Hybrid STM/HTM for Nested Transactions on OpenJDK

Keith Chapman’

"Purdue U., USA
keith@cs.purdue.edu

Abstract

Transactional memory (TM) has long been advocated as a
promising pathway to more automated concurrency control
for scaling concurrent programs running on parallel hardware.
Software TM (STM) has the benefit of being able to run gen-
eral transactional programs, but at the significant cost of
overheads imposed to log memory accesses, mediate access
conflicts, and maintain other transaction metadata. Recently,
hardware manufacturers have begun to offer commodity hard-
ware TM (HTM) support in their processors wherein the
transaction metadata is maintained “for free” in hardware.
However, HTM approaches are only best-effort: they cannot
successfully run all transactional programs, whether because
of hardware capacity issues (causing large transactions to
fail), or compatibility restrictions on the processor instruc-
tions permitted within hardware transactions (causing trans-
actions that execute those instructions to fail). In such cases,
programs must include failure-handling code to attempt the
computation by some other software means, since retrying
the transaction would be futile. Thus, a canonical use of HTM
is lock elision: replacing lock regions with transactions, retry-
ing some number of times in the case of conflicts, but falling
back to locking when HTM fails for other reasons.

Here, we describe how software and hardware schemes
can combine seamlessly into a hybrid system in support of
transactional programs, allowing use of low-cost HTM when
it works, but reverting to STM when it doesn’t. We describe
heuristics used to make this choice dynamically and automat-
ically, but allowing the transition back to HTM opportunisti-
cally. Our implementation is for an extension of Java having
syntax for both open and closed nested transactions, and
boosting, running on the OpenJDK, with dynamic injection
of STM mechanisms (into code variants used under STM)
and HTM instructions (into code variants used under HTM).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

OOPSLA’ 16, November 2—4, 2016, Amsterdam, Netherlands
© 2016 ACM. 978-1-4503-4444-9/16/11...$15.00
http://dx.doi.org/10.1145/2983990.2984029

Antony L. Hosking "

*ANU / Data61, Australia
antony.hosking@anu.edu.au

660

J. Eliot B. Moss®

Su. Massachusetts, Amherst, USA
moss@cs.umass.edu

Both schemes are compatible to allow different threads to
run concurrently with either mechanism, while preserving
transaction safety. Using a standard synthetic benchmark we
demonstrate that HTM offers significant acceleration of both
closed and open nested transactions, while yielding parallel
scaling up to the limits of the hardware, whereupon scal-
ing in software continues but with the penalty to throughput
imposed by software mechanisms.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Concurrent
programming structures; D.3.4 [Programming Languages):
Processors—code generation, compilers, incremental compil-
ers, run-time environments

General Terms Design, Experimentation, Languages, Mea-
surement, Performance

Keywords transactional memory, nested transactions, hard-
ware transactional memory, software transactional memory,
Java

1.

Transactional memory (TM) allows programmers to group
memory operations into transactions that appear to execute
atomically: no transaction sees the intermediate states of
other transactions executing in other threads, and all work
of a transaction either happens (the transaction commits)
or not (the transaction aborts). Transactional memory is
more abstract than locking, and avoids many of the problems
encountered with locks, such as deadlock, priority inversion,
convoying, pre-emption, and reduced concurrency.

Transactional memory systems track memory read and
write operations performed against disjoint memory units.
When two transactions access the same memory unit and at
least one of the accesses is a write then there is a conflict:
one of the transactions must abort (discarding its pending
writes) and restart. The transaction system must also manage
atomicity: either all of a transaction’s writes occur, or none
of them, and to other transactions the writes appear to occur
all at a single instant in time.

Software transactional memory (STM) systems track mem-
ory accesses in software, usually at the logical level of fields
or objects of a host programming language. The overhead of
this software instrumentation results in loss of throughput for

Introduction

memory accesses. Nevertheless, STM systems can still scale
better than non-transactional synchronization schemes (such
as locking) because of increased concurrency.

In contrast, hardware transactional memory (HTM) sys-
tems track memory accesses in hardware at the physical level
of bytes, words, or cache lines, with little or no throughput
overhead. However, current HTM proposals and implemen-
tations such as Intel’s Transactional Synchronization Exten-
sions (TSX), IBM’s System Z, and AMD’s ASF, offer only
best-effort hardware transactions: they can fail even when
there are no conflicts [4, 6, 9, 15, 26, 27]. Such reasons for
failure include lack of hardware capacity to track accesses,
compatibility restrictions on instructions permitted to execute
with transactions, page faults, and other hardware interrupts.
As aresult, HTM systems require software to take over when
a hardware transaction cannot profitably be retried. For ex-
ample, hardware lock elision (HLE) replaces lock regions
with transactions, retrying some number of times in the case
of conflicts, but falling back to lock acquisition when HTM
otherwise fails [7, 25].

Proponents of transactional memory have long devised
various models for aggregating nested execution of atomic
actions into larger transactions. Most systems (including ex-
isting commercial HTM) simply fold the operations of nested
transactions into the top-level outermost transaction, forming
one large flat transaction. In this case, any conflict arising in a
nested transaction will cause the top-level transaction to abort,
discarding all of its effects. However, some systems allow
nested transactions to abort independently of the parent while
preserving the parent’s atomicity, avoiding the loss of work
performed by the parent due to a conflict by the child. Closed
nesting [21] still aggregates the effects of nested transactions
into their parent on commit, but allows retry of a nested
transaction when it aborts, without necessarily aborting the
parent. Other work [22, 23] has proposed open nesting as an
extension to closed nesting, allowing improved concurrency
at the cost of some programmer effort. This approach relies
on having programmers annotate open transactions with an
abstract undo action that can be used by the parent to revert
the effects of the child if the parent aborts. The nested atomic
actions still execute as transactions, with the usual conflict
detection for their memory operations to ensure atomicity, but
when they commit their memory effects become permanent
and globally visible. The undo action allows their effects to
be rolled back if the parent aborts. Open nesting also requires
abstract concurrency control, so as to detect abstract conflicts
between transactions that occur at the level of the abstract
operations encapsulated by the open nested transactions.

Our focus in this paper is the extent to which these alter-
natives for nesting transactions can be accelerated by using
HTM where possible, to avoid the respective overheads of
their STM implementations, while allowing fallback to STM
execution when the hardware fails to provide. In particular,
we desire a system that presents a full-blown general transac-

661

tional programming framework for Java, while automatically
and dynamically choosing when to use HTM versus STM,
and where hardware and software variants can execute concur-
rently and seamlessly while preserving transaction semantics.

Our Contributions Include:

* a full-fledged implementation of extended Java language
abstractions for nested transactions (where children can
fail independently of parents, as opposed to the flattening
of other systems) to gain improved concurrency; we call
this system XJ (for transactional Java);

a hybrid HTM and STM scheme for nested (and boosted)
transactions in Java, allowing HTM and STM to execute
concurrently and compatibly;

use of HTM where possible with adaptive seamless rever-
sion to STM where not, for good performance;

execution under optimized compilation with the high-
performance (HotSpot-based) OpenJDK for Java, with
minimal modification to the HotSpot compilers to add
HTM intrinsics;

demonstrating via experiments using an established bench-
mark that HTM can significantly boost throughput and
that falling back to STM does not compromise scalability;
and

showing that open nesting increases the envelope of con-
currency and transaction sizes that can be accommodated
in hardware.

The broader implications of our work are that programmers
can easily make use of transactional programming abstrac-
tions to build scalable concurrent data structures without need-
ing to devise complicated implementations using low-level
synchronization primitives. Moreover, these transactional im-
plementations can benefit from hardware acceleration on
current hardware for modest transaction sizes and degrees of
concurrency. We also suggest that HTM would be even more
useful if its capacity were higher.

2. Background

Researchers and implementers have explored a number ways
in which transactions might be nested. A natural form of nest-
ing for transactional constructs in a programming language is
linear nesting, which allows a parent transaction to invoke a
sequence of sub-operations, some of which may themselves
also execute as child subtransactions. How these subtrans-
actions are managed may vary, so long as the atomicity of
the parent transaction is preserved. If the parent transaction
aborts and its effects are discarded, then the effects of its com-
mitted children must also be discarded. Nesting is desirable
when aggregating atomic operations against underlying data
structures into larger transactions. For example, a transac-
tion transferring a balance from one bank account to another
needs to debit from one account while crediting the other,

both operations ideally appearing to occur simultaneously,
perhaps to avoid arbitrage. The debit and credit operations
must themselves be implemented as atomic operations. Per-
forming the transfer as a transaction that executes the nested
debit and credit actions (in either order, it does not matter)
satisfies the requirement that the balance be seen to be in
one account or the other at all times. Linear nesting matches
well both static nesting of program blocks in one another and
the dynamic nesting patterns of calls and returns. Hence our
transactionalized version of Java uses linear nesting.

