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Abstract

We consider how a persistent programming language might offer performance competitive with that of non-persistent
languages, at least on memory resident data. We are concernedwith object-oriented languages, and with implementing
persistence via object faulting, where the system detects uses of non-resident objects and fetches them on demand. We
present some background on object faulting and means for implementing it, and describe a specific language we are
developing, namely Persistent Modula-3. Then we explore approaches to optimising persistence aspects of Persistent
Modula-3, and outline techniques under consideration in our compiler development effort.

1 Introduction

The Object Oriented Systems Group at the University of Massachusetts is engaged in research exploring the
integration of programming languages with database technology. As a part of this work, we are involved in the
development of persistent programming languages, as popularised by the PS-Algol effort [Atkinson et al., 1981;
Atkinson and Morrison, 1985].

We approach the problem of language-database integration from the object-oriented standpoint. Our particular
approach to persistence is to integrate existing programming languages with our own persistent object store, Mneme
[Moss and Sinofsky, 1988; Moss, 1989]. While there is some difference in functionality between Mneme and other
object storage systems such as the Exodus storage manager [Carey et al., 1986; Carey et al., 1989] or Observer [Skarra
et al., 1987; Hornick and Zdonik, 1987], our integration techniques would extend to them.

We have chosen two object-oriented languages for integration with Mneme: Smalltalk [Goldberg and Robson,
1983] and Modula-3 [Cardelli et al., 1989]. Our reasons for choosing these are as follows. First, they are relatively
well-known. Smalltalk was the first object-oriented programming language to gain widespread recognition. Modula-3
is less widely known, but its ancestry is quite familiar, as it derives from the class of languages including Pascal [Jensen
and Wirth, 1974], Modula-2 [Wirth, 1983], and Oberon [Wirth, 1988a; Wirth, 1988b]. Second, they represent quite
different philosophies. In Smalltalk there is no static type checking. In fact, the Smalltalk class hierarchy provides
only a very weak notion of type. Calls are bound at run time using a hierarchical method lookup mechanism, based
on the class of the object on which the method is being invoked. If the lookup fails then a run-time error is signalled,
indicating that the method is undefined for that class. On the other hand, while retaining dynamic binding of methods,
Modula-3 does guarantee type-correctness of programs at compile time—the compiler will detect the invocation of
methods that are undefined, or whose arguments are of the wrong type. By choosing two such different languages we
hope to explore the generality of our techniques, and identify alternatives arising out of their differences.

When a program manipulates persistent data a decision must be made as to when that data should be fetched from
stable storage into memory. One extreme is to require all persistent data to be made memory resident before the
program begins manipulating any of it. In the case that a program accesses only a small fraction of the persistent data,
such indiscriminate preloading is clearly undesirable.
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Rather than preloading, we can dynamically check the residency of a persistent data item, fetching it if necessary.
In this way the subset of all persistent data that is resident grows dynamically, as more and more data items are accessed
by the program. This approach incurs a run-time overhead in that each access to a persistent data item requires an
explicit residency check, resulting in its retrieval if it is non-resident. In the case where a persistent data item is always
accessed by dereferencing some kind of pointer to it, this approach reduces to a technique that we call object faulting.
A residency check is performed every time a persistent pointer is dereferenced, resulting in an object fault to retrieve
the data item if it is non-resident. We can consider all such referenced data items (both persistent and volatile) as a
kind of virtual heap. Object faulting does not preload the entire heap; rather, objects are faulted on demand.

Our design of Persistent Smalltalk makes object faulting the responsibility of the run-time system [Hosking et al.,
1990]. All references to non-resident objects are trapped by the Smalltalk virtual machine. Certain heuristics are used
to restrict residency checks to just the send bytecodes and some primitives. This approach is purely dynamic in that no
changes are made to the Smalltalk compiler or image. Our approach with Modula-3 is to have the compiler generate
in-line code to perform the residency check, along with a call to the object fault handler if the check fails, wherever a
persistent pointer is dereferenced. Note that in contrast with Smalltalk, this does not impose the burden of residency
checks on the run-time system. Rather, the compiler statically determines where the checks will occur.

