describing the layout of heap objects, generated either automatically by the com-

piler (whether directly, or indirectly through extraction from debugging information [Singhal et al. 1992; Wilson and Kakkad

1992]) or provided explicitly by the programmer [Bartlett 1989] (though the latter approach may be error-prone).

For mostly-copying collection the heap is divided into a number of equal-sized heappages.2 The collector proceeds by

copying all reachable objects, dividing the heap into two page spaces:to-space, containing objects copied by the garbage

collector; andfrom-space, containing objects not yet copied by the collector. The pages in each space are not necessarily

contiguous and pages from each space may be interleaved. Instead, each page has an associatedspace identifierto keep track

of its status. This arrangement allows objects to be copied by the collector in two possible ways: either by physically moving

it to a page in to-space, or simply by resetting the space identifier of its page. The latter mechanism, called pagepromotion,

is how ambiguous roots are handled.

The mostly-copying collector, sketched in Figure 1, operates in three phases. We assume that the spaces are abstracted as

sets of pages, and that the operations� and+ remove and insert an element in a set, respectively. The variablesp, l andr

range over heap pages, heap pointer locations and heap pointers (references), respectively. The auxiliary procedurepromote

removes a page from one space and adds it to another. The procedurecopyscanperforms Cheney-style iterative scanning of

the transitive closure of objects reachable from some stack of pages,copyStack[Cheney 1970]. We assume several additional

auxiliary procedures:

page(r): returns the heap page to which heap pointerr refers

pointer locations(p): returns an accurate set of all locations in pagep that contain non-nil heap pointers
copied(r): returns true if the object (in from-space) referred to byr has been copied, and false otherwise
copy(r;s): allocates a copy in spacesof the object (in from-space) referred to byr; leaves a forwarding address behind
copyaddress(r): denotes the forwarding address from the original object (in from-space) referred to byr to its copy

The garbage collector (gc) begins with the to-space empty (line 22). It assumes a finite set of ambiguous roots (AR ) from

the registers, stack, and static areas. The first phase (line 23) promotes ambiguously-referenced pages to to-space. Note that

promotion may retain unreferenced garbage objects that just happen to lie in those pages. After this phase, the only pages in

to-space are those pinned by ambiguous roots. The second phase (line 25) copies reachable objects from from-space to to-

space. The pages containing copied objects (initially just those pinned by the ambiguous roots in the first phase) are placed

in a stack for processing. All pointer locations in copied pages are scanned, and each object in from-space reachable from a

copied page in to-space is itself copied in turn to a to-space page, leaving behind a forwarding address; each pointer location

2Heap pages are not necessarily identified with virtual memory pages.
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1 proc promote(p; var from; var to) �
2 from := from� p;
3 to := to+ p.
4

5 proc copy scan(move) �
6 while :copyStack:empty() do
7 p := copyStack:pop();
8 foreach l 2 pointer locations(p) do move(l); end
9 end.

10

11 proc mover(l) �
12 r := l ";
13 if page(r) 2 from-spacethen
14 if :copied(r) then
15 copy address(r) := copy(r; to-space);
16 copyStack:push(page(copy address(r)));
17 end;
18 l " := copy address(r)
19 end.
20

21 proc gc() �
22 to-space:= fg;
23 foreach r 2 AR do promote(page(r); from-space; to-space); end;
24 copyStack:init (to-space);
25 copy scan(mover);
26 foreach p2 from-spacedo free(p) end;
27 from-space:= to-space.

Figure 1: Mostly-copying garbage collection

is updated to refer to the forwarded to-space copy. This is an iterative process that completes only when the copy stack is

empty (i.e., there are no more objects whose locations need to be scanned for references to uncopied objects). Termination is

guaranteed because the closure of reachable objects is finite: each iteration removes a page from the stack for processing and

pages are added to the stack only when objects are newly-copied to them, so eventually the stack becomes empty. At the end

of this second phase there are no pointers from to-space to from-space, and the pages in from-space can be freed (line 26). The

garbage collection is now complete and to-space becomes from-space for the subsequent collection (line 27).3

3 Mostly-copying persistence by reachability

We extend the implementation of the transient heap for persistence by assuming a new space of heap pages,persistent-space,

in which resident persistent objects are cached. For now, we assume that only transient pages are deallocated by the garbage

collector; that is, persistent-space pages are kept segregated from transient (from- and to-space pages). We assume also that

references toresidentpersistent objects areswizzled4 to direct memory pointers, and that those pointers may be stored in reg-

isters, the stack and static areas, as well as in the heap. Naturally, resident persistent objects must be treated as heap roots

when garbage collecting the transient heap, to ensure that the transient objects to which cached persistent objects may have

3It is worth noting that the mostly-copying collector can be made both generational [Bartlett 1989] and incremental [DeTreville 1990]. Indeed, our im-
plementation of mostly-copying persistence by reachability merges easily with the existing Modula-3 incremental/generational collector.

