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ABSTRACT
This paper describes the development and initial evaluation of a
new course “Introduction to Computational Thinking” taken by sci-
ence majors to fulfill a college computing requirement. The course
was developed by computer science faculty in collaboration with
science faculty and it focuses on the role of computing and compu-
tational principles in scientific inquiry. It uses Python and Python
libraries to teach computational thinking via basic programming
concepts, data management concepts, simulation, and visualiza-
tion. Problems with a computational aspect are drawn from dif-
ferent scientific disciplines and are complemented with lectures
from faculty in those areas. Our initial evaluation indicates that the
problem-driven approach focused on scientific discovery and com-
putational principles increases the student’s interest in computing.

Categories and Subject Descriptors
K.3.2 [Computer and Education]: Computer and Information Sci-
ence Education

General Terms
Design, Experimentation

Keywords
Computational thinking, curriculum, multi-disciplinary, computing
for scientists.
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1. INTRODUCTION
Scientific research is now unthinkable without computing. The

ubiquity of computerized instrumentation and detailed simulations
generates scientific data in volumes that can no longer be under-
stood without computation. For example, the Sloan Digital Sky
Survey is mapping the heavens with a 2.5m dedicated telescope [15].
In the first 5 years of operation, it generated about 6TB of data.
Similarly, large-scale simulations, of climate models, of fusion re-
actors, or of engineered materials, generate comparable data sets in
weeks or days and could generate larger data sets but for the avail-
ability of faster computers. Such data volume has to be examined
by computation [8]. In light of this evolution of science, future gen-
erations of scientists must engage computing and must understand
what computer science can do for their work, much as they have to
understand what mathematics already does for their work.

Here we describe a multi-disciplinary effort to develop a course
on computational thinking for science majors. At Purdue, all sci-
ence undergraduates must fulfill a computing requirement, gener-
ally by taking a CS course [9]. The new course has been developed
by CS in collaboration with faculty in Physics, Biology, Chemistry,
and Statistics [12]. It uses a problem-driven approach focusing
on scientific discovery through computational methods grounded
in computer science principles.

The development of introductory computing courses with a focus
on non-majors, in particular science students, has recently received
attention at a wide range of institutions. Related efforts include
work at Carnegie-Mellon, Harvey Mudd, Princeton, and Winona
State [3, 4, 13, 14, 17, 19]. Our effort is strongly influenced by
the concept of computational thinking advocated by Wing et al. [5,
6, 18]. Two NSF-funded workshops on computational thinking re-
lated to the course development have been held at Purdue in 2007
and 2008, respectively [11]. The paper is organized as follows.
Section 2 describes the course development philosophy and the ma-
terial covered. Section 3 gives an overview of the course projects.
Section 4 presents an initial evaluation and Section 5 concludes.

2. A COURSE FOR SCIENCE MAJORS
The course “Introduction to Computational Thinking” was de-

veloped by CS faculty with experience in teaching introductory
courses in collaboration with science faculty. Course development
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was guided by five main principles:

• Lay the groundwork for computational thinking.
Computational thinking encompasses a diverse set of skills
including formulating problems, making abstractions, and
phrasing solutions in ways that can be satisfied computation-
ally. These skills range from algorithms and data structures
to presentation and visualization.

• Present examples in a language familiar to the students.
Consider teaching the concept of a derivative in the calcu-
lus. A physics major will appreciate examples in mechanics,
discussing speed and acceleration. A chemistry major might
be intrigued by examples discussing reaction rates and dy-
namic equilibria. After those examples have been analyzed
and understood, the teacher can then proceed to an abstract,
mathematical view of the underlying structures. Similarly,
it is our belief that science majors, conversant in the basics
of the classical disciplines, will comprehend computational
concepts more easily if those concepts can be motivated by
examples from their scientific subdisciplines.

• Teach in a problem-driven way.
This includes presenting only those programming language
features that are used and are meaningful to students and
demonstrating where and how computational principles are
needed. For example, viewing a thermodynamic system from
the computational perspective, as opposed to a purely de-
scriptive view, naturally leads to randomized models and Monte
Carlo techniques. This, in turn, motivates pseudo-random-
number generation algorithms, and discussions of where else
Monte Carlo methods have use and their limitations as a
computational paradigm.

• The programming language should right away allow a focus
on computational principles.
The goal is that students are able to write meaningful pro-
grams in a short time and do not have to focus on – and
struggle with – language details not meaningful to them at
that point in time. In addition, extensive libraries used by the
scientific community should be available. It is our view that
Python satisfies these expectations.

• Make effective use of visualization.
Visualization is an important element in computing and brings
many quantitative scientific facts to life. Visualization should
be used to better understand the scientific questions asked as
well as to help understand computational principles and pro-
cesses. While the benefits of multimedia learning have been
well studied [7], visualizartion is often not used effectively
in teaching computational concepts.