Of particular interest to us is that our persistent programming languages exhibit good performance. There are
two aspects to the performance of a persistent program. We have already mentioned that persistence usually implies
some sort of residency check to ensure data items are memory resident before their contents are accessed. We would
like to minimise this overhead, so that in the case that all of its data is resident, a persistent program can approach
the performance of its non-persistent counterpart. The second aspect of performance pertains to the fetching of non-
resident data from stable storage. In this case, good performance is more difficult to define, but can be characterised
as that which makes the best use of system resources. To sum up, there are two costs to persistence:

� the cost of residency checks, and

� the cost of fetching, storing, and managing non-resident data.

In this paper we focus on mitigating the cost of residency checks, through the application of what are typically
considered to be compiler techniques. Addressing the second aspect of performance would seem to require techniques
most often used in databases to cluster data for retrieval.

Our approach to improving performance is to devise and exploit compile-time optimisations that will eliminate or
circumvent residency checks. With this emphasis on static techniques we concentrate on their realisation for Modula-3,
which submits to stronger compile-time analysis than Smalltalk, and for which we must already modify a compiler
to support persistence. This approach is complicated by the dynamic call binding that occurs with object methods in
Modula-3—methods are bound to an object when it is created. Such late binding means that at any particular call site
the actual code to execute cannot be statically determined. This prohibits such standard optimisations as inlining of
method code.

The contributions of this paper are as follows. First, we have begun to frame the issues regarding the performance
of persistent programming languages. Second, we offer several approaches to implementing persistence, and identify
some potential performance problems with those approaches. Finally, we have begun to identify compile-time
optimisations for bringing the performance of some aspects of persistent programming languages very close to the
performance of their non-persistent counterparts.

The remainder of the paper is organised in the following way. We first review object faulting and some of the
requirements it imposes, and then consider techniques for implementing object faulting. Following this background,
we describe the Modula-3 programming language, the changes we are making to move from Modula-3 to Persistent
Modula-3, and sketch some straightforward techniques for implementing Persistent Modula-3. Finally, we consider
compile-time optimisations for improving the performance of persistence, using Persistent Modula-3 as a specific
language for concreteness.

2 Requirements for Object Faulting

We have indicated that object faulting requires that there be a mechanism for checking the residency of an object.
While we would wish that this check be as cheap as possible we assume that it does incur some marginal cost. That is,
we do not assume any special hardware support, for example from paging hardware. Furthermore, so that residency
checks may be machine independent we do not assume any particular hardware architecture.
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Given that there is some mechanism for detecting the need for an object fault, we must have some way of handling
the fault. We assume the existence of an underlying object manager that, given some unique object identifier, will
return a pointer to the object in its buffers, retrieving it from the persistent object store if necessary. There is an issue
here of format mismatch between objects as they are represented in the store and objects as they are represented in
memory. This is especially significant when an object contains references to other objects. These references will
typically be represented as object identifiers in the store, but may need to be converted to memory pointers when the
object is made resident. This conversion process, known as swizzling, can be performed in two ways: in-place or by
copying. In-place swizzling simply overwrites the object in the object manager’s buffers with the converted version of
the object. This requires that all objects in a buffer be unswizzled before the buffer is written back to disk. Unswizzling
is complicated by the fact that some of the objects in the buffer may now have pointer references to volatile objects in
the heap. These objects and all objects accessible from them must be made persistent.

Copy swizzling maintains a separate converted version of the object in the volatile part of the heap, corresponding
to the unconverted version in the object manager’s buffers. There is some cost to maintaining this correspondence since
every update to the in-heap version of the object eventually results in a corresponding update to the buffer version, and
may involve making some volatile objects persistent, as for in-place unswizzling.

The relative advantages of each scheme are obvious: in-place swizzling demands less memory, but may involve
more work when unswizzling. Copy swizzling does have the added benefit that buffers may be removed more easily,
since only modified objects must be unswizzled. Of more importance is the fact that some persistent object stores will
not allow in-place swizzling since applications are denied access to objects in the store’s buffers.

One aspect of buffer removal that we have not yet addressed is that any direct pointers to buffer objects from other
parts of the heap must be located and updated to reflect the fact that the objects they refer to are no longer resident.
Locating the pointers requires that a remembered set be maintained for each buffer, indicating all memory locations
that contain pointers into the buffer. Whenever a pointer to an object in the buffer is stored in some memory location,
we must check to see if the buffer’s remembered set should be updated to reflect the store. Techniques such as this are
employed by generation scavenging garbage collectors [Ungar, 1984]. Such garbage collectors have been shown to
have superior performance for interactive systems such as Smalltalk [Ungar, 1987]. Given this performance reputation
we assume that generation scavenging will be the garbage collector of choice, so that maintaining remembered sets
for the buffers of the object manager will require little additional mechanism. One unfortunate drawback of this is
that there will always be the overhead of performing store checks; they cannot be eliminated. However, the overall
performance of generation scavenging for persistence is not known at this point in time. In systems such as Smalltalk
remembered sets do not seem to grow very large. For persistence, remembered sets will probably be much larger
(since it is highly likely that more data will be persistent than volatile). How larger remembered sets will affect the
performance of generation scavenging remains to be seen.