4Swizzling [Moss 1992; Wilson and Kakkad 1992] is the conversion of persistent object references from their persistent format to direct memory pointers.
In object-oriented database systems the persistent format is typically some sort ofobject identifier, by which the object can be located in secondary storage.
Accessing a resident object by identifier usually requires translation of the identifier to a memory address, with retrieval of the object if it is not yet resident.
Allowing applications to cache pointers to resident objects can yield significant performance improvements by eliminating the need for identifier translation.
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1 proc stabilizer(l) �
2 r := l ";
3 if page(r) 2 to-spacethen
4 promote(page(r); to-space;persistent-space);
5 copyStack:push(page(r));
6 elsif page(r) 2 from-spacethen
7 if :copied(r) then
8 copy address(r) := copy(r;persistent-space);
9 copyStack:push(page(copy address(r)));

10 end;
11 l " := copy address(r);
12 end.
13

14 proc stabilize() �
15 to-space:= fg;
16 foreach r 2 AR do promote(page(r); from-space; to-space) end;
17 foreach r 2 PR do
18 if page(r) 2 to-spacethen promote(page(r); to-space;persistent-space);
19 elsif page(r) 2 from-spacethen
20 if :copied(r) then copy address(r) := copy(r;persistent-space) end;
21 end;
22 end;
23 copyStack:init (persistent-space);
24 copy scan(stabilizer);
25 foreach p2 persistent-spacedo flush(p) end;
26 copyStack:init (to-space);
27 copy scan(mover);
28 foreach p2 from-spacedo free(p) end;
29 from-space:= to-space.

Figure 2: Mostly-copying stabilization

been made to refer are retained from one collection to the next. We defer completely specifying how the garbage collector

must be extended to manage persistent pages until Section 4, where we also consider how the mostly-copying collector can

be augmented to assist in buffer management by removing persistent pages when their cached objects are no longer reachable

from the executing persistent program. For now, we focus on the basic mechanism need for reachability-based orthogonal

persistence:stabilization.

3.1 Stabilization

Stabilization refers to the flushing of new and modified persistent objects back to disk. When a persistent program invokes the

stabilizeoperation (perhaps mediated by a transaction checkpoint or commit if the language offers transactional concurrency

control) all modified persistent objects must be flushed to disk. Since a persistent object may have been modified to refer to

transient objects, they must also be made persistent and stabilized themselves, in turn making persistent any transient objects

to which they refer, and so on. We also assume there are certain named root objects in the persistent store, and that the program

may have changed one of these bindings, requiring that reachability also be determined from these named roots. Forming the

necessary reachability closure is analogous to garbage collection, so we have modified the mostly-copying garbage collection

algorithm to perform the necessary steps to stabilize the persistent heap. Again, this allows orthogonal persistence by reacha-

bility even for language environments in which there is no accurate way to recognise heap references from the registers, stacks

and static areas. The only requirement is for accuracy in locating pointers stored in the heap.
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Figure 3: Initial state
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Figure 4: Trace ambiguous roots
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Figure 5: Trace persistent roots
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Figure 6: Closure over persistent-space objects
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Figure 7: Closure over to-space objects

a1

a2

5

1
p1

p2

7

6

8

ambiguous
roots

persistent
roots

A

B

I

J

D

persistent

K

persistent

persistent
G

F

H
from from

Figure 8: Free from-space; set to- to from-space

The mostly-copyingstabilizeprocedure is sketched in Figure 2. We illustrate each phase of its operation with an example

(Figures 3–8). Figure 3 shows the initial heap configuration for the example. As for mostly-copying garbage collection we

begin by promoting from from-space to to-space all ambiguously-referenced pages (line 16). In the example, this results in

the promotion of page1 (referenced by ambiguous roota1) and page5 (by a2), as depicted in Figure 4.

