
Advances in Persistent Object Systems, Morrison, Jordan, and Atkinson (Eds.). Morgan Kaufmann, 1999

Swizzle barrier optimizations for orthogonal persistence in Java

Kumar Brahnmath 1 Nathaniel Nystrom1 Antony Hosking1 Quintin Cutts 2

1Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-1398, USA
fhosking,nystrom,brahnmatg@cs.purdue.edu

2Department of Computing Science
University of Glasgow

Glasgow G12 8QQ, Scotland
quintin@dcs.gla.ac.uk

Abstract
Swizzlingrefers to the translation of object references from an external, persistent format to an internal,
transient format used during application execution.Eager swizzling schemes translate all the references
contained by objects as they are made resident.Lazyswizzling schemes defer translation of references until
they are loaded from their container. Eager swizzling has the advantage of presenting a uniformly swizzled
representation of references to the execution engine, at the cost of up-front translation of references that may
never be used. Lazy swizzling avoids this cost, but requires a run-time check that called aswizzle barrierto
detect and convert unswizzled references as they are accessed. Lazy swizzling is most often used in situations
where accesses are likely to be sparse and the up-front cost of eager swizzling is prohibitive. For example,
large containers, such as arrays, may contain many thousands of references, only a fraction of which are ever
actually accessed, let alone used to access their target. Thus, lazy swizzling of arrays makes sense even while
other types of objects are eagerly swizzled, in which case every array access must be protected by a swizzle
barrier. Many, if not most, of these barriers will occur in the bodies of loops that iterate through the elements
of arrays. Here, we describe how to hoist loop-nested swizzle barriers into one inclusive barrier operation
that can be performed outside the loop, and which swizzles the subset of array elements accessed in the loop
body. Our approach to array swizzle barrier optimization is based on loopinduction variable analysis. We
have implemented this approach for the PJama prototype of orthogonal persistence for Java. In experiments
with several benchmark applications our optimizations reduce the number of swizzle barriers executed by an
average of 66%.

Keywords: swizzle barriers, optimization, induction variable analysis

1 Introduction

Persistent programming languages manage volatile memory as a cache for stable storage and hide the details of stable storage
underneath the abstraction of persistence [Atkinson and Morrison 1995]. Orthogonal persistence presents this abstraction for
all objects uniformly, regardless of theirtype. Object references in stable storage are represented as some sort ofpersistent
identifier (PID). To minimize the costs of frequent translation from PIDs to in-memory pointers, persistent systems may
convert inter-object references from their PID format to a more efficient internal representation that caches the resulting
translation for future use. Conversion of PIDs in this way is termedswizzling[Moss 1992]. Thus, swizzling has two costs
associated with it:timerequired for translation andspacefor caching the translation.

Persistent systems often choose to swizzleeagerlyand pay the swizzling overhead up-front by translating all PIDs in an
object when that object is fetched into volatile memory. In this case compiled code will never see unswizzled references.
However, for container objects, such as large arrays, which contain a large number of references that are only sparsely
accessed, eager swizzling may prove unneccessarily expensive. Swizzling arrayslazily avoids the up-front overhead by
deferring conversion of array elements until they are accessed. In this case, since array elements are not always swizzled,
every access to an array element requires a run-time check that we call aswizzle barrierto detect and convert unswizzled
references as they are accessed. Subsequent accesses continue to incur the cost of the barrier.

Orthogonal persistence induces additional barriers on object accesses. Since a given reference may point to a transient
object, a resident persistent object or a non-resident persistent object, every access must also check that the target of the
access is resident. Aread barrierchecks to see if the object is resident, and retrieves it from stable storage if not. Similarly,

This research is supported in part by the National Science Foundation under Grant No. CCR-9711673 and by gifts from Sun Microsystems, Inc.

268

updates require awrite barrier to mark the object as modified for subsequent transfer back to stable storage. Our related paper
[Hosking et al. 1998] considers the issue of optimizing read and write barriers via partial redundancy elimination (PRE) over
access expressions.