3 Techniques for Fault Detection

In the previous sections we have identified the need for some mechanism to check the residency of an object, to
detect when an object fault should occur. The object manager handles a fault by returning a direct memory pointer to
the desired object, first retrieving it from the store if it is non-resident. Here we elaborate on how residency checks
may be performed. Let us consider the virtual heap to be a directed graph. The nodes of the graph are the objects,
and the edges of the graph are the references from one object to another. A computation traverses the object graph,
which is only partially resident in memory. Traversing an edge from a resident object to a non-resident object causes
an object fault, and the link is snapped to point to the resident object. It is important to note here that merely naming
an object does not cause an object fault. Only when the contents of the object need to be accessed, and so the link to
the object must be traversed, is it required that the object be made resident.

We need to be able to detect the traversal of a link from a resident object to a non-resident object. There are
effectively just two ways of achieving this:

� Mark the edges of the graph that are links to non-resident objects, distinguishing them from links to resident
objects (see Figure 1(a)).

� Mark the nodes of the graph to distinguish resident objects from non-resident objects (see Figure 2(a)).

Edge marking is relatively easy to implement by tagging pointers. Checking whether a pointer refers to a resident
object or not is simply a matter of checking the tag. When a marked link is traversed, an object fault occurs and is
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(a) Links to non-resident objects are marked (b) After an object fault
link to resident object
link to non-resident object

Figure 1: Edge Marking

handled by the object manager, which returns a pointer to the resident object. The marked link is then snapped to
point to the resident object (see Figure 1(b)). Note that it is legal (though suboptimal) for a marked edge to refer to a
resident object, but an unmarked edge may never refer to a non-resident object.

Node marking is complicated by the fact that the non-resident objects are just that, non-resident, and must
(paradoxically) be in memory for them to be checked. Solving this problem is simple. Specially marked resident
pseudo-objects called fault blocks stand in for non-resident objects. Every reference from a resident object to a
non-resident object is actually a pointer to a fault block (see Figure 2(b)). When a link is traversed to a fault block a
fault occurs and is handled by the object manager. “Snapping the link” in this case involves setting the fault block to
point to the object in memory (see Figure 2(c)). Note that there is now a level of indirection via the fault block; this
may be bypassed by also updating the traversed link to point to the object in memory (see Figure 2(d)).

(a) Non-resident objects are marked (b) Fault blocks stand in for non-resident objects

(c) An object fault occurs (d) Updating the traversed link
resident object

non-resident object

fault block

traversed link

Figure 2: Node Marking

The preceding discussion assumes that we have an object identifier available to present to the object manager to
handle a fault. In the edge marking scheme we store this identifier in the bits of the pointer that are not reserved for
the tag. In the node marking scheme we store it in the fault block.

Each of these schemes has its particular advantages and disadvantages. In node marking, a particular fault block
may be referenced by many resident objects. This means that the object manager need only be called once per fault
block, to obtain a memory pointer to the corresponding object, when the first link to the fault block is traversed. The
memory address is then cached in the fault block so that subsequent traversals of links to that fault block can pick it up
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from there, without additional calls to the object manager. However, there are overheads associated with fault blocks:
storage and management for fault blocks; creation of fault blocks for all the objects referred to by a non-resident object
when it is swizzled; and the extra level of indirection that fault blocks imply.

Edge marking has the advantage of eliminating the space consumed by fault blocks, and the level of indirection
associated with them. Its disadvantage is that the only link that is “snapped” when an object fault occurs is the link
that is traversed. All other links to the object are still marked as pointing to a non-resident object. This means that
every traversal of a marked link will result in a call to the object manager to determine the object’s address, regardless
of whether the object is already resident or not.