Approaches to handling linear nested transactions that we
consider in this paper include flattening, closed and open
nesting, and boosting.

2.1 Flattening

Flattening ignores the nesting structure and runs the opera-
tions of any nested transaction as part of its parent. If a nested
transaction aborts, then the entire top-level transaction also
aborts. Thus, all the work of the top-level transaction must
be discarded and retried. Flattening means that no metadata
for nested transactions needs to be maintained, other than
a simple counter to track nesting depth—entering a nested
transaction increments the counter, and committing decre-
ments the counter. When the counter decrements to zero the
top-level transaction commits its writes and they become
globally visible.

Current HTM implementations, such as Intel’s TSX, flat-
ten hardware transactions. As a result, they are susceptible to
failure if they run for a long time (increasing the likelihood
of conflicts or interrupts) or touch a large amount of memory
(exceeding capacity).

2.2 Closed Nesting

Closed nesting allows a nested transaction to abort indepen-
dently of its parent. A closed nested transaction can success-
fully commit, in which case its reads and writes accrue to
its parent. If the child aborts then its writes are discarded
and the nested transaction can be retried. After some number
of unsuccessful retries the parent itself may be aborted (or
the parent might attempt some other action). Closed nesting
sometimes avoids the need to discard the accumulated effects
of a parent. On the other hand, as the write sets of a series of
linear nested transactions accrue to the parent, its chances of
failure due to conflict with other transactions will increase,
because the write sets are larger and held longer.

Two nested transactions conflict as before (if they both
access the same memory unit and at least one of them
writes it), excepting that a child never conflicts with its
ancestors. Thus, writes by children override writes of their
ancestors without conflicting. Similarly, reads by children do
not conflict with writes of their ancestors (but need to see
the value most recently written by ancestors and previously
committed descendants).

662

2.3 Open Nesting

Open nesting allows further increases in concurrency [23], by
releasing concrete resources (e.g., memory reads and writes)
earlier and applying conflict detection (and roll back) at a
higher level of abstraction. For example, transactions that
increment and decrement a shared memory location would
normally conflict, since they write to the same location.
But, since increment and decrement commute as abstract
operations, they can be implemented correctly with open
nesting. An increment (say) does: read, add-one, write. The
open nested transaction would be over, its writes made
globally visible, and the updated field would not be part
of the parent transaction’s read or write set. Instead, if the
parent later aborts, it must run a compensating decrement to
undo the logical effect of its committed open nested child.

The only difference between open and closed nesting with
respect to memory accesses concerns what happens when
a transaction commits. When an open nested transaction
commits then its writes become permanent and globally
visible; they do not accrue to its parent. Moreover, for each
of its writes any corresponding read by its ancestors from the
same location is also forgotten (so that its ancestors can no
longer have conflicts on that location).

Instead of conflict detection being performed on the con-
crete level of memory units, when a committing open nested
transaction releases its concrete reads and writes, it must
typically claim some (set of) abstract resource(s) (“abstract
locks”) and provide a corresponding abstract compensation
operation (e.g., the decrement in the earlier example) for use
by its ancestors if they need to abort and undo the child.

If we view transaction conflicts and rollback in terms of
operations, we can see greater similarity between closed and
open nesting and highlight better the essential difference.
Closed nesting works in terms of read and write operations,
with the usual conflict rules on those operations. The undo
of a write is a corresponding write that installs the original
value of the memory unit. In the open nesting case we have
a programmer-defined set of operations, with programmer-
defined conflict rules and programmer-supplied rollback oper-
ations for each forward operation. So the essential difference
when viewed from “outside” the transaction is the set of
operations over which the transaction operates.

However, the more abstract! transactions provided by
open nesting—which offer increased concurrency because ab-
stract concurrency control captures the essential semantic con-
flict while read/write level conflict detection over-estimates
conflicts—must be built from something, and the individual
operations must still appear to execute atomically. More pre-
cisely, they must be linearizable [13]: they must appear to
occur at a single instant of time. Transactions are one way to
achieve that linearizability, so it is natural to implement open
nesting using much the same mechanism as for closed.

!'We mean “abstract” in that conflicts don’t occur at the physical level.

Interestingly, because open nested children discard their
physical reads and writes they are particularly amenable to
acceleration using hardware, even when their parent runs
in software. All that needs to be done is to ensure that the
necessary abstract locks are acquired before the hardware
open nested child commits. By storing abstract lock meta-data
in a carefully-implemented (non-transactional) concurrent
data structure the abstract locks can simply be acquired before
entering the open nested hardware transaction (so avoiding
placing the burden of managing the locks on the hardware
transaction, and leaving it only to track application-level
memory accesses).

2.4 Boosting

Transactional boosting [12] recognizes that how linearizabil-
ity is achieved does not matter, and thus naturally supports
an approach where existing non-transactional (but otherwise
thread-safe (linearizable)) code is extended with transactional
wrappers. For example, given a thread-safe data structure
such as Java’s ConcurrentHashMap, where concurrent oper-
ations to manipulate the map are linearized using low-level
non-blocking primitives, linearizability of the composition
of sets of these operations can be achieved using the same
abstract concurrency control mechanisms as for open nesting.
Instead of using transactions to linearize the sub-operations
(say, adding and removing from the map), transactions are
used only to linearize aggregations of those sub-operations.

For example, an aggregate operation that adds two ele-
ments to a ConcurrentHashMap can be linearized with re-
spect to other operations on the map by locking the visibility
of those elements until the aggregate operation completes,
and providing a compensating action that removes the ele-
ments if the aggregate must be rolled back.

The advantage of transactional boosting is that it removes
the need to manage low-level conflicts using transactions,
which in the case of software transactional memory can have
significant overhead. Instead, the underlying data structures
support linearizability of their operations using other means,
such as low-level hardware atomic operations. Software
transaction mechanisms come into play only when it comes
to aggregating these operations, capturing their resource
reservations in the form of abstract locks.

2.5 Related Work

We now briefly discuss other related work, before describing
in later sections how to present our abstractions to the
programmer, how they can be implemented so as to be
compatible with and amenable to HTM acceleration, and
experiments showing the impact they have on performance.

There are previous hybrid STM/HTM implementations,
such as HyTM [5, 18]. Their approach is similar to ours,
where they generate separate software paths for HTM and
STM with instrumentation to check the needed metadata.
HyTM supported two simple back-off schemes to transition
from HTM to STM in the face of failures. In the “immediate

663

fail-over” scheme a transaction failing in HTM retries itself
in STM immediately. In the “back-off” scheme, a transaction
failing in HTM retries for 10 times before retrying under
STM. Since their transactions were very short and with small
memory footprint, their simple approach of trying HTM first
for every transaction was a successful policy. Matveev and
Shavit [20] describe a similar back-off policy.

PhTM [19] took an alternative approach, running transac-
tions in phases. Under this scheme transactions cannot run in
HTM and STM concurrently: it is either all HTM or all STM.
This works well when all transactions succeed under HTM,
but incurs major overheads if even one HTM transaction fails.

Recent work by Diegues and Romano [8] explores a self-
tuning retry policy developed with reinforcement learning to
decide when to use the fallback path for TSX. This work falls
in the space of lock elision rather than full-blown transactions.

We are the first to consider nesting in both closed and open
forms with respect to seamless combination of transactions
executing under both HTM and STM. Unlike these previous
approaches, we also avoid trying hardware when past history
shows that the transaction is unlikely to succeed.

3. Nested Transactions for Java

We build upon the work of Ni et al. [23] and Chapman et al.
[1] to allow expression of closed nested, open nested, and
boosted transactions in Java programs. The overall system
is called XJ (for transactional Java), comprising language
design, translation framework from syntax to bytecode, and
run-time system. In this section, we reprise the language
extensions of Chapman et al. [1] and describe their current
implementation, which differs from Chapman et al. [1] in
several key aspects.

3.1 Closed Atomic Blocks/Methods

A block (or method) is designated closed atomic by writing
xatomic (meaning “transactional atomic”) wherever the
synchronized keyword is allowed. These execute as closed
atomic transactions. Their effects include assignments to all
declared variables and fields, as well as the effects of nested
transactions that they execute.