Three science disciplines – physics, chemistry, and bioinformat-
ics – provided us with expectations on what they want students to
learn:

• The Physics department uses the approach developed by Chabay
and Sherwood in an introductory calculus-based physics course
[1]. In the lab, students run and modify Python programs
to model and visualize mechanical systems and fields in 3D
using VPython [16]. Teaching programming and computa-
tional thinking is beyond the scope of this physics course.
Physics faculty are interested in students gaining a more com-
plete understanding of computation that can lead to (i) new
computational opportunities for learning and research and
(ii) a new perspective on the nature of and interplay between

physics and applied mathematics by solving realistic prob-
lems computationally.

• The computational chemistry faculty are interested in stu-
dents learning computational methods relevant in chemical
research, in particular Monte Carlo, Simulated Annealing
and Molecular Dynamics. In addition, being able to use and
integrate existing Fortran programs and learning visualizing
teachniques is viewed as important.

• For the area of bioinformatics and statistics, there is an in-
terest in teaching the use of R for statistical computing and
visualization [10], followed by learning how to program in
a language for which bioinformatics software packages exist
or can easily be integrated.

The following describes the material covered in the 15-week
course, with two one-hour lectures and one two-hour lab per week:

I. Basic Programming Tools (6 weeks)

• Introduction to Python. Elementary values and data types.

• Straight line programs, assignments to variables, type con-
version, math library.

• Strings, lists, and tuples. Vectors and arrays.

• Conditionals and loop structures.

• Plotting using MatPlotLib and 3D visualization in VPython.

• Functions, parameters, and scope. Recursion.

II. Computational Tools and Methods (6 weeks)

• Arithmetic and random numbers. Using NumPy. Examples
of numerical stability and problem stability.

• Introduction to simulations and Monte Carlo methods.

• Computational Physics: Ideal gas and Ising Spin simula-
tions; adapting a generic Demon algorithm and estimating
parameters in a physical system.( 1 week)

• Trees as a data structure, traversal and exploration.

• Introduction to graphs, graph operations using NetworkX,
graphs in science applications.

• Bioinformatics: Modeling protein interactions using tree and
graph representations. Visualizing graphs in Cytoscape and
analyzing protein interactions using clustering techniques. (1
week)

• Grand challenges in scientific computing.

III. Looking Under the Hood at Computer Science (3 weeks)

• Object-oriented design. Use and design of classes, OO con-
cepts. Dictionaries and spatial queries as examples.

• History of computer science.

• Limits of computing, intractability, computability.

• Future models of computation: DNA computing, quantum
computing.
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Python was chosen as the programming medium because of its
interactive environment, ability to let novice programmers quickly
write non-trivial programs, adoption by many scientific communi-
ties, and support for numerous specialist libraries. Python can be
executed efficiently, making it a good vehicle not only for small-
scale experimentation, but also for larger data sets and longer com-
putational problems. The course includes teaching the basics of
object-oriented design. We found this subject was quite natural
to comprehend towards the end of the semester, after fluency in
Python has been developed. On the other hand, recursion was
considered challenging by the students. VPython and MatPlotLib
were introduced early in the course. VPython allows creating so-
phisticated 3D visuals without having to learn the complexities of
traditional libraries, such as OpenGL. The graphical programming
done with MatPlotLib will serve students well in later courses and
projects. Visualization clearly helped students to better understand
the scientific questions asked in the projects and to better under-
stand their programs. It confirms that visual computing is an en-
gaging activity that is underutilized in many CS curricula.

The course was developed jointly with faculty in the other sci-
ence departments who gave guest lectures. The guest lectures show
how CS concepts arise when solving disciplinary problems. These
lectures include concepts such as Maxwell’s Demon and use state-
of-the-art software, such as NetworkX for graph manipulation and
CytoScape for visualizing protein interactions. The course mate-
rial covered is to a large extent driven by the projects which are
described in more detail in the next section.

3. PROJECT OVERVIEW
The course assigns four small-scale programming assignments

and four projects. Almost all questions on the smaller program-
ming assignments are preparation for the larger projects. Each
project consists of a programming part and an experimental part
(which for some projects use data culled from research). The pro-
gramming part has an earlier deadline and the experimental part
can be completed with the code the student writes in the program-
ming part or with code made available. Interestingly, very few stu-
dents decide to abandon their own code, even when it proves to
be incorrect or its inefficiency does not allow completion of the
experimental part of the project. The most common reason for in-
efficiency resulting in excessive running time is the use of O(n2)
or O(n3) time algorithms when linear or sublinear solutions exist.
Using functionalities provided by Python, such an unnecessary per-
formance was at times not obvious to the novice programmer. All
projects asked students to produce visualizations of computational
results and provide a write-up on their observations.