Snapping the link has been mentioned as one way of reducing the overhead of object faulting. In the edge marking
scheme this will usually be of little benefit, since the marked link that ends up getting snapped will probably be in a
register or perhaps some other temporary location. The compiler may be of some help here if it can statically determine
the source of the marked reference, making sure that it also gets updated when the link is snapped.1

4 Modula-3

Modula-3 consists primarily of Modula-2 with extensions for threads (lightweight processes in a single address
space), exception handling, objects and methods, and garbage collection, while dispensing with variant records, and
the ability to nest modules. Exception handling and threads do not raise any novel issues, so we will not discuss them
further. Understanding the remaining extensions requires some understanding of the type system of Modula-3.

Modula-3 is strongly-typed: every expression has a unique type, and assignability and type compatibility are
defined in terms of a single syntactically specified subtype relation, written <:. If T is a subtype of U, then every
instance of type T is also an instance of type U. Any assignment satisfying the following rule is allowed: a T is
assignable to a U if and only if T is a subtype of U. In addition there are specific assignment rules for ordinal types
(integers, enumerations, and subranges), references (pointers), and arrays. We discuss only the specifics of reference
types here.

A reference type may be traced or untraced. A traced reference (of type REF T) refers to storage (of typeT) that is
automatically reclaimed by the garbage collector whenever there are no longer any (traced) references to it. Untraced
references (of type UNTRACED REF T) are just like Pascal pointers—the storage they refer to must be explicitly
allocated and deallocated. The type REFANY contains all traced references, while ADDRESS contains all untraced
references. The type NULL contains only the reference value NIL.

Object types are also reference types. An object is either NIL or a reference to a data record paired with a method
suite, which is a record of procedures that will each accept the object as a first argument. Since they are references,
objects may also be either traced or untraced. Every object type has a supertype, inherits the supertype’s representation
and implementation, and optionally may extend them by providing additional fields and methods, or overriding the
methods it inherits with different (but type correct) implementations. When an object is created, one may supply
specific methods for that individual object (again, they must be type correct), overriding the default implementations
supplied by the object’s type.

This scheme is designed so that it is (physically) reasonable to interpret an object as an instance of one of its
supertypes. That is, a subtype is guaranteed to have all the fields and methods defined by its supertype, but possibly
more, and it may override its supertype’s method implementations with its own. In addition, an object’s method values
are not determined until the object is allocated, although the values cannot be changed after that.

An object type is specified by the following syntax:

T OBJECT fields METHODS methods END

This specifies an object subtype of T, with additional fields fields and additional or overriding methods methods.
An object inherits its traced-ness from its supertype. There are two built-in object types, one traced and the other
untraced, having no fields or methods, from which all object types are descended: ROOT and UNTRACEDROOT.2

We can summarise the subtype rules for references as follows:

1We may also apply certain heuristics to this problem. For details see [Hosking et al., 1990].
2Shorthands OBJECT...END and UNTRACED OBJECT...END may be used for the forms ROOT OBJECT...END and UNTRACED ROOT

OBJECT...END, object types inheriting from ROOT and UNTRACED ROOT, respectively.
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NULL <: REF T <: REFANY
NULL <: UNTRACED REF T <: ADDRESS
NULL <: T OBJECT...END <: T, for some object type T
ROOT <: REFANY
UNTRACED ROOT <: ADDRESS

Finally, for garbage collection we must be able to find all references to traced data. This means that an untraced
data item cannot contain any traced references. For this reason, records and arrays containing traced references are
implicitly traced. These restrictions are summarised in the following table:

% untraced traced

untraced
p �

traced
p p

That is, a traced data item may contain both traced and untraced references, but an untraced data item may contain
only untraced references.

Let us briefly consider an implementation for objects. Because an object can be interpreted according to many
different types, it must somehow carry a type code with it so that we can tell what its actual type is. Further, since
the methods vary by object type, and possibly even by object, we need some way to find the methods when they are
invoked. The expected implementation is for the object fields to be preceded by a pointer to the method suite. The
method suite is simply a vector of addresses of procedures, preceded by the type code. Since the offset of a given
method within the method suite is static, no run-time search is required to find the code to run on method invocation.
Similarly, field offsets are statically known. This implementation approach is illustrated in Figure 3.

methods pointer

fields

type code

method addresses

method
offset

field
offset

Variable

Figure 3: An implementation of Modula-3 objects

5 Persistent Modula-3

The previous section gave an introduction to the Modula-3 type system. In this section we extend that type system
to incorporate persistence by adding a third class of reference types: persistent references, similar to the db types
of the E database programming language [Richardson and Carey, 1987]. A persistent reference type is indicated
by the keyword PERSISTENT, analogous to UNTRACED. A persistent reference indicates a specific object, but that
object may or may not be resident in memory. In addition, we permit any top-level variable3 to be qualified by the
PERSISTENT keyword, since a program must have at least one persistent data item to start with, from which other
persistent data can be reached. These may be thought of as implicit persistent references to known root objects in the
persistent store.