3.2 Open Atomic Classes and Abstract Locking

Open nesting naturally applies to classes that implement
abstract data types rather than individual methods, because
all operations of the abstract data type need to cooperate in
providing suitable abstract concurrency control and recovery.
A class declared openatomic indicates that each of its public
methods executes as an open transaction, and that its fields
can be accessed only during execution of those methods.?
Each public method may also record a compensating action
in the form of an onabort clause to undo its effects in the

21t is possible to have other closed atomic blocks and non-public methods,
but the open atomic methods need to be designed together to preserve the
abstract state of the open atomic class.

case of abort by an enclosing (ancestor) transaction. It may
also have a locking clause to express abstract locks that it
must acquire before it can commit. Only these two accrue’ to
an enclosing parent on commit, while the physical operations
do not. The abstract locks typically protect the ability of
an aborting parent transaction to roll back the effects of the
method by running the onabort clause as a transaction, and
to protect against conflicting abstract operations.*

Aborting a transaction rolls back its (accrued) physical
operations (including those from closed nested children) and
also runs the accrued onabort clauses of its open nested chil-
dren (as open nested transactions). These rollback operations
are executed in reverse order from which they accrued.

Following Chapman et al. [1] we allow users to construct
rich abstract locking protocols. The locking framework relies
on the notions of locks, lock spaces, lock shapes, and lock
modes. The locking clause of an open atomic method
requests locks of particular shapes in particular modes from
lock spaces. The type signatures of these are illustrated in
Listing 1. (The metaphor here is of possibly overlapping
geometric shapes within some space. A shape indicates what
is being locked, while a lock mode describe how it is being
accessed.)

An instance of an open atomic class will typically have
some number of lock tables in which to record abstract locks
held by active transactions against the abstract state of the
instance. Lock tables record locks and the mode in which
they are held, along with the transaction holding the lock.
Locks come in multiple shapes, as defined by a lock space,
allowing a single lock to cover a range of locked values.

As an example, consider the design of an open atomic
class OrderedSet<T> implementing java.util.Sorted-
Set<T>. A suitable lock space for an ordered set is the one-
dimensional set of all possible T instances, having a total
order (OneDSpace). Within this space one can imagine a
number of lock shapes:

Point(x): lock a single “point” object, associated with a
particular T instance x, which mathematically could be
considered the range [x,x];

GT(x): lock upward “rays” starting at x, meaning (x,co];

LT(x): lock downward “rays” starting at x, meaning [—co,x);

Range(x,y): lock ranges defined on values x and y where
x <y in the total order, meaning (x,y), etc.

We will use two lock mode classes here, SXMode, shown in
Listing 2, and PCMode, shown in Listing 3. SXMode provides
S (share) and X (exclusive) locks (also often called read/write

3The language extensions also support oncommit, ontopcommit, and
onvalidate clauses, not discussed here, which also accrue.

4 Notice that a given object will be used either in an open atomic way or
not, and no public access is allowed to its fields. This prevents any access
patterns by which mixed accesses in closed and open atomic modes to the
same object can lead to deadlock when trying to execute compensating
actions while aborting an open transaction.

664

public interface LockTable
<LT extends LockTable<LT>> {
public void acquireLock
(LockShape lockShape, LockMode mode,
TxnDescriptor desc) throws
LockConflictException;
public void releaseLock(Lock lock);

public interface Lock
<S extends LockShape, M extends LockMode> {
public S getLockShape(Q);
public M getLockMode();
public TxnDescriptor getTxnDescriptor();
public LockTable getLockTable();

public interface LockSpace
<M extends LockMode<M>, LS extends
LockSpace<M,LS>>
extends LockTable<LS> {}

public interface LockShape
<M extends LockMode<M>, LS extends
LockShape<M,LS>>{}

Listing 1. Lock tables, spaces, shapes, and modes

enum SXMode implements LockMode<SXMode> {
S { public boolean conflictsWith(SXMode
other)
{ return other !=S; } },
X { public boolean conflictsWith(SXMode
other)
{ return true; } 1},

Listing 2. Shared/eXclusive lock modes

enum PCMode implements LockMode<PCMode> {
P { public boolean conflictsWith(PCMode
other)
{ return other != P; } 1},
C { public boolean conflictsWith(PCMode
other)
{ return other !=C; } },

Listing 3. Pin/Change lock modes

openatomic class OrderedSet<T> ... {
private final
LockSpace<SXMode,OneDSpace<SXMode, T>>

eltSpace;

private final
LockSpace

<PCMode, UnitSpace<PCMode,OrderedSet<T>>

setSpace;

public boolean add(T elt) locking
(eltSpace : point(elt) : SXMode.X),
(setSpace : get() : PCMode.C)

public boolean remove(T elt) locking
(eltSpace : point(elt) : SXMode.X),
(setSpace : get() : PCMode.C)

public int size()
locking (setSpace : get() : PCMode.P)

public boolean contains(T elt)

locking (eltSpace : point(elt) : SXMode.S)

Listing 4. OrderedSet lock tables

locks). S and X modes are used concerning the presence/ab-
sence of individual elements of a set. For the set as a whole,
we can pin the state of the set using P mode, or indicate some
change to the set using C mode: operations like size would
use P mode, and add/remove operations would use C mode
on the set (plus X mode on individual elements). Note that C
conflicts with P but not with C. The two mode classes SXMode
and PCMode are strictly different.

Lock modes are naturally implemented using Java enum
classes that implement the LockMode interface.

An OrderedSet<T> might then have two lock tables, one
for the set of individual elements and one for gross statistics
(current size, total number of insertions/deletions, etc.) about
the set as a whole, as in Listing 4. In this example, UnitSpace
is a space that allows locking just one object, in this case the
set as a whole.

For simplicity in our later examples we consider only un-
ordered sets, whose lock space for their elements is a simple
point space (PointSpace) supporting just one point shape
for locking distinct elements (not ranges). The operations
on the set use locking clauses to protect their abstract state
changes. Thus, for example adding/removing an element
locks the presence/absence of that element in the set by tak-
ing an X lock on that element, whereas contains takes an S
lock.

3.2.1 Boosting

The framework for abstract locks extends naturally to boost-
ing. In place of openatomic we allow a class to be declared
boostedatomic. This presumes that the implementations of

665

XJ source code

_T/q

XJ Compiler

!

standard Java
bytecode

compile

|

XJ Rewriter

!

bytecode
| + run-time calls

{

HTM-enabled
JVM

load

XJ run-time
library

run

Figure 1. XJ Tool Chain

its methods are inherently linearizable, such as by being im-
plemented using non-blocking hardware primitives instead
of executing as open nested transactions.

3.3 Implementation

Our implementation extends that of Chapman et al. [1], com-
prising four main components: (1) a compiler front-end based
on OpenJDK’s javac, (2) a minimally modified version of
OpenJDK to support hardware transactional memory using
TSX, (3) a Java agent for load-time bytecode rewriting to in-
ject transaction support, and (4) a run-time library to manage
the dynamics of transactions and abstract locking. Figure 1
shows how these components fit together. The rewriter gener-
ates an interface for each class and moves the implementation
into a separate class. These transformations are not currently
compatible with the default methods of Java 8 because a de-
fault method cannot be invoked on an interface implemented
indirectly. Due to this limitation we currently work only with
Java7.

3.3.1 Java Compiler

Our modified javac compiler supports the new boosted-
atomic keyword, in addition to xatomic, openatomic, and
onabort clauses. It generates compliant Java bytecode com-
patible with any standard Java virtual machine. The compiler
treats boostedatomic just like openatomic but the load-
time rewrites for boostedatomic classes differ significantly
since the methods do not execute as transactions (though they
generally acquire abstract locks and have onabort clauses).

public final class Unsafe {

public static int beginHWTxn() { return 0;
}

public static void endHWTxn() {}

public static void abortHWTxn(int flag) {}

Listing 5. HTM methods added to sun.misc.Unsafe.java

3.3.2 Open)JDK Modifications

In order to make use of the new TSX instructions to support
HTM we need a modified Java virtual machine capable of
injecting them into compiled code. We augmented version
7u40-b23-2013-08-26 of OpenJDK. The TSX specification
provides two different interfaces to programmers. While both
interfaces make use of the underlying TM hardware, their
purpose is quite different. The Hardware Lock Elision (HLE)
interface is used to implement hardware lock elision tech-
niques while the Restricted Transactional Memory (RTM)
interface resemble classic TM proposals. We use RTM since
it is more amenable to implementing HTM.