1. Manipulating Digital Audio.
Explore the generation and manipulation of digital sound.
Students write and use several basic functions that repre-
sent sounds as a sequence of wave amplitudes. Students ex-
plore the creation of new operations on sounds. The project
emphasizes arrays, loop structures, numeric data (including
overflow and round off issues), and modularity through pro-
cedures. Experimentation encourages students to generate
sounds with different kinds of waves (e.g., square and saw-
tooth) and to investigate music in different scales. Sounds are
visualized using MatPlotLib functionality. First introduction
to large data sets and computational complexity issues.

2. Computational Experiments on Percolation in Grids.
Examine the spread of wild fire through a patchy field of dry
grass, electricity through a surface of conductors and insula-
tors, or how water soaks through a porous landscape. This

project uses a two dimensional array to represent physical
scenes and a single parameter to represent the probability that
any node in the grid “percolates”. By varying the parame-
ter, generating random grids based on it, and simulating flow
in those grids, students create plots to answer the question,
“What is the smallest probability q at which a grid generated
with probability q will percolate?” Flows through a grid are
visualized in VPython. In addition to reinforcing loops, con-
ditionals, and multi-dimensional arrays, this project uses ran-
dom number generation and introduces recursive functions.
Visualization is used in visualizing commutation as well as
visualizing scientific results.

3. Simulating Physical Systems.
This project elaborates on Monte Carlo methods as a way to
understand the behavior of physical systems without resort-
ing to a detailed dynamical simulation. It introduces the “de-
mon algorithm” (from Maxwell’s demon) and has students
performing two experiments: (1) simulating an ideal gas to
study the velocity distribution of particles of a gas in thermal
equilibrium as a function of gas energy and temperature, and
(2) using the 2-d Ising model to study the magnetization of
a lattice of spins as a function of lattice energy and temper-
ature and, so, explore an example of a phase transition. The
project uses VPython and Matplotlib libraries to create 2-D
and 3-D visualizations for experimental results. The project
is natural for physics and chemistry majors. Class lectures
giving the physics background are important.

4. Analyzing Protein-Protein Interactions.
Analyze the results of large-scale experiments that character-
ize protein-protein interactions using graph models and pre-
dict the quality of the experimentally observed protein com-
plexes. Students use the Python-based NetworkX library to
manipulate and ”clean” large graphs and are given code for
finding clusters in graphs. Clustering results are related to
scores generated from the publicly available Gene Ontology
(GO) database. Large graphs are visualized and manipulated
using Cytoscape, a high quality, open-source graph visual-
ization tool used by bioinformatics researchers. The project
needs class preparation on both graph manipulations as well
as basic bioinformatics background.

Overall popular projects are percolation and the simulation of
physical systems. Seeing different percolation algorithms detect
different type of flows through a grid while graphs plot experimen-
tal probability results plays a role in making this a favorite project.
The preference for the simulating physical systems project seems
to be related to the large number of physics and chemistry ma-
jors who have seen this material in a physics course. The audio
project is highly rated for the flexibility it gives to students and
the creativity in creating new sounds. The project on protein in-
teractions asks students to write specified algorithms operating on
graphs using NetworkX functionality. The abstraction underlying
the use of a graph representation and the exploration of graphs are
challenging for students. It is the only project using real, large-
scale data sets. Complete project descriptions can be found at
http://secant.cs.purdue.edu/cs190c:projects.

Students have different views on the value of running and in-
terpreting computational experiments. Some find the experimen-
tal part to be the most rewarding part of the projects, while others
would prefer the project to to be done once the programs run. The
computing requirement for science majors allows students to select
among various courses and we believe students should have the op-
tion to choose a traditional programming course.
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Entry Survey Exit Survey
Mean Median Std. Dev. Mean Median Std. Dev.

Taking another CS course 1.62 1 0.92 2.46 3 1.45
Pursuing a career that requires programming skills 1.69 1 1.14 2.85 3 1.7

Table 1: Results for two entry and exit survey questions

4. EVALUATION
The objective of the course is providing a foundation of program-

ming and computational principles that students can and will apply
to scientific inquiry. All students enrolled to fulfill the college-wide
computing requirement. Our goal is to get students interested in
actively using computation in their major and to consider taking a
second course to strengthen their computing skills. Our goal is not
to turn science majors into CS majors.

Throughout the semester, the course explains what related ma-
terial is covered in what CS course and we try to give students a
sense of what they can learn in other CS courses. There was some
discussion on what course sequence could lead to a minor in CS
(which would also fulfill a multidisciplinary requirement for sci-
ence majors). We encourage students to realize the benefit of writ-
ing simple programs using MatPlotlib or VPython in other projects
and classes. More importantly, we want to provide students with
the tools to write small Python programs for visualization and data
analysis purposes. In follow-up studies we plan to track how many
students end up taking another CS course.