Our new reference types have subtype rules analogous to traced reference types as follows:

NULL <: PERSISTENT REF T <: PERSISTENT REFANY
PERSISTENT ROOT <: PERSISTENT REFANY

Once again, an object inherits persistence from its supertype. A variable at top-level may be declared persistent using
the PERSISTENTVAR construct just as VAR is used for non-persistent variables.

3A top-level variable is a variable declared in the outermost scope of a module.
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Finally, analogous to traced data, anything reachable from a top-level persistent variable via persistent references
will itself persist, so that we must be able to find all references to persistent data. Thus, an untraced data item may not
contain persistent references. Whether a persistent data item may refer to non-persistent data is another question. At
first glance this may seem to be a little strange, since the data referred to by the persistent data item will disappear when
the program ceases execution, leaving dangling references. However, we can give such references special semantics,
allowing them to be used to refer to volatile data while the program is running, but setting them to NIL when the
persistent data item is written back to stable storage (or when it is loaded from stable storage). We augment the table
from the previous section to summarise these rules:

% untraced traced persistent

untraced
p � �

traced
p p p

persistent y y p
y � special semantics

This design is admittedly non-orthogonal: orthogonality would require that any data item be able to contain
persistent references and, vice versa, every persistent data item be able to contain references to volatile data, making
them persist by transitivity. However, non-orthogonality is consistent with the traced/untraced distinction, and as with
the overhead of garbage collection, allows programmers to indicate explicitly whether or not they accept the overhead
of persistence. Furthermore, it makes it easier for us to perform experiments to evaluate the relative performance of
using persistent references over ordinary references. Later on we could collapse the persistent and traced distinction,
as is done in Smalltalk where all references are potential references to persistent data. Whether or not we do this
will depend on performance—if persistence imposes little performance degradation then there is no need for the
distinction.

6 Implementation

We have indicated the syntax and semantics of persistent types and variables for Modula-3. Now we turn to the
straightforward implementation of these extensions, using the techniques of object faulting. For PERSISTENT REF
types the simplest implementation is to perform a residency check every time a given reference is used. We may use
either of the node or edge marking schemes. Node marking simply implies the use of fault blocks, marked with some
tag bit to enable the check. The overhead of the extra indirection can be removed later by the scavenger: if it detects a
reference to a fake object that has a real object attached to it, the reference is updated to point to the real object. The
fault block’s storage may eventually be reclaimed.

Edge marking is more of a problem, since we need to be able to tag persistent references, to enable the check.
On byte-addressed architectures this can be achieved by ensuring that all persistent data is word-aligned, leaving a
low-order bit free to be used as the tag. Alternatively, we might use the sign bit to distinguish memory pointers from
persistent object identifiers. Both of these techniques make certain assumptions about machine architecture. In some
cases tagging may simply be impossible.

We can implement field access for persistent OBJECT types similarly to PERSISTENT REF types. For method
invocation, however, we can use the following technique to eliminate conditional code in the residency check. Given
that we have a fault block standing in for the resident object, we can supply a fake method suite for the fault block.
The fake method suite would contain only procedures that will fault in the real object. At fault time, when the fault
block is updated to point to the real object, we would also update the fault block’s fake method suite to forward calls
to the real object. This technique could also be used for field access if we are prepared to turn field access into method
invocation.

As for PERSISTENT VAR, we can treat every persistent variable as if it is an implicit PERSISTENT REF, and
use the same implementation techniques.

We have not yet mentioned that the methods (code) of persistent objects must also persist. Clearly ordinary code
will persist by virtue of the fact that it is in some program on disk. The question here is whether the code implementing
the methods should reside in the persistent object store instead of in the program. Ideally, objects should carry their
methods with them wherever they go, even if they are used in a different program from the one that created them.
For this, method code must reside in the store. We then face the problem of dynamically linking method code with a
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running program. This does not appear to present any fundamental difficulties, but we have no specific design at this
time.