Our focus in this paper is the removal of redundant array swizzle barriers. Since arrays are typically accessed in loops,
many swizzle barriers occur in the bodies of these loops. Our optimization approach is to expose and hoist swizzle barriers
out of loop bodies in the form of a single operation that swizzles the entire range of references at once, before the loop is
entered. The transformation is driven byinduction variable analysisto determine the upper and lower bounds of the loop
index variable as well as a closed form expression for the value of the induction variable at each iteration of the loop.

2 Analysis and optimization

This section describes our analysis and optimization framework for array swizzle barrier optimizations, adopting standard
terminology and notations used in the specification of the Java programming language to specify the analysis and optimization
problem, and giving sufficient background to understand the approach.

2.1 Terminology and notation

The following definitions paraphrase the Java specification [Gosling et al. 1996]. Anobjectin Java is either aclass instance
or an array. Reference values in Java arepointersto these objects, as well as the null reference. Both objects and arrays are
created by expressions that allocate and initialize storage for them. The operators on references to objects are field access,
method invocation, casts, type comparison (instanceof), equality operators and the conditional operator. There may be
many references to the same object. Objects have mutable state, stored in the variable fields of class instances or the variable
elements of arrays. Two variables may refer to the same object: the state of the object can be modified through the reference
stored in one variable and then the altered state observed through the other.Access expressionsrefer to the variables that
comprise an object’s state. Afield access expressionrefers to a field of some class instance, while anarray access expression
refers to a component of an array. Table 1 summarizes the two kinds of access expressions in Java. We adopt the termaccess
path [Larus and Hilfinger 1988; Diwan et al. 1998] to mean a non-empty sequence of accesses, as specified by some access
expression in the source program. For example, the Java access expressiona:b[i]:c is an access path. Also, without loss of
generality, our notation will assume that distinct fields within an object have different names.

Table 1: Access expressions

Notation Name Variable accessed

p:f Field access Fieldf of class instance referred to byp
p[i] Array access Component with subscripti of array referred to byp

2.2 Barriers

In an orthogonally persistent implementation of Java access expressions may refer to both persistent and transient objects.
Thus, every access to an array of references must be protected by a swizzle barrier applied to the array element being accessed.
For example, in the absence of optimizations, the access patha:b[i]:c would require a swizzle barrier to protect the reference
to theith component ofb. It would also require read barriers on the class instance referred to bya, the array referred to byb
and the object referred to by theith component ofb. If the expression appears as the target of an assignment, then the object
referred to bya:b[i] would also require a write barrier.

A barrier is redundant if we can guarantee that an earlier barrier of the same kind has already been applied to the same
object, and that the earlier barrier’s side-effect (e.g., to fault or dirty the object, or to swizzle the reference) has not been
undone (i.e., the barrier isidempotent). This has implications for the interaction of barrier optimizations with the persistence
run-time system, which must not undo the effect of a barrier while optimized code downstream of the barrier can still execute.
Solving this problem requires a contract between the optimizer and the run-time system for each kind of barrier. The contract

269

Table 2: Barrier expressions

Notation Name Description

read(p) Read barrier Apply read barrier to, and return,
object referred to byp

write(p) Write barrier Apply write barrier to, and return,
object referred to byp

swizzle(p; i) Swizzle barrier Apply swizzle barrier to the component
of arrayp with subscripti

swizzleRange(p; i; j) Range swizzle Apply swizzle barrier to components
barrier of arrayp with subscripts in the range [i, j]

will depend on the specifics of the implementation so we defer discussion of this issue to Section 3, which presents our
implementation for PJama. Cutts et al. [1998] consider the issue from the perspective of the run-time system.

Our goal is to avoid applying read, write and swizzle barriers to accesses where program analysis shows that the barrier is
redundant. We eliminate redundant read and write barriers by PRE [Morel and Renvoise 1979] over access path expressions
[Nystrom 1998; Hosking et al. 1998; Nystrom et al. 1998]. In this paper we describe an approach that eliminates loop-nested
swizzle barriers based on analysis of loop induction variables. Before we can eliminate redundant barriers we must make
them explicit in the access paths and then apply some definition of redundancy. Making barriers explicit means obtaining
for the source code access expression an intermediate representation (IR) in which the barriers are exposed. Optimizations
then operate on the IR to remove redundant barriers. Thus, we add barrier expressions to the original specification of access
expressions given in Table 1. The specification for barrier expressions appears in Table 2. For each source code access
expression Table 3 gives the form of the corresponding explicit-barrier IR.