We modify the non-standard sun.misc.Unsafe class of
OpenJDK as shown in Listing 5 to provide methods that
begin, end, or abort a hardware transaction. We do not provide
any concrete implementations of these methods here, but
instead provide their implementations via HotSpot compiler
and interpreter intrinsics [16]. We use sun.misc.Unsafe
as a mere interface to communicate between the user code
and the HotSpot compilers (both C1 and C2) and interpreter.
Providing intrinsic implementations of these methods avoids
the overhead of calling them as native code routines. These
intrinsics were the only extensions we made to HotSpot.

The beginHWTxn method uses the new XBEGIN instruction.
If the transaction completes successfully it returns —1; in the
failure case it returns the corresponding error code stored in
the EAX register. This code can be used to diagnose the reason
for the hardware transaction’s failure. The endHWTxn method
uses the new XEND instruction, which indicates the end
(commit point) of a hardware transaction. The abortHWTxn
method can be called if the transaction needs to be aborted
explicitly. This method uses the XABORT instruction and
takes an int flag as an argument, which fills in part of the
XBEGIN result code in EAX, allowing the caller of abortHWTxn
to convey a few bits of information outside the aborting
transaction.

In our initial experiments, many simple hardware transac-
tions surprisingly failed due to conflicts even when there were
no writes involved. We diagnosed this issue using the Intel
Software Development Emulator (SDE) and found the con-
flicts to occur on accesses to a bookkeeping field of the Node
class in the tree data structure manipulated by our benchmark.
These conflicts turned out to be due to false sharing because

666

//'i and j are unique for each transaction
static int i = 1;
static int j = 0;
method (args) {
if (j == 0) { method_htm(args, false); }
else {
i=3-1
method_stm(args) ;
3
}

Listing 6. Pseudo-code for the routing method

TSX operates at the granularity of a cache line. Java 8 intro-
duced the @Contended annotation to be used to prevent such
false sharing. We back-ported this feature to Java 7 and added
suitable @Contended annotations to the benchmark code.

3.3.3 Bytecode Rewriter

The load-time bytecode rewriter is a Java agent built using
the Java Virtual Machine Tool Interface (JVMTTI). It runs
as a separate process, and can rewrite all loaded classes
(including those loaded by the bootstrap class loader). In
contrast to Chapman et al. [1], we do not replace all classes
with rewritten transactionalized versions. Instead, having a
clean separation between application code that is rewritten
for transactional execution and the run-time library code that
supports transactions avoids entanglement and complexity.
There is no need to produce code that must be made to
serve in both the run-time and the application contexts, with
the associated run-time overhead needed to distinguish the
context. For bootstrap classes we generate a new version
of the class under a different package name, while also
preserving the original class. The rewritten class has no
relationship to the original, other than that its source was the
original class. Application classes (loaded by the application
class loader) are rewritten to refer to the new bootstrap classes
rather than the originals, while the transactional run-time
library classes, being infrastructural in nature, continue to use
the original versions. This creates a clean separation between
the run-time library and the application.

There are situations where the separation does not always
work, such as when the original class has native methods.
We treat these classes specially by generating a transaction-
alized wrapper class for the application to use. The wrapper
maintains the relationship between the original and wrapped
instances, and serves as a transactional proxy for the original
class. There are also a handful of classes that do not need
transactional machinery (such as those whose instances are
immutable). We do not rewrite these classes and refer to them
directly from the rewritten classes.

For each of the generated transactionalized versions of
the classes we apply a series of transformations. These
transformations generate new methods, as well as transform

method_htm (args, boolean runInSW) {
TD desc = TD.getNewDescriptor(); #/TD =
TxnDesc
int numRetries = 0;
while (true) {
int txnStatus = TD.beginOpenHtm(desc,

runInSW) ;
if (txnStatus == -1) { /running in HTM mode
// Method body goes here
TD.commitOpen(desc);
j=0;
return;

} else if (WARMUP_PHASE) {
if (TD.retryInSWMode(txnStatus,
numRetries) {
method_htm(args, true);
return;
3
numRetries++;
continue;
} else { / HW transaction failed
if (TD.retryInHW(txnStatus, numRetries) {
numRetries++;
continue;
}
// Back off to SW mode
j=1;
i=1%*2;
method_stm(args);
return;
}
3

}

Listing 7. Pseudo-code for the HTM version of a method

existing methods in order to add the transactional machinery.
In general, transactional programs can run with or without
HTM support. When the system is run with support for HTM,
the bytecode instrumenter performs a series of additional
method transformations. We generate a transactional version
of the method for both HTM and STM. The STM version calls
run-time routines that support STM, while the HTM versions
call routines that support HTM. Examples of such run-time
calls are openForRead (indicating that an object is about to
be read), openForWrite (indicating that an object is about
to be written), beginTxn, endTxn, etc. We also generate a
routing method that direct the caller to either the STM or
HTM version of the method, with the decision guided by
two special variables we generate for each routing method.
Listing 6 shows pseudo-code for the routing method, and
Listing 7 for the HTM version of a method. Although these
show i and j as static members of the class, in reality they are

667

encapsulated in a separate object referenced from a static
final field. This guarantees that updating of i andj will not
cause false conflicts with other transactions. The idea behind
the scheme is that we first try to run a transaction in HTM. In
the face of HTM failures we back off to STM aggressively,
yet try HTM once in a while. If a transaction succeeds in
HTM, then we will keep trying it in HTM.

This simple scheme worked well when the number of
threads was low, but failed to yield its true potential as the
number of threads increased. It was backing off too aggres-
sively and not attempting enough times in HTM, which
limited the throughput that we could achieve. To remedy this,
we introduced thread-local counters so that most counting
down occurs per-thread rather than against shared counters.
We call the thread-local counters decrementCounter and
updateCounter, and they are initialized to 10. Each time
the shared j would have been decremented, we check if the
thread-local decrementCounter is at O, and if so we decre-
ment the shared j and reset decrementCounter to 10. Other-
wise we just decrement the thread-local decrementCounter.
The same goes for updating i and j when backing off
from STM to HTM, using updateCounter in place of
decrementCounter. This scheme ensures that the back-
off rate does not change drastically as the number of threads
increases. The scheme we use is much simpler than that of
Diegues and Romano [8], who used a reinforcement learning
technique to decide when to use the fallback path for TSX.

One of the main issues we encountered early on with using
HTM was that many transactions failed with result code 0
(i.e., no specific reason given). Using the Intel SDE, we found
these aborts to be caused by execution of instructions that are
incompatible with TSX [14]—FXRSTOR and FXSAVE (perhaps
among others)—and which are compiled into HotSpot’s
run-time stubs used to control dynamic optimization and
linking, and to resolve Java static and virtual method calls.
By design, HotSpot patches these call sites at run time [24].
Thus our hardware transactions always failed, and those
failures preventing triggering of the patching mechanism.
Our workaround was to devise a mechanism to “warm” the
system up in STM mode before attempting any hardware
transactions. However, so that the compiler’s optimizations
will be triggered appropriately, and so that linking/patching
will occur, these STM transactions must follow the same
code path (except for not using the XBEGIN instruction, etc.)
as HTM transactions do. We use a global flag to indicate
whether we are in the software-only warm up phase. The i
and j values described above are used only after warming up.

The bytecode rewriter generates code that preserves many
important invariants related to possible transitions between
STM and HTM code. We follow a few simple rules. The HTM
version of a method always calls the nested HTM version
of other methods. The nested HTM version of a method
is much simpler than the one presented in Listing 7. Since
nested HTM methods will always be called from an HTM

context, they do not need to begin a new transaction, and
thus they contain only the instrumented method body. On the
other hand, the STM version of the method calls the method
with the original name. Thus, if the method being called is
a transactional method, it will call the routing method. This
enables the new transaction to run under either HTM or STM.
There is one caveat though: a parent transaction running under
STM should not create a nested closed hardware transaction
(since it will not gather locks and log records and accrue
them to the parent).’ In contrast, if the parent transaction is
running under STM then an open nested child transaction
can safely run under HTM. This is because the open nested
transaction will acquire abstract locks and undos and can
release all physical locks (making HTM possibly profitable
in this case). We acquire the abstract locks and log undos
before starting the hardware transaction, and release/revert
them if the hardware transaction fails. We further optimize
the case where an open nested action runs in hardware under
a top-level hardware transaction. Such a child does not need
actually to acquire locks or log undos, since they will be
immediately discarded on either success or failure of the
hardware transaction. However, to detect conflicts, the child
must check that it could have acquired the locks—i.e., that
there are no conflicting locks held by other transactions.