The first offering of the course in spring 2008 had 13 students
enrolled. 10 of the 13 students were physics majors, the other
three were chemistry majors. About a third of the students double-
majored in mathematics which they viewed as their secondary ma-
jor. 10 of the 13 students were freshmen. Unfortunately, the class
had only one female student (partially reflecting the enrollment in
the corresponding majors). Looking at the background of the stu-
dents, 27% had no programming experience, 40% had done some
programming on their own, and 33% had taken a high school pro-
gramming class.

Students taking the course completed an entry and an exit survey
(anonymous id’s allow us to link survey responses). Two relevant
and interesting questions asked on both the entry and the exit survey
are: “How would you rate your current interest in”:

Q1: Taking another computer science course?

Q2: Pursuing a career that requires programming skills?

We offered a choice of five answers: 0) not interested, 1) somewhat
uninterested, 2) undecided, 3) somewhat interested, and 4) very
interested. Table 1 shows statistical results for the entry and the
exit survey. Figure 1 shows a graphical comparison of each entry
and exit response. Responses lying above the diagonal correspnd
to an increased interest. The plot shows that about two thirds of the
responses indicate an increase in interest, and no decrease was by
more than one point.

Figure 2 shows the responses to both questions in the entry and
exit survey given by each student (arrows from right to left show
an increased interest). Not surprisingly there is a close relationship
between the responses a student gave to the two questions.

We performed statistical tests even though the small number of
students requires that these test results be interpreted with caution.
A Wilcoxin signed rank test shows a significant difference in the
points for both questions. A p-value of less than 0.05 indicates
a significant difference. Question Q1 has a p-value of 0.032 and
question Q2 has a p-value of 0.021. A Kruskal-Wallis nonparamet-
ric test shows that previous programming experience had no effect

Figure 1: Comparison of entry and exit survey responses.
Tan/light boxes show responses to Q1 "Taking another com-
puter science course" and blue/dark boxes show responses to
Q2 "Pursuing a career that requires programming skills"

Students Taking another 
CS course

Pursuing a 
career that 

irequires
programming
skills

1 32 40

Figure 2: Responses to Q1 (tan/light) and Q2 (blue/dark) for
each student.
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on the interest in taking another CS course or pursuing a career re-
quiring programming. The exit survey asked students whether they
plan to take another CS course. Responses indicate that 60% of the
students plan to take another CS course and 40% plan to minor in
CS. Follow-up surveys will be conducted.

We point out that in our introductory programming courses for
majors (Purdue students declare a major as freshmen), we see a
decrease in interest in computer science and only 30% of CS fresh-
men complete a B.S. in computer science. The data reported by the
Emerging Scholar Program carried out by a number of institutions
also shows a decrease in interest, while showing that students in the
program receive better grades and have a better experience [2]. The
inability of introductory CS courses to maintain students’ interest
is viewed as one reason for the decreased enrollment in computer
science.

From the feedback we have from students in the computational
thinking class, it seems the problem-driven format of the course, the
ability to quickly write programs meaningful to them, and the use
of visualization tools all play a crucial role in the overall increased
interest. Future instances of the course will assess this further and
will track students with respect to additional computing courses
taken.

5. CONCLUSIONS
We believe that interaction with science faculty is a critical el-

ement in designing an effective course in computational thinking
for science majors. It is important for CS faculty to understand
how the material taught can relate to material students will see in
later science courses. Interaction with science faculty should be an
on-going activity and not be limited to course development.

Based on our experience, Python is an excellent first language. It
is used by many scientific disciplines, it allows us to teach modern
concepts of programming, and it can be used interactively, giving
students immediate feedback and giving them a convenient way
to experiment with different constructs. Such concepts include re-
cursion (which was considered challenging by the students) and
object-oriented design (which they found natural). Moreover, vi-
sualization is an important element in computing and brings many
quantitative scientific facts to life. VPython is a good vehicle be-
cause it focuses on a few simple basics in visualization and is learned
quickly by doing.

A natural question is whether an introductory course should be
taught in different versions to, say biology and physics majors. At
this point we believe that the same first course can serve all sci-
ence disciplines well. The majority of the scientific problems on
our assignments are sufficiently elementary to be taught to all sci-
ence majors. A few are more domain-specific. However, we find
that it is valuable for students to work through the specifications
of problems that lie outside of their specialist domain. Such sit-
uations prepare them for experiences they are likely to encounter
later in life. While we do not plan to create different versions of
our course, we consider the possibility to give students a choice on
what projects to select.

We will build on this introductory course with a second course in
which students collaborate in teams that include both science and
CS majors. Working in a team is an important skill that should be
practiced by all students. Collaborations between CS and the other
sciences are increasingly common, so an early exposure to cultural
differences across scientific disciplines is highly valuable.
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