Table 3: Intermediate representation for access expressions

Source Intermediate representation
Read access Write access

p:f read(p):f write(read(p)):f
p[i] (t = read(p); swizzle(t; i); t[i]) write(read(p))[i]

2.3 Range swizzle optimization

Container objects (such as arrays) are typically swizzled lazily, requiring the insertion of swizzle barriers. Since arrays are
typically accessed in loops, these swizzle barriers end up in those loop bodies. Often an array element likea[i] is accessed
repeatedly in the body of such a loop. Any such repeated reference must be protected by a swizzle barrier as shown in
Figure 1(a). Such repeated swizzle barriers are redundant and can also be recognized and removed. But not all swizzle
barriers in the body of such a loop are redundant. For example, in Figure 1(a) analysis may find that the second swizzle
barrier is redundant because it is applied to the same elementa[i] in both cases and can be removed.

The first swizzle barrier is not redundant and remains a serious overhead to execution of the loop. To remove that swizzle
barrier it must be made redundant by performing a range swizzle barrier operation outside the loop. To do this, we need to
determine the range of array elements being accessed, so we can swizzle just that range of references before entering the loop.
To determine the access range, we must find loops that access arrays of references and determine theboundsof each loop.
If the lower bound of a loop traversing arraya is found to bel , and the upper bound is found to beu, then we can insert the
operationswizzleRange(a; l ;u) outside the loop as shown in Figure 1(b). This enables the elimination of swizzle barriers on
the components of arraya from the body of the loop.

Range swizzle barriers also represent an opportunity for incremental faulting of large array structures, since they capture
precisely that range of array elements that are to be accessed by the loop. If arrays are faulted incrementally, then a range
swizzle barrier must also function as an incremental read barrier to ensure that the targeted array subrange is resident.

270

i 1
while i � n do

: : :

swizzle(a; i)
e a[i]:x
: : :

swizzle(a; i)
f a[i]:y
: : :

i i +1
end

(a) Before

i 1
swizzleRange(a;1;n)
while i � n do

: : :

e a[i]:x
: : :

f a[i]:y
: : :

i i +1
end

(b) After

Figure 1: Range swizzle optimization

2.4 Induction variables

Induction variablesare program variables whose successive values form a definite pattern over some part of a program,
usually a loop [Muchnick 1997]. They belong to a broader group of variables known assequence variableswhere the pattern
may be linear, polynomial, geometric, wrap-around, periodic or monotonic [Gerlek et al. 1995]. Detecting linear sequence
variables is the first step towards implementing array range swizzle optimizations.

2.5 Loops and loop inversion

A loop is a strongly connected component of the control flow graph. The loopheaderis the block within the loop that
dominates all other blocks in the loop. When hoisting swizzle barriers out of loops, care must be taken to hoist the range
swizzle barrier to a position where it will be executed only if the loop is executed. Several loop transformations performed
on the control flow graph (CFG) provide safe places to hoist the barrier. The first inserts a new block called thepre-header,
which has an out-edge only to the header, and whose in-edges are those that formerly entered the header fromoutsidethe
loop. Similarly, apost-bodyblock is inserted, with an out-edge only to the header, and whose in-edges are those that formerly
entered the header fromwithin the loop. The second transformation, known as loopinversion, amounts to converting each
while loop into ado-while loop. For example, consider the loop in Figure 2(a) and its corresponding control-flow graph in
Figure 2(b). Figure 2(c) shows the same loop after pre-header/post-body insertion and inversion. These provide a safe place
to hoist the range swizzle check as shown in Figure 2(d).