A second phase (lines 17–22) copies all transient objects reachable from the persistent roots (PR ) into persistent-space,

either logically by promoting the ambiguously-referenced to-space pages in which they lie, or physically by copying them to

pages in persistent-space. Figure 5 illustrates this phase, with page1 (referenced byp1) promoted to persistent-space, and

objectD (referenced byp2) copied to the new page7 in persistent-space.

Phase three (line 24) computes the reachability closure over all objects in persistent-space. Again, ambiguously-referenced

to-space pages are simply promoted, while from-space objects can physically be copied. At the end of this phase all objects are

in persistent-space that should be, although promotion of ambiguously-referencedpages may have made certain objects persist

that need not. Objects remaining in from-space or to-space are not reachable from persistent storage, and definitely need not

persist. In the example (Figure 6) objectsF andG have been copied into persistent-space pages7 and6, respectively.

Line 25 flushes all objects in persistent-space pages to the persistent store (with whatever shadow paging or logging is

necessary for rollback and recovery). Note that we make no assumptions about the underlying persistent store, whether it is

page- or object-based. Mostly-copying persistence is entirely compatible with both page-server and object-server approaches,

despite its own page-based assumptions about the memory heap.

The last phases of stabilization merely finish off with a basic mostly-copying garbage collection to collect the remaining

from-space pages. Line 27 copies remaining reachable transient from-space objects to to-space, as illustrated in Figure 7 for
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objectH. Finally, the now unreachable from-space pages can be freed (Figure 8). Note that persistent-space page6 remains

although it is no longer reachable from the application. In the next section we modify the mostly-copying collection and sta-

bilization algorithms to recognize and reclaim such transiently unreachable persistent pages.

Correctness and termination of mostly-copying stabilization can be inferred from the invariants stated here, similarly to

the way for non-persistent mostly-copying garbage collection.

4 Buffer management

We say that a persistent page istransiently unreachableif it cannot be reached via pointers from transient memory. Although

we will keep a copy of such a page in persistent storage (modulo garbage collection of the persistent store itself), we are not

obligated to keep it cached in memory. Such a page is a prime candidate for replacement, since the application cannot immedi-

ately begin accessing it again without first faulting some other persistent objects by which it can be reached. We now modify the

mostly-copyingcollection and stabilization algorithms to recognize and reclaim such pages. In essence, we exploit information

obtained via reachability analysis during garbage collection and stabilization as hints for persistent-space buffer management.

The change is relatively straightforward, and entails placing persistent pages under the management of the mostly-copying

collector. We relax the prior assumption that persistent pages are segregated from from- and to-space pages. Instead, persis-

tent pages are in one of either from- or to-space at any given instant, just like transient pages. The modified algorithms for

garbage collection and stabilization are given in Figures 9 and 10. Note that we avoid the unnecessary overhead of physically

copying already-persistent objects during collection or stabilization by always simply promoting their page. Notice also that

persistent pages are always flushed before being freed, to make sure updates to those pages are propagated back to persistent

storage.

There are lingering subtleties here, having to do with implementation of the pageflushoperation and its use during garbage

collection when freeing transiently unreachable persistent pages (see Figure 9). We assume a page can only be flushed when

all pointers in the page are to objects in persistent pages (so that the pointers can be unswizzled as necessary during the flush).

To avoid flushing persistent pages for which this condition does not hold, the garbage collection reachability phase copies to

to-space all objects reachable from persistent pages (lines 27&28), even from persistent pages that are transiently unreachable

and remain in from-space. Thus, it is trivially possible to promote a transiently unreachable persistent page since it cannot

contain pointers to from-space. We use this escape to avoid having to stabilize all objects transitively reachable from that

page. In other words, we only flush persistent pages that are completely unconnected to the transient heap, having neither

incoming pointers from, nor outgoing pointers to, transient (to-space) objects (lines 29–40).

5 Interaction with other persistence mechanisms

As mentioned earlier, we make no assumptions about the underlyingpersistent storage architecture, be it page- or object-server.