Summary of Method Versions: For methods not marked
atomic, we generate a non-transactional version and three
closed nested versions: a routing method and STM and HTM
versions. For methods marked closed atomic, there are top-
level routing, STM, and HTM versions, and nested routing,
STM, and HTM versions, and likewise for open atomic and
boosted methods (except there are no HTM versions under
boosting). Thus a given method has four to seven versions. In
principle, these could be generated on demand to avoid code
bloat, but we have focused on benchmarks whose code is not
particularly large and have not had code size problems. Thus,
HTM is not enabled only at leaf transactions, though it is true
that HTM forces flattening. Top-level (parent) transactions
can start in hardware and run their children (both open and
closed) as subsumed (flattened) HTM transactions. If this
succeeds (because both parent and children fit in hardware)
then we get the full benefit of hardware acceleration, as our
results confirm. Open nested transactions can run in hardware
even when their parent is in software because open nesting
supports full undo of the abstract operations; closed nested
cannot because there is no way to undo their commits if the
parent fails.

3.3.4 Run-Time Library

The run-time library provides the dynamic support needed
for transactional execution. It supports both closed and open

5 Doing so is possible, but would mean the HTM version does all the work
of the STM version, with the added overhead of starting and committing an
HTM transaction.

668

nested transactions, running under HTM or STM simultane-
ously, as well as boosting. Thus a program can make use of
all styles of transactional execution. Our experiments also
configure the run-time library for modes of execution that
support only one of closed, or boosted transactions, so as to
isolate the overheads for each mode. For example, the data
structures needed for tracking the reads and writes of open/-
closed nested transactions are not needed for boosting and
there is no need to instantiate them in that case.

The run-time library offers both HTM and STM versions
of all important methods. As previously explained, the HTM
version of the method takes an additional boolean argument
indicating whether it should run in “software mode.” The run-
time library also maintains statistics in a thread-local manner,
avoiding false conflicts in the statistics collection process.

The library performs conflict detection at the level of
objects, and tracks writes at the level of fields using an undo
log. Each transactionalized object carries an extra field, which
holds the lock for writes, and otherwise contains a version
number for the object, which is incremented upon commit.
In our implementation HTM and STM can safely co-exist
simultaneously. Thus the two mechanisms need to play well
with each other. In general, we adopt pessimistic concurrency
control for writes, and optimistic concurrency control for
reads. When running under STM, writes acquire a lock on
the object. Reads proceed optimistically, simply logging the
value of this field (a version number), and the log is then
processed at commit time to validate the transaction (if the
logged version number does not match the current value and
the owner of a locked object is not the current transaction
(or an ancestor) then the transaction aborts). When running
under HTM, writes simply increment the version number,
thus invalidating conflicting STM readers and conflicting
with HTM readers or writers. Reads under HTM perform a
check to make sure that the object is not locked by a non-
ancestor transaction, explicitly aborting if necessary. In sum,
the lock/version word “glues” together the STM and HTM
schemes into a coherent (and safe!) hybrid TM.

The implementation of PointSpace that we use in our ex-
periments itself requires a concurrent data structure to store
the lock metadata because multiple transactions can try to ac-
quire abstract locks concurrently. We use the NonBlocking-
FriendlyHashMap of Crain et al. [2] for this purpose.

4. Benchmarks

Our workloads extend Synchrobench [11], which is a micro-
benchmark suite for evaluating synchronization techniques
on collection classes such as sets and maps. It provides
implementations for a variety of differently synchronized
data structures in Java (as well as C/C++). It defines ab-
stract APIs comprising simple add, remove, contains, and
get operations that the data structures must implement.
Adding new implementations to the framework is simply

a matter of making them conform to one of these APIs.
The CompositionalIntSet interface abstracts sets, while
CompositionalMap abstracts maps.

We extend Synchrobench for use with nested transactions
in several ways. First, we provide open atomic, closed atomic,
and boosted implementations of the CompositionalIntSet
and CompositionalMap interfaces in our language dialect.
These classes are compiled by our modified compiler. We
also augment the Synchrobench driver to instantiate these
implementations for measurement. Second, we reconfigure
the driver to run transactions of various sizes, consisting
of aggregate operations on the underlying data structures.
This enables benchmarking for throughput while varying
transaction granularity. Third, we reconfigure the driver to
offer the ability to pin worker threads to specific cores.
Finally, we make refinements to the manner in which the
driver calculates throughput numbers. We now describe these
modifications in more detail.

4.1 Open Atomic Workload

Listing 8 shows the OpenIntSet class, an open atomic im-
plementation of CompositionalIntSet. OpenIntSet pro-
vides a concurrency-safe wrapper for unsynchronized im-
plementations of CompositionalIntSet. Similarly, Open-
Map provides a concurrency-safe wrapper for unsynchro-
nized CompositionalMap implementations. Here we give
more precise details of the implementation of OpenIntSet;
OpenlMap is derived similarly.

As in the earlier OrderedSet example, OpenIntSet de-
fines two lock spaces: eltSpace manages abstract locks is-
sued on points corresponding to elements in the set, and
setSpace defines abstract locks for the set as a whole. The
addInt method attempts to add the element elt to the set.
Thus it needs an X lock on the point represented by element
elt from the eltSpace lock space, and a C lock for the set
as a whole from the setSpace lock space.

Generally, onabort handlers are needed only for methods
that change the abstract state of the set. One such method is
addInt, which returns true if the element was added to the
set and false if the element was already present. Thus its
onabort handler must remove the element from the set only
if it was not previously there. To achieve this, the onabort
clause captures and uses the result of the committed body of
the method. The other methods can be derived similarly. Our
extended transactional Java syntax supports declarations for
variables (like result) outside the body of the open atomic
method that are visible to the body and the onabort clause.

4.2 Closed Atomic Workload

The ClosedIntSet class shown in Listing 9 provides a
concurrency-safe wrapper, using closed nesting, for an unsyn-
chronized CompositionalIntSet. The methods of Closed-
IntSet execute the set operations in (closed) nested mode.

669

public openatomic class OpenIntSet
implements CompositionalIntSet {
private final CompositionalIntSet intSet;
private final
LockSpace
<SXMode,PointSpace<SXMode, Integer>>
eltSpace
= new PointSpace<SXMode, Integer>(Q);
private final
LockSpace
<PCMode,UnitSpace<PCMode,OpenIntSet>>
setSpace
= new UnitSpace<PCMode,OpenIntSet>();
public
OpenIntSet (CompositionalIntSet intSet)
{ this.intSet intSet; }
public boolean addInt (int elt)
[boolean result = false]

locking
(eltSpace : point(elt) : SXMode.X),
(setSpace : get() : PCMode.C)
{ return (result = intSet.addInt(elt)); }
onabort

{ if (result) intSet.removeInt(elt); }
// etc.

}

Listing 8. OpenIntSet class

public xatomic class ClosedIntSet
implements CompositionalIntSet {
private final CompositionalIntSet intSet;
public ClosedIntSet(CompositionalIntSet
intSet)
{ this.intSet = intSet; }
public xatomic boolean addInt(int x)
{ return intSet.addInt(x); }
// etc.
}

Listing 9. ClosedIntSet class

4.3 Boosted Workload

Boosted and open atomic classes look similar since they both
must make use of abstract locks to protect the abstract state of
the underlying data structure. Listing 10 shows BoostedMap
as an implementation of the CompositionalMap interface.
Unlike an open atomic class, a boosted class wraps a thread-
safe implementation of the CompositionallMap interface.
This is an important distinction.

4.4 Support for Varying Transaction Sizes

We extend the driver for Synchrobench to aggregate some
number of underlying data structure operations nested within

public boostedatomic class BoostedMap<K, V>
implements CompositionalMap<K,V> {
private final ConcurrentMap<K,V> map;
private final
LockSpace<SXMode,PointSpace<SXMode ,K>>
keySpace = new PointSpace<SXMode, K>(Q);
private final
LockSpace
<PCMode,UnitSpace<PCMode,
BoostedMap<K, V>>>
mapSpace
new UnitSpace<PCMode,
BoostedMap<K,V>>();
public BoostedMap(ConcurrentMap<K,V> map)
{ this.map = map; }
public V put(K key, V val)

[V result]

locking
(keySpace : point(key) : SXMode.X),
(mapSpace : get() : PCMode.C)

{ return (result = map.put(key, val)); }

onabort {
if (result == null) map.remove(key);
else map.put(key, result);

}

// etc.