2.6 SSA form

Static single assignment(SSA) form is an intermediate representation that provides a compact form of variable definition
and use information. In this form, each use of a program variable has exactly one corresponding reaching definition. Where
distinct definitions of a variable merge at confluence points in the CFG, operators calledφ-functions are introduced to “merge”
each of the reaching definitions at that point. Theφ-function in turn serves as a definition point. Unique definitions of a
variable are represented by subscripting. A loop and its corresponding SSA form are shown in Figure 3.

2.7 The demand-driven SSA graph

Our induction variable analysis framework is based on the demand-driven SSA representation of the CFG. Instead of the
traditionaldef-usechains [Aho et al. 1986], demand-driven SSA form usesfactored use-def(FUD) chains [Stolz et al. 1994;
Wolfe 1996]. In this format, uses andφ-functions have pointers to the corresponding definition of the variable. For the
purpose of recognizing induction variables, merge operators that occur at loop headers need to be distinguished from those

271

i 1
while i � n do

: : :

swizzle(a; i)
e a[i]:x
: : :

i i +1
end

(a) A simple loop

swizzle(a; i)

e a[i]:x

i i +1

Post-Body

Exit

F T

Pre-Header

i 1

i � n

(b) Its CFG

Pre-Header0

Pre-Header

swizzle(a; i)

e a[i]:x

i i +1

Post-Body

Exit

F T

F T
i � n

i 1

i � n

(c) Its CFG after inversion

Pre-Header0

i i +1

Post-Body

Exit

F T

F T

i � n

e a[i]:x

i 1

i � n

swizzleRange(a;1;n)

(d) Its CFG after hoisting

Figure 2: Loop inversion and hoisting

272

i 1
do

if i > n
exit

end
: : :

i i +1
end

(a) A loop

i0 1
do

i1 φ(i0; i2)
if i1 > n0

exit
end
: : :

i2 i1+1
end

(b) Its SSA representation

Figure 3: Loop representation in SSA form

that occur as a result of forward branching. Within loop headers, merges of multiple definitions of a variable are handled by
µ-functions instead ofφ-functions. The semantics of theµ are essentially the same as theφ, with two differences:

� The arity of aµ-function is always two since pre-header and post-body blocks are added to each loop as described in
Section 2.5.

� One of the reaching definitions at theµ will always be from within the body of the loop (theinternal ssalink) and the
other will always be from outside the loop (theexternal ssalink).

The SSA graphis an abstraction representing the operations within the SSA form of the program. The CFG and SSA
graphs for the loop in Figure 3(b) are shown in Figure 4. The use-def chain form, as opposed to the traditional def-use chain
form, finds the reaching definition at a given use by following the links from the use backward, against the data flow. On a
recursive traversal of the SSA graph, each use is said todemandthe value of the earlier definition. We use this property in
our demand-driven induction variable analysis.

2.8 Demand-driven induction variable analysis

Demand-driven induction variable analysis (DIVA) is based onfactored use-def(FUD) chains [Stolz et al. 1994; Wolfe 1996],
a demand-driven representation of the popular SSA form. In this form, strongly connected components of the associated SSA
graph correspond to sequences in the program [Gerlek et al. 1995].

Observe the SSA representation ofi in Figure 3(b) and in Figure 4. Beginning at theµ definingi1, theexternal ssalink
defines the value ofi1 on the first iteration of the loop. On subsequent iterations the value ofi1 is defined by theinternal
ssalinkto the definition ofi2 at the statementi2 i1 + 1. This statement in turn obtains the value ofi1 from theµ above.
Thus these edges form a cycle which represents theflow of i around the loop. The variablei is now identified as a sequence
variable since it is defined as a function of itself on a previous iteration. Also, we can define the sequence expression fori as
a linear function of the basic loop counter,h. The variablei2 in this example is equal toh+1, which gives us the sequence
expression.

Determining symbolic expressions for sequence variables is a two step process:

1. The sequence variables are found by partitioning a graph representation of the program in SSA form intostrongly
connected components.

2. The nodes in each component (sequence) are assigned symbolic expressions describing the sequence form, such as the
closed forms in terms of the loop counterh.