Similarly, we make no assumptions as to the underlying swizzling mechanisms, save to assume that directly-swizzled pointers

to resident persistent objects can occur and may be stored into the registers, stacks, static areas, and heap memory. Mostly-

copying reachability-based persistence is entirely flexible with respect to the implementation of these mechanisms. For ex-

ample, in our initial implementation of persistence for Modula-3 [Nelson 1991] we are using mostly-copying persistence with

Texas-style “pointer-swizzling at page-fault time” [Singhal et al. 1992; Wilson and Kakkad 1992] as our underlying swizzling

and faulting mechanism above the Mneme persistent object store [Moss and Sinofsky 1988; Moss 1990a; 1990b]. We have

designed the system for a move to explicit object fault checks in later versions, without needing to change the mostly-copying

heap management mechanism. Similarly, one can imagine re-engineering the Texas persistent store to use mostly-copying
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1 proc mover0(l) �
2 r := l ";
3 if page(r) 2 from-spacethen
4 if page(r) 2 persistent-spacethen
5 promote(page(r); from-space; to-space)
6 else
7 if :copied(r) then
8 copy address(r) := copy(r; to-space);
9 copyStack:push(page(copy address(r)));

10 end;
11 l ":= copy address(r);
12 end;
13 end.
14

15 proc gc0() �
16 to-space:= fg;
17 foreach r 2 AR do promote(page(r); from-space; to-space) end;
18 foreach r 2 PR do
19 if page(r) 2 from-spacethen
20 if page(r) 2 persistent-spacethen
21 promote(page(r); from-space; to-space);
22 elsif:copied(r) then
23 copy address(r) := copy(r; to-space)
24 end;
25 end;
26 end;
27 copyStack:init (persistent-space[ to-space); [Persistently-referenced objects must be retained]
28 copy scan(mover0);
29 foreach p2 from-spacedo
30 if p2 persistent-spacethen
31 if 9l : l 2 pointer locations(p) wherepage(l ") 62 persistent-spacethen
32 promote(p; from-space; to-space);
33 else
34 flush(p);
35 free(p);
36 end;
37 else
38 free(p);
39 end;
40 end;
41 from-space:= to-space.

Figure 9: Mostly-copying garbage collection over persistent pages

persistence by reachability for C++, based on the heap layout information for swizzling that Texas extracts from debugging

information provided by the GNU C++ compiler.

6 Conclusions

We believe this to be the first presentation of algorithms for orthogonal persistence by reachability in uncooperative imple-

mentations of languages such as C and C++. The approach is being used in our implementation of persistence for Modula-3

based on the Digital Systems Research Center’s reference compiler, which comes with a mostly-copying garbage collector

for transient heap management. We have extended the SRC collector, which is also incremental and generational, to support
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1 proc stabilizer0(l) �
2 r := l ";
3 if page(r) 62 persistent-spacethen
4 if page(r) 2 to-spacethen
5 persistent-space:= persistent-space+page(r);
6 copyStack:push(page(r));
7 else [page(r) 2 from-space]
8 if :copied(r) then
9 copy address(r) := copy(r;persistent-space);

10 copyStack:push(page(copy address(r)));
11 end;
12 l ":= copy address(r);
13 end;
14 end.
15

16 proc stabilize0() �
17 to-space:= fg;
18 foreach r 2 AR do promote(page(r); from-space; to-space) end;
19 foreach r 2 PR do
20 if page(r) 2 to-spacethen
21 persistent-space:= persistent-space+page(r);
22 elsif page(r) 2 persistent-spacethen
23 promote(page(r); from-space; to-space);
24 elsif:copied(r) then
25 copy address(r) := copy(r;persistent-space);
26 end;
27 end;
28 copyStack:init (persistent-space);
29 copy scan(stabilizer0);
30 foreach p2 persistent-spacedo flush(p) end;
31 copyStack:init (to-space);
32 copy scan(mover0);
33 foreach p2 from-spacedo free(p) end;
34 from-space:= to-space.

Figure 10: Mostly-copying stabilization, with collection over persistent pages

orthogonal persistence by reachability. We look forward to experimenting with our implementation in the very near future.5

In particular, it will be interesting to determine just how much data is unnecessarily made persistent when entire ambiguously-

referenced pages are promoted. While disk-oriented garbage collectors for persistent storage can reclaim such data, it is im-

portant that the burden placed on disk collection not be overly great, perhaps through application of techniques such asblack-

listing [Boehm 1993] to further winnow non-pointers from the ambiguous root set. Still, the performance effects of spurious

retention of persistent data remain an open question for experimental study.

5We should have preliminary results by the time of the workshop
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