}

Listing 10. BoostedMap class

private xatomic void atomicDoOperation() {
for (int i 0;
i < Parameters.groupSize;
i++)
doOperation();

Listing 11. Top-level transaction for nesting

a top-level closed transaction, parameterized by a new run-
time flag g. We modified the worker threads of Synchrobench
accordingly as shown in Listing 11. If the parameter g
has a value greater than O then the operations are per-
formed within a top-level closed transaction by marking
atomicDoOperation as xatomic. Then doOperation will
be nested/boosted accordingly within the top-level transac-
tion. We also compare against Deuce [17], for which we use
the corresponding method shown in Listing 12, to achieve
the same effect.

4.5 Support for Thread Pinning

We update the driver for Synchrobench to accommodate the
option of specifying a strategy for pinning worker threads.
The new run-time flag ps can be used to specify this strategy.

670

@Atomic(metainf = "elastic")
private void deuceAtomicDoOperation() {
for (int i 0;
i < Parameters.groupSize;
i++)
doOperation();

Listing 12. Top-level transaction for Deuce

@Atomic // API method

public boolean addInt(int x)

// Methods used by the maintenance thread
@Atomic(metainf = "maint")

private Node getChild(Node n, boolean left)

Listing 13. Deuce STM implementation of TFTreeSet

The value accepted is any combination of the characters C, S,
and H. The character C represents core, S represents socket,
while H represents hyperthread. These characters represent
the 3 different dimensions that can be varied when pinning
threads. The sequence of the characters specifies which aspect
of these to vary most rapidly when pinning threads. For
example, CSH means to vary the core first, then the socket,
and finally hyperthreads of the same core.

4.6 Modified Transaction Friendly Data Structure

Synchrobench [11] contains transaction-friendly data struc-
tures that are “speculation-friendly” [3]. We took the transac-
tion-friendly TreeSet binary search tree implementation
and modified it to run with transactions. We refer to this
as TFTreeSet. It uses a separate maintenance thread to keep
the data structure properly balanced. Inserts are done at the
leaf level, while deleting an element simply marks the node as
deleted. The maintenance thread rebalances the data structure
and removes deleted nodes. In the implementation for Deuce
the maintenance thread performs its tasks inside small atomic
methods as shown in Listing 13. The API methods are also
marked as atomic methods.

Adapting these data structures for our transactional Java
dialect is trivial. We mark those methods used by the main-
tenance thread as closed atomic using the xatomic method
modifier as shown in Listing 14. This is reasonable because
the maintenance methods are short, making only a quick
modification. We do not include anything special on the API
methods, but leave it to our open/closed wrapper classes to
enforce atomicity. Hence, depending on the wrapper that is
instantiated, the API methods may run closed or open.

We also performed some hand optimizations to the bench-
mark code that are important in the transactional setting.
These optimizations could be performed by a bytecode rewrit-
ing optimizer, a task we leave to future work. Specifically, we
found places where a field is often unconditionally updated

// API method

public boolean addInt(int x)

// Methods used by the maintenance thread
private xatomic

Node getChild(Node n, boolean left)

Listing 14. Transactional implementation of TFTreeSet

with the value it already contains. Such writes are cheap in
the non-transactional case, but introduce needless conflicts in
transactions. We made them conditional. We also specially
mark openForRead and openForWrite calls that are redun-
dant and openForRead calls that are always followed by an
openForlirite on the same object. This substantially reduces
the transactional instrumentation in the micro-benchmarks.

4.7 Modified Throughput Reporting for Accuracy

Previously, the Synchrobench driver thread worked as follows.
It created all the worker threads, then recorded the system
time, and finally started the worker threads individually. The
main thread then slept for the duration of the benchmark.
Upon being woken up, the main thread attempted to join
all the worker threads and to record the system time again.
The difference between the recorded system times is taken
as the elapsed time for the benchmark iteration. Meanwhile
each thread kept a record of the number of operations it
executed. When reporting the results, Synchrobench divided
the total number of operations completed by all the threads
and divided by the elapsed time to calculate the throughput
in units of operations per second. This mechanism works
relatively well when running with a small number of threads,
but when running on a multi-socket machine some flaws
appeared. We noticed that the elapsed time when running
with 48 threads was in the range of 5.5 seconds when the
specified duration was 5 seconds. This had to do with the
difference in the times at which each thread started (they
are started one by one), and even more in the times when
they stopped (after each operation, they look to see if their
“stop” flag has been set; operation times vary as do the times
when the “stop” flags are actually set). Thus some threads
are actually idle for significant periods of time leading to an
underestimate of throughput. Our remedy is to record the start
and stop time of the individual worker threads. We divide
the total number of operations completed by the total of the
running times of the worker threads, and then multiply by the
number of threads. This throughput value more accurately
represents average throughput for large numbers of workers.

5. Experiments

Our experiments explore a range of structured transactions,
namely flat, closed, open, and boosted, in STM-only mode
and in self-tuning hybrid HTM/STM mode. We further
compare against Deuce STM, running its efficient elastic
mode transactions and configured as described in Section 4,

671

The initial number of elements added
to the data structure before measure-
ment begins.

i = 16K|64K

r=32K|128K The range of possible keys used in
the data structure; keys are drawn

uniformly at random.

u = 05|50 The percent of operations that are up-
dates, each randomly chosen either

to add or remove an element.

n=>5 The number of iterations of the

benchmark.

t =1|2|4/8...44|48 The number of spawned worker

threads.

W=5 The warm up time in seconds that
the benchmark runs before starting

measurement.

d =15000 The duration of a single iteration of

the benchmark in milliseconds.

g=1/2|4|8|16]32 The number of operations to perform

in each transaction.

ps =CSH The pinning strategy to use. We first
pin threads to different cores on one
socket, then on the next socket, be-
fore finally assigning threads to dif-
ferent hyperthreads of the same core.
Exploratory experiments showed

this strategy to be clearly the best.

Table 1. Synchrobench parameters for experiments

as a reference point. We conducted all experiments using the
extended version of Synchrobench described in Section 4
with the parameters shown in Table 1.

We perform three sets of runs across these parameters so
as to space the sets of five iterations over time. Thus, we
sample 15 measurements for each configuration.

Given a benchmark data structure, Synchrobench initial-
izes the data structure to its initial size, drawing randomly
from the indicated range of values. Once the data structure
is initialized, Synchrobench performs operations at random,
using the update percentage to decide if the operation should
be “add/remove” or “get/contains”. The collected statistics
are cleared once the warm up period ends, and the benchmark
runs for the specified duration after that. Then Synchrobench
reports statistics for the benchmark run, including the through-
put (operations/s).

When enabling HTM, we followed a more complex warm-
up procedure. First, we ran for five seconds calling the HTM
routing methods of transactions. Then we paused five seconds
to allow the HotSpot compiler to compile (and possibly
optimize) methods. We repeated this procedure to force
proper linking of the resulting compiled methods. We then
forced garbage collection (so that collections will not interfere
with our timings) and started Synchrobench’s warm-up run.

[open htm commits
mmmm closed htm commits
200

] open stm commits
1 closed stm commits

I htm aborts

150

100

(o))
o

committed ops and aborted txns (106)

Group size 1

Group size 2

20 % 80 % 0 % %

Group size 4

threads

Figure 2. Committed operations versus aborts

We believe that in the future this warming up approach
can be generalized for arbitrary transactional applications.
Alternatively, deeper modifications could be made to the
compilers to make them HTM aware.

The OpenIntSet and ClosedIntSet classes are ini-
tialized with the transactionalized version of TFTreeSet.
For boosting, BoostedMap is initialized with NonBlocking-
TorontoBSTMap [10]. For benchmarks involving Deuce STM
we run TFTreeSet under Deuce STM.

All benchmarks were run on a 48-way, x86-64 Intel Xeon
E5-2690 v3 machine with 2 sockets of 12 hyperthreaded
cores, with the clock frequency fixed to 2.4 GHz, and with
TSX enabled. The machine was running CentOS Linux
release 7.2.1511 and our modified version of OpenJDK.

6. Results

We now present results for executing the workload under dif-
ferent transaction implementations. Our first set of results are
for data structures initialized with 64K elements and a key
range of 128K. All numbers reported in throughput graphs
are normalized per-thread throughput. This implies that per-
fect scaling will appear as a horizontal line in the graphs.
Our normalization is relative to the standard unsynchronized
java.util.TreeMap (run with one thread, no synchroniza-
tion). At each point we plot the median along with bars show-
ing the 10th and 90th percentiles across the 15 total iterations
we accumulated. A common theme in the results is that open
nesting and boosting do not perform well when the transac-

672

tion size is small. This is because these transaction forms
carry a certain amount of overhead—prominent at transaction
size 1, for example. Much of this overhead is in acquiring
abstract locks. Also, for each nested operation, the inner trans-
action (which is open) needs to create an abort handler and
log it. These costs become smaller in a relative sense as trans-
action size increases, giving these forms better performance
and scaling at larger transaction sizes.