Each strongly connected component (SCC) corresponds to a loop-invariant value (viewed as a trivial sequence), a proper
sequence form or an unknown sequence form. The sequence type and expression for a given component are dependent on the
sequence types and expressions of those variables they use. Thus any given component will firstdemandthe classification of
any components it requires for its own classification. This demand-driven process is accomplished by using Tarjan’s algorithm

273

Post-Body

Exit

definei0

if

usen0usei1

>

F

usei1 1

+

definei2

i1 µ(i0; i2)

1

T

Figure 4: Demand-driven SSA graph

for detecting SCCs in directed graphs [Tarjan 1972]. This algorithm has the property that SCCs are visited only after visiting
all descendant components in the graph; thus, a directed acyclic graph of components is formed and processed in postorder
during a depth-first traversal.

Here we consider only the class ofwell-behaved loops[Muchnick 1997]. Consider the following Cfor loop form:

for (exp1; exp2; exp3) do
stmt

end

A well-behaved loop is one in whichexp1 assigns a value to an integer-valued variablei, exp2 comparesi to a loop constant,
exp3 increments or decrementsi by a loop constant, andstmt contains no assignments toi. Other loops likewhile and
do-while loops which follow the same semantics as a well-behavedfor loop are also considered to be well-behaved. The
induction variables of such well-behaved loops have a linear pattern.

Our goal is to reduce the number of swizzle barriers executed. As explained previously, we need to find the bounds of an
induction variable that is being used within a given loop in the program. A sequence variable can be identified aslinear if the
operations in the component consist of uses, definitions and additions or subtractions of loop-invariant values or other linear
variables. The SCC defining a linear sequence will be a simple cycle, since the induction variable may only appear once on
the right-hand side of the expression.

To hoist out swizzle barriers from loops, all the strongly connected components in the program are determined. Trivial
components which are loop-invariant are excluded. Components which represent well-behaved loops are recognized and the
induction variablei is identified. As explained previously, the external ssalink of theµ-function in the loop header provides
the expressioninit which was assigned toi outside the loop. By recognizing the condition which terminates the loop, the
expressiontermwhich is the last value assigned toi can be found. If the loop is traversing an array, a range swizzle instruction

274

with the range [init, term] can be inserted into the pre-header as shown in Figure 2(d). Any swizzle barrier usingi to swizzle
a component of the array within the body of the loop is thus made redundant and can be removed from the program.

3 Implementation

Our implementation uses bytecode-to-bytecode class transformation to apply the DIVA technique for range swizzle optimiza-
tions for execution on a modified version of the PJama [Atkinson et al. 1996] virtual machine.

3.1 Bytecode-to-bytecode class transformation

The Java virtual machine (VM) specification [Lindholm and Yellin 1996] is intended as the interface between Java compilers
and Java execution environments. Its standard class format and instruction set permit multiple compilers to inter-operate
with multiple VM implementations, enabling the cross-platform delivery of applications that is Java’s hallmark. Conforming
class files generated byanycompiler will run in anyJava VM implementation, no matter if that implementation interprets
bytecodes, performs dynamic “just-in-time” (JIT) translation to native code, or precompiles Java class files to native object
files. Targeting compiled Java classes for analysis and optimization has several advantages. First, program improvements
accrue even in the absence of source code, and independently of the compiler and VM implementation. Second, Java class
files retain enough high-level type information to enable advanced optimizations. Finally, analyzing and optimizing bytecode
can be performed off-line, permitting JIT compilers to focus on fast code generation rather than expensive analysis, while
also exposing opportunities for fast low-level JIT optimizations.

We have implemented a bytecode-to-bytecode class transformer that performs partial redundancy elimination over access
expressions in Java. Our implementation, called BLOAT (forBytecode-LevelOptimization andAnalysisTool) takes compiled
Java classes adhering to the Java VM specification and generates transformed classes as output. For each method, BLOAT
first builds a control-flow graph, with an expression tree for each basic block, then infers the types of local variables and the
operand stack at each point in the code [Palsberg and Schwartzbach 1994], constructs an intermediate representation based
on static single-assignment (SSA) form [Cytron et al. 1991; Wolfe 1996; Briggs et al. 1998], performs SSA-based value
numbering [Briggs et al. 1997] with type-based alias analysis [Diwan et al. 1998], followed by SSA-based PRE [Chow et al.
1997], and finishes with generation of new Java bytecodes for the method. Note that BLOAT is a stand-alone tool that can be
used to optimize Java classes independently of VM implementation. The DIVA technique has been added as a separate pass
over the control-flow graph, just before the final code generation phase, to hoist array swizzle barriers out of loops.