7 Optimisations

The previous section indicated a straightforward implementation of persistence for Modula-3. In this section we
look at improving the performance of persistent programs by using compile-time optimisation techniques to eliminate
residency checks. Assuming that a resident object is never made non-resident (during a program’s execution), then
performing a residency check once for a given reference is as good as performing it many times. Further occurrences of
the check are thus superfluous and may be eliminated. To eliminate checks we can apply the traditional static analysis
techniques used by compilers. We first discuss optimisations that may be enabled by both local (basic block) and
global (intra-procedural) analysis, to eliminate redundant residency checks within a procedure. Then we consider less
traditional optimisations, requiring inter-procedural analysis, that make use of co-residency properties of persistent
data items to amalgamate their residency checks into just one check. Two data items are said to be co-resident if,
whenever one of them is resident, then so is the other.

Local optimisations are those that may be performed by examining only the statements within a basic block (a
section of straight-line code having just one entry point and one exit point). A typical local optimisation is common
subexpression elimination. We can use a similar approach to eliminate redundant residency checks within a basic
block. If we consider a residency check as evaluating a boolean expression, then the first residency check performed
for a reference makes the expression true. All later checks can be replaced by the value TRUE.

This approach will extend to global (intra-procedural) analysis. Furthermore, global analysis enables other
optimisations such as dead code elimination and code motion. Given that we can reduce some residency checks to
TRUE, then the fault handling code (which is executed when the check evaluates to FALSE), becomes dead and may be
eliminated. Also, code motion can be used to move a loop invariant residency check out of a loop. Code hoisting can
be used to replace two residency checks that occur in different paths of the program by just one. Techniques similar
to these were shown to be quite effective in E [Richardson, 1989].

Procedure inlining replaces a full call to a procedure with the code that implements that procedure. This allows
the called code to be optimised in the context of the call site, integrating its analysis with that of the calling procedure.
However, inlining is more difficult for methods, because dynamic binding implies that in general we cannot know
which specific method will be invoked. It is clear that allowing objects to override their type’s default methods at
creation time poses some difficulty. Rather than eliminating the feature from the language, we could make use of
pragmas inserted by the programmer in an object type declaration indicating that a particular method will never be
overridden by an individual object instance of that type. Let us consider inlining of a method call in three particular
cases. In the first, suppose that data-flow analysis reveals the exact type of the object on which the method is being
invoked, and that we can determine (either by pragma or analysis) that the object does not override the type’s default
implementation for that method. Then we can inline the default code. In the second, we assume that the object’s exact
type is known, but that it may override the method. We can still inline the default code, preceding it with a check of
the object’s method suite to make sure that the method’s slot contains the default method), and generate code to do
a full call in the failure case. In the third case we make no assumptions, but replace the call with conditional code,
branching on the type of the object, and inline the default methods as for the second case. This technique is known as
message splitting and has been applied in other object-oriented languages such as SELF [Chambers and Ungar, 1989;
Chambers and Ungar, 1990].

If we are prepared to do some inter-procedural analysis, we can use customised compilation to tailor the compilation
of a procedure to the characteristics of a particular call site. Just as inlining allows the compiler to optimise a procedure
in the context of a particular call site, so does customised compilation, but without the additional space cost that inlining
imposes, since the customised version is out of line. The customised compiled procedure can only be used at call sites
having appropriate characteristics. Again, this has been used previously in SELF and also in Trellis4/Owl [Schaffert
et al., 1986]. Applying customised compilation to persistence, we can compile customised versions of procedures
based on assumptions about the residency of their arguments. A particular customised version can then be used at any
call site where its residency requirements are satisfied.

All of these techniques make use of information gleaned from the code at compile-time. Going back to our analogy
of the virtual heap as a directed graph, the code establishes possible traversals of the graph. We can also derive

4Trellis is a trademark of Digital Equipment Corporation.
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information from the types as to the potential structure of the graph. If we have co-residency information available
attached to the types, then we can amalgamate the retrieval of data items that are indicated as being co-resident,
reducing the number of residency checks needed. We can best explain this with an example. Consider the following
persistent reference type declaration:

TYPE
PRecord = PERSISTENT REF RECORD
field1 : PERSISTENT REF foo;
field2 : PERSISTENT REF bar;

END;

Suppose that we know that a PRecord should be co-resident with thefoo object named byfield1. Then, whenever
we fault a PRecord data item we simultaneously fault the foo item, and ensure that the PRecord points directly to
the foo item. Therefore, the compiler does not need to generate a residency check for uses of field1 components
of a PRecord.