6.1 HTM versus STM

We first compare HTM and STM. Figure 2 shows three
different transaction (group) sizes, 1, 2, and 4, from left
to right. Within each group we have bars for each thread
count (1, 2, ..., 48). The bars show the mean number of
committed operations or hardware aborts per 5s benchmark
iteration, breaking committed operations down by whether
they ran in HTM or STM, with STM stacked on top of HTM.
The left bar in each pair is for open nesting, the right bar
for closed. Software aborts are so few as to be invisible in
this graph. Finally, HTM abort counts are stacked on top
(sometimes so few they are not visible). We connect HTM
and total commits by lines, to help see the trends better. The
bluer colors represent HTM, the yellower ones STM, and red
represents aborts. These results are for update fraction 5%.
We find that open nesting performs relatively poorly due
to the extra overhead of abstract locking and logging of undo
operations, except at group size 4 where it outperforms closed
nesting at all thread counts. This trend continues with higher

throughput (normalized) throughput (normalized) throughput (normalized)

throughput (normalized)

0.8 |

0.6 |

N o BN

1
3
0.4 %\5 _ 4 ,

02} -

0 S S S S
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads

(a) Deuce (elastic)

—e—i
I

0.6 |
0.4 %

W = I
N ohaN

0.2 |
0 L L L L L L L L L L L L
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads
(b) Closed

0 -
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads
(c) Open
1 —
1T —
2
0.8 | 4
o J———
0.6 | 16
Cp J—
0.4 |
0.2 |
0 L L L L

1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads
(d) Boosted (wraps NonBlockingTorontoBSTMap)

throughput (normalized) throughput (normalized) throughput (normalized)

throughput (normalized)

0.8 |

0.6 |

N o BN

W =

0 S S
1 2 4 8 12 16 20 24 28 32 36 40 44 48

threads
(a) Deuce (elastic)

4 8 12 16 20 24 28 32 36 40 44 48

threads
(b) Closed

0 S S S S
1 2 4 8 12 16 20 24 28 32 36 40 44 48

threads
(c) Open

0.8 |

0.6 |

0.4

0.2}

0 L L L L L L L L L L L L
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads

(d) Boosted (wraps NonBlockingTorontoBSTMap)

Figure 3. 0% updates (read-only), varying g

673

Figure 4. 5% updates, varying g

throughput (normalized) throughput (normalized) throughput (normalized)

throughput (normalized)

0.8 |

0.6 |

N o BN

W =

0 S S
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads

(a) Deuce (elastic)

0.8 f
0.6 |
04 ¢t
0.2 |
0 R R SR i e SR
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads
(b) Closed

0.8 |
0.6 ¢
0.4 ¢
0.2 |
0 R T S S S
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads
(c) Open

0.8 |
0.6 |
0.4
0.2 |
0 R S z
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads

(d) Boosted (wraps NonBlockingTorontoBSTMap)

throughput (normalized) throughput (normalized) throughput (normalized)

throughput (normalized)

1 ——
22—
0.8 | 4
8 —=—
0.6 | 16
32—
0 S S SR
1 2 4 8 12 16 20 24 28 32 36 40 44 48

threads
(a) Deuce (elastic)

0 L L L L L L L L L I
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads
(b) Closed
1
0.8 |
0.6t
04 |
0.2 |
0 I S S T
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads
(c) Open

0.8 |

0.6 |

04|

0.2}

0 L L L L L L L L L L L L
1 2 4 8 12 16 20 24 28 32 36 40 44 48
threads

(d) Boosted (wraps NonBlockingTorontoBSTMap)

Figure 5. 50% updates, varying g

674

Figure 6. 5% updates, varying g for tree size of 16K

group sizes (not shown). For thread counts beyond 24, threads
start to share the same core (hyperthreading), which results
in poorer performance, especially for HTM since a core’s
hyperthreads share L1 and L2 caches, which are used as the
transactional buffer by TSX. This is exhibited by the drop
in HTM commits and increase in HTM aborts. We also see
that closed HTM falls away quickly as we increase the group
size. Closed HTM largely fails beyond group size of 4. This
is more because of transaction footprint exceeding the buffer
than because of increasing conflicts. However, open HTM
is strong in group size 4 and beyond. This is because the
top-level transactions here are in software and each HTM
transaction handles just one operation. This keeps the HTM
footprint small while amortizing the open nesting overheads.
Even with open nesting we see a relative increase in STM
versus HTM beyond 24 threads, as a result of hyperthreading.
The overall shape of the graphs for other update percentages
are similar to these, and hence we do not show them.

A theme here that we will see in other results as well is
that there are portions of the parameter space where HTM
works well and offers substantial speed up over STM (even
with our hand optimization of STM). Likewise, there are
portions of the space where open nesting works better than
closed nesting, despite its higher overheads.

6.2 Closed, Open, and Boosted

Figures 3 to 5 show normalized throughput for update frac-
tions 0%, 5%, and 50%, respectively. Each figure includes
four graphs, showing performance for Deuce [17] (running its
efficient elastic mode transactions), closed nesting, open nest-
ing, and boosting. We include Deuce since it demonstrates
that our system lies in the same general performance range
as this mature system. We see that closed nesting does better
than Deuce at small thread counts and the same or not quite
as well at large thread counts. We also see that for smaller
thread counts and group sizes 1 and 2, closed nesting achieves
particularly good performance. This is because those cases
run in HTM much of the time. We compared open and closed
nesting above and these graphs are consistent with that anal-
ysis. Boosting is interesting to compare with open nesting
since a boosted data structure is hand crafted to offer good
throughput for individual operations, and our wrappers im-
plement the same abstract locking and undo logging for both
boosting and open nesting. Being hand-crafted, we expected
boosting to do better, but not surprisingly open nesting tends
to win up to 12 threads where HTM remains effective.

6.3 Smaller Data Structure Size

Figure 6 shows the impact due to increased chance of conflicts
when using a smaller data structure, with 16K entries instead
of 64K, key range of 32K, and update fraction 5%. For the
same update fraction this smaller tree size results in more
conflicts (both physical and abstract) than for larger trees,
and the graphs clearly show how performance drops off with
increasing group size since more transactions will conflict.

675

7. Conclusions

Our results demonstrate the utility of nesting as a means to
achieving reliably scalable concurrent manipulation of data
structures using open/closed nesting, without the need for
hand-tuned and hand-coded non-blocking implementations.
So long as the underlying data structure is friendly to transac-
tions it can easily be nested.

Moreover, we demonstrate that HTM mechanisms can be
exploited effectively to accelerate nested transaction schemes,
while allowing software-only schemes to run safely alongside
the HTM-accelerated executions.

Our results indicate the degree to which hyperthreading
degrades performance of HTM schemes due to the need to
share capacity between hyperthreads on the same core.

We also demonstrate the performance envelopes for each
of the schemes, showing that there is a space in the workload
spectrum where each is superior. As such, programmers must
choose carefully which technique to employ, depending on
the nature of their programs.

For programmers willing to wrap bespoke linearizable
data structures, boosting works well at high thread counts
where HTM degrades, because it does not pay the perfor-
mance penalty of STM.

We have also shown how to integrate HTM features
into OpenJDK such that the compilers can inline the HTM
operations as intrinsics. In future work we plan to convince
the Hotspot compilers to warm up more effectively and
optimize the HTM code.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grants CCF-1408896, CCF-
1409284, CNS-1405939, CNS-1161237, and CNS-1162246.

References

[1] K. Chapman, A. L. Hosking, J. E. B. Moss, and T. Richards.
Closed and open nested atomic actions for Java: Language
design and prototype implementation. In International Con-
ference on Principles and Practice of Programming on the
Java Platform: Virtual Machines, Languages, and Tools, pages
169-180, Cracow, Poland, Oct. 2014. doi: 10.1145/2647508.
2647525.

[2] T. Crain, V. Gramoli, and M. Raynal. A contention-friendly
methodology for search structures. Research report, INRIA,
Feb. 2012. URL https://hal.inria.fr/hal-00668010.