3.2 Optimizations for PJama

PJama [Atkinson et al. 1996] is a prototype implementation of orthogonal persistence for Java being developed jointly by Sun
Microsystems Laboratories and Glasgow University. The PJama VM is based on the Sun Java Development Kit (JDK) VM
and conforms to the Java VM specification; it executes classes compiled to the standard bytecode instruction set and class file
format. Persistence functionality is provided by an extended API, extensions to the VM for read, write and swizzle barriers,
and associated run-time support. In the current release of PJama, the swizzle barrier is hidden in the implementation of the
aaload bytecode.

In line with our optimization strategy, we have deleted the hidden swizzle barrier from the implementations of the original
aaload bytecode and extended the PJama VM with two new internal swizzle barrier bytecodes. As a class is loaded into the
extended PJama VM its methods must now be edited to insert a swizzle barrier bytecode immediately before each occurrence
of theaaload bytecode. BLOAT supports this operation with a preprocessing (non-analyzing, non-optimizing) pass over
the class to insert the swizzle barriers. The class can then go on to execute in the extended VM. Subsequent optimization
by BLOAT can then occur at any convenient time. BLOAT also supports a “way-ahead-of-time” option to preprocess and
optimize class files for later loading by the new PJama VM; this option is commonly used to prepare the core Java classes for
loading into a virgin PJama persistent store. The new barrier bytecodes are specified in Table 4.

275

Table 4: New swizzle barrier bytecodes

Operation swizzle reference from array swizzle range of references from array
Format

aswizzle aswizzleRange
Forms aswizzle= 236 (0xec) aswizzleRange= 237 (0xed)
Stack ..., arrayref, index=>, arrayref, start, end=> ...
Description Thearrayref must be of typereference and must

refer to an array whose components are of type
reference. Theindexmust be of typeint. If the
arrayref is not null, then the element atindexis
swizzled, if not already.arrayref andindexare popped
from the operand stack.

Thearrayref must be of typereference and must
refer to an array whose components are of type
reference. Thestart andendmust be of typeint. If
thearrayref is not null, then the elements within the
intersection of [start,end] and [0,arraylength] are
swizzled, if not already.arrayref, start andendare
popped from the operand stack.

3.3 Cache management

As mentioned earlier, barrier optimizations require a contract with the persistence run-time system, which must not undo the
effect of a barrier while optimized code can execute that assumes the barrier is still in effect. The contract with the PJama
run-time system is simple: PJama must maintain the effect of both barriers for all objects directly referenced from a Java
thread’s stack frames (both operand stacks and local variables). In other words, resident objects referenced directly from a
thread stack must bepinnedin the object cache whenever the thread is active. Thus, the PJama object cache manager must
either avoid evicting pinned objects when it attempts to reclaim cache space, or arrange for them to be made resident before
the pinning thread resumes execution. Dirty bits set on objects in the cache that are directly referenced from a thread’s stack
must be maintained, even across stabilizations. Similarly, reference elements in arrays that have been swizzled must remain
swizzled. Clearly, this contract has significant ramifications for the run-time system; Cutts et al. [1998] explore the issues in
more detail.

4 Experiments

Our experiments focus on revealing the gains to be had in eliminating loop-nested array swizzle checks, by counting the num-
ber eliminated for execution of several array-intensive benchmarks. Performance improvements as a result of the optimization
are not directly measured here, though clearly for an interpreted VM any reduction in the number of bytecodes executed will
have a noticeable impact on performance because of the corresponding reduction in bytecode dispatch overhead. We believe
also that for JIT-compiled VM implementations a single range swizzle check can be translated to more efficient code than
might otherwise obtain for the original loop-nested swizzle checks.