One way to represent co-residency information is via annotations to the type graph. The nodes of this graph are
the types of the program, and the edges indicate uses of one type in defining another. In the above example, there
would be nodes for the types PRecord, foo, and bar, and edges from PRecord to foo and PRecord to bar.
To indicate co-residency we mark edges of the type graph. For example, we could mark the edge from PRecord to
foo, to indicate the co-residency assumption discussed above. In order to provide more precise information we can
distinguish edges based on the name of the record component, etc., to which they correspond.

Of course, there is the question of where the co-residency information comes from. One option is to allow
programmers to annotate their type declarations with pragmas indicating desired co-residency properties. More
preferable would be the automatic derivation of these properties. Static analysis of a procedure can determine some
information about desirable co-residency properties for types used in the procedure. For example, intra-procedural
analysis can say whether a path through the type graph will definitely be traversed, may be traversed, or is never
traversed, when executing the procedure. It is not obvious how to combine analyses of individual procedures to
annotate a global type graph with co-residency assumptions. Even so, a global type graph might be desirable, since
it would allow the same assumptions to be made throughout the program. This would ensure that optimisations are
applied consistently. Further, the global type graph is a relatively simple data structure for the run-time system to use
in enforcing co-residency assumptions when handling object faults.

The global type graph is not without problems, though, since each assumption represents a compromise between
procedures that follow long paths through the type graph and procedures that follow short ones. If a procedure follows
shorter paths, then the global type graph assumptions may cause unnecessary fetches. If a procedure follows longer
paths, then it will need to perform more residency checks.

Another problem with the global type graph approach is that a single object may have an unbounded number
of objects required to be co-resident with it. For example, large, homogeneous data items such as arrays have
many references to the same type, causing a combinatorial explosion because of the potentially high branching
factor. Recursively defined types also pose difficulties since they create cycles in the type graph, and thus introduce
co-residency paths of unbounded length. For example, consider the singly-linked list type:

TYPE
SLList = PERSISTENT REF RECORD
next : PERSISTENT REF SLList;
...

END;

If the next field is marked for co-residency, then fetching any item in the list will fetch all subsequent items.
The shortcomings of the single global type graph may be overcome by putting each use of a type in context. For

example, we might specialise the annotation on a type for each variable of the type. We can view this as annotating the
variables instead of the types. Each variable has attached to it a subgraph of the full type graph; the root of the subgraph
is the variable’s type. This subgraph indicates what co-residency assumptions can be made about data reachable from
the variable.

So far we have only considered the use of statically obtained co-residency information. There is also the possibility
of including statistics obtained by dynamic profiling. If the types define the possible structure of the virtual heap,
and the programs define the potential traversals of that structure, then profiling can approximate the probability that a
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particular traversal will occur. This information can be fed back into the compiler so that more intelligent co-residency
decisions can be made based on actual usage patterns. This style of optimisation is similar to that used in some database
systems for tuning indexing, clustering, etc.

We have briefly sketched techniques to determine when a number of potential faults can be merged together, so
that they each share just one residency check. An interesting further use of co-residency characteristics would be to
communicate them to the object manager for clustering purposes. Clustering places objects physically close together
on disk, so that they may be retrieved with just one disk access. If data items that are co-resident can be clustered,
then retrieving those items will be performed with fewer disk accesses. This seems to indicate the potential for even
further gains, since it allows us to address the other aspect of performance with persistence: fetching, storing, and
managing non-resident data. Even more interesting is the potential to turn things around. Whereas we have indicated
that co-residency information may be used for clustering, we could have clustering information drive the co-residency
analysis phase of the compiler. Co-residency analysis would still serve as input for initial data clustering, but thereafter
decisions could be made using profiles of entire suites of programs. These clustering decisions could then be used in
the compiler’s co-residency analysis.

8 Conclusions

We have identified some of the issues regarding the performance of persistent programming languages, and
introduced several approaches to implementing persistence. We have discussed how these approaches may be used in
implementing Persistent Modula-3, through modification of the compiler. Finally, we have indicated possibilities for
improvement of the performance of persistent programs through compile-time optimisations. Of particular interest is
the role that co-residency analysis might play in eliminating residency checks and in obtaining clustering criteria for
the underlying object store.
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