[3] T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly
binary search tree. In ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pages 161-170,
New Orleans, Louisiana, Feb. 2012. doi: 10.1145/2145816.
2145837.

[4] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L.
Scott, and M. F. Spear. Hybrid NOrec: A case study in the
effectiveness of best effort hardware transactional memory.
In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages

http://dx.doi.org/10.1145/2647508.2647525
http://dx.doi.org/10.1145/2647508.2647525
https://hal.inria.fr/hal-00668010
http://dx.doi.org/10.1145/2145816.2145837
http://dx.doi.org/10.1145/2145816.2145837

39-52, Newport Beach, California, Mar. 2011. doi: 10.1145/
1950365.1950373.

[5] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. In ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 336-346, San Jose,
California, Oct. 2006. doi: 10.1145/1168857.1168900.

[6] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experi-
ence with a commercial hardware transactional memory im-
plementation. In ACM International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems, pages 157-168, Washington, DC, Mar. 2009.
doi: 10.1145/1508244.1508263.

[7] D. Dice, A. Kogan, and Y. Lev. Refined transactional lock
elision. In ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 19:1-19:12, Barcelona,
Spain, Mar. 2016. doi: 10.1145/2851141.2851162.

[8] N. Diegues and P. Romano. Self-tuning Intel transactional syn-
chronization extensions. In USENIX International Conference
on Autonomic Computing, pages 209-219, Philadelphia, PA,
June 2014. URL https://www.usenix.org/conference/
icacl4/technical-sessions/presentation/diegues.

[9] N. Diegues, P. Romano, and L. Rodrigues. Virtues and
limitations of commodity hardware transactional memory.
In International Conference on Parallel Architectures and
Compilation Techniques, pages 3—14, Aug. 2014. doi: 10.
1145/2628071.2628080.

[10] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-
blocking binary search trees. In ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pages 131—
140, Ziirich, Switzerland, July 2010. doi: 10.1145/1835698.
1835736.

V. Gramoli. More than you ever wanted to know about syn-
chronization: Synchrobench, measuring the impact of the
synchronization on concurrent algorithms. In ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 1-10, San Francisco, California, Feb. 2015.
doi: 10.1145/2688500.2688501.

[12] M. Herlihy and E. Koskinen. Transactional boosting: A
methodology for highly-concurrent transactional objects. In
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 207-216, Salt Lake City, Utah,
Feb. 2008. doi: 10.1145/1345206.1345237.

[13] M. P. Herlihy and J. M. Wing. Linearizability: A correctness
criterion for concurrent objects. ACM Trans. Prog. Lang. Syst.,
12(3):463-492, July 1990. doi: 10.1145/78969.78972.

[14] Intel. Intel Transactional Synchronization Extensions (In-
tel TSX) Programming Considerations. URL https://
software.intel.com/en-us/node/582935.

(11]

[15] C. Jacobi, T. Slegel, and D. Greiner. Transactional memory
architecture and implementation for IBM system Z. In Inter-
national Symposium on Microarchitecture, pages 25-36, Dec.
2012. doi: 10.1109/MICRO.2012.12.

676

[16] A. Kasko, S. Kobylyanskiy, and A. Mironchenko. Open/DK
Cookbook. Packt Publishing, Jan. 2015. ISBN 1849698406.

[17] G. Korland, N. Shavit, and P. Felber. Noninvasive con-
currency with Java STM. In Workshop on Programma-
bility Issues for Heterogeneous Multicores, Pisa, Italy,
Jan. 2010. URL http://www.velox-project.eu/sites/
default/files/multiprogl0.pdf.

[18] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen.
Hybrid transactional memory. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages
209-220, Mar. 2006. doi: 10.1145/1122971.1123003.

[19] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transac-
tional memory. In ACM SIGPLAN Workshop on Transactional
Computing, Aug. 2007. URL https://www.cs.rochester.
edu/meetings/TRANSACT07/papers/lev.pdf.

[20] A. Matveev and N. Shavit. Reduced hardware NORec: A
safe and scalable hybrid transactional memory. In ACM In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 59-71, Istanbul,
Turkey, Mar. 2015. doi: 10.1145/2694344.2694393.

[21] J. E. B. Moss. Nested transactions: an approach to reliable
distributed computing. PhD thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1981.

[22] J. E. B. Moss and A. L. Hosking. Nested transactional memory:
model and architecture sketches. Science of Computer Pro-
gramming, 63:186-201, Dec. 2006. doi: 10.1016/j.scico.
2006.05.010.

[23] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L.
Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman. Open
nesting in software transactional memory. In ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 68-78, San Jose, California, Mar. 2007.
doi: 10.1145/1229428.1229442.

[24] M. Paleczny, C. Vick, and C. Click. The Java Hotspot
server compiler. In USENIX Java Virtual Machine Re-
search and Technology Symposium, Monterey, California, Apr.
2001. URL https://www.usenix.org/legacy/events/
jvm01/full_papers/paleczny/paleczny.pdf.

[25] R. Rajwar and J. R. Goodman.
enabling highly concurrent multithreaded execution.
International Symposium on Microarchitecture, pages 294—
305, Austin, Texas, Dec. 2001. doi: 10.1109/MICRO.2001.
991127.

[26] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer.
Optimizing hybrid transactional memory: The importance of
nonspeculative operations. In ACM Symposium on Parallelism
in Algorithms and Architectures, pages 53—-64, San Jose, Cali-
fornia, June 2011. doi: 10.1145/1989493.1989501.

[27] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance
evaluation of Intel transactional synchronization extensions
for high-performance computing. In International Conference
on High Performance Computing, Networking, Storage and
Analysis, pages 19:1-19:11, Denver, Colorado, Nov. 2013.
doi: 10.1145/2503210.2503232.

Speculative lock elision:
In

http://dx.doi.org/10.1145/1950365.1950373
http://dx.doi.org/10.1145/1950365.1950373
http://dx.doi.org/10.1145/1168857.1168900
http://dx.doi.org/10.1145/1508244.1508263
http://dx.doi.org/10.1145/2851141.2851162
https://www.usenix.org/conference/icac14/technical-sessions/presentation/diegues
https://www.usenix.org/conference/icac14/technical-sessions/presentation/diegues
http://dx.doi.org/10.1145/2628071.2628080
http://dx.doi.org/10.1145/2628071.2628080
http://dx.doi.org/10.1145/1835698.1835736
http://dx.doi.org/10.1145/1835698.1835736
http://dx.doi.org/10.1145/2688500.2688501
http://dx.doi.org/10.1145/1345206.1345237
http://dx.doi.org/10.1145/78969.78972
https://software.intel.com/en-us/node/582935
https://software.intel.com/en-us/node/582935
http://dx.doi.org/10.1109/MICRO.2012.12
http://www.velox-project.eu/sites/default/files/multiprog10.pdf
http://www.velox-project.eu/sites/default/files/multiprog10.pdf
http://dx.doi.org/10.1145/1122971.1123003
https://www.cs.rochester.edu/meetings/TRANSACT07/papers/lev.pdf
https://www.cs.rochester.edu/meetings/TRANSACT07/papers/lev.pdf
http://dx.doi.org/10.1145/2694344.2694393
http://dx.doi.org/10.1016/j.scico.2006.05.010
http://dx.doi.org/10.1016/j.scico.2006.05.010
http://dx.doi.org/10.1145/1229428.1229442
https://www.usenix.org/legacy/events/jvm01/full_papers/paleczny/paleczny.pdf
https://www.usenix.org/legacy/events/jvm01/full_papers/paleczny/paleczny.pdf
http://dx.doi.org/10.1109/MICRO.2001.991127
http://dx.doi.org/10.1109/MICRO.2001.991127
http://dx.doi.org/10.1145/1989493.1989501
http://dx.doi.org/10.1145/2503210.2503232

	Introduction
	Background
	Flattening
	Closed Nesting
	Open Nesting
	Boosting
	Related Work

	Nested Transactions for Java
	Closed Atomic Blocks/Methods
	Open Atomic Classes and Abstract Locking
	Boosting

	Implementation
	Java Compiler
	OpenJDK Modifications
	Bytecode Rewriter
	Run-Time Library

	Benchmarks
	Open Atomic Workload
	Closed Atomic Workload
	Boosted Workload
	Support for Varying Transaction Sizes
	Support for Thread Pinning
	Modified Transaction Friendly Data Structure
	Modified Throughput Reporting for Accuracy

	Experiments
	Results
	HTM versus STM
	Closed, Open, and Boosted
	Smaller Data Structure Size

	Conclusions