4.1 Metrics

For each combination of benchmark and optimization level we measure the number of barrier operations executed for the
benchmark using an instrumented version of the VM that reports bytecode execution frequencies. We measured only warm
executions of the benchmark operations, so as to eliminate the overhead of bytecodes executed for initialization of classes as
they are dynamically loaded by the VM.

4.2 Benchmarks

To best evaluate the impact of range swizzle optimizations using DIVA, we need a set of benchmarks that extensively use
arrays of objects. With that objective the following applications were chosen:

276

Linpack: The standard Linpack benchmark suite.
Cholesky: Set of routines performing Cholesky decomposition.
Neural: Back propagation on a multi-layered neural net.
Inversion: Application performing a series of matrix inversions.

While these applications are not themselves inherently persistent, they might reasonably be used to perform computations
over large data sets that might benefit from storage in a persistent environment.

4.3 Results

The results of range swizzle optimizations are given in Table 5. The number ofaswizzlebytecodes executed in classes that
have had them inserted, are under the column headingdecorated. The count ofaswizzlebytecodes executed in classes
that have been optimized after being decorated, are under the column headingoptimized. The results reveal that DIVA
optimizations remove on average 66% ofaswizzlesin the decorated code. Looking at Table 5, we observe that the number of
newaswizzleRangesintroduced is on average just 0.9% ofaswizzlesin the decorated code. This demonstrates the effectiveness
of range swizzle optimizations to reduce the array swizzle overhead with negligible cost.

Table 5: Results of range swizzle optimizations

aswizzles executed aswizzleRanges executed
Benchmark decorated optimized % removed decorated optimized % added
Linpack 75365 20217 73 0 304 0.4
Cholesky 921855 256994 72 0 14029 1.5
Neural 6491933 3397983 48 0 36832 0.6
Inversion 2309400 649710 71 0 26020 1.1

5 Conclusions

Our experiments show that on average 66% of swizzle barriers are eliminated at a small additional cost (0.9%) of introducing
range swizzle barriers. These results show that range swizzle optimizations based on DIVA can significantly reduce the
array swizzle overhead of PJama. In general, our optimization can benefit any persistent Java system that implements lazy
swizzling for arrays. We believe that DIVA optimization coupled with our read and write barrier optimizations [Hosking
et al. 1998] can have a significant positive impact on the performance of persistent Java systems. We also plan to integrate
swizzle barrier optimizations into our PRE driven optimization framework by treating swizzles as expressions similar to read
and write barriers. By treating all persistence barriers in a uniform manner we hope to build a general program analysis and
optimization framework targeted at persistent systems [Cutts and Hosking 1997]. This will further enable us to exploit the
strong connection and similarity between various persistence optimizations such as barrier elimination, concurrency control
lock elimination, clustering, prefetching, and swizzling centered on program analysis and dynamic profiling.

Acknowledgments

We thank Laurent Dayn`es and Malcolm Atkinson for first suggesting that the array swizzle barriers of PJama might be a
fruitful target for optimizations, with potential for significant impact on performance. We also thank the anonymous referees
for their insightful comments which greatly improved this presentation.

References
AHO, A. V., SETHI, R.,AND ULLMAN , J. D. 1986.Compilers: Principles, Techniques, and Tools. Addison-Wesley.

ATKINSON, M. P., DAYN ÈS, L., JORDAN, M. J., PRINTEZIS, T., AND SPENCE, S. 1996. An orthogonally persistent Java.ACM SIGMOD Record 25,4
(Dec.), 68–75.

277

ATKINSON, M. P. AND MORRISON, R. 1995. Orthogonally persistent object systems.International Journal on Very Large Data Bases 4,3, 319–401.

BRAHNMATH , K. J. 1998. Optimizing orthogonal persistence for Java. M.S. thesis, Purdue University.

BRIGGS, P., COOPER, K. D., HARVEY, T. J.,AND SIMPSON, L. T. 1998. Practical improvements to the construction and destruction of static single
assignment form.Software: Practice and Experience 28,8 (July), 859–881.

BRIGGS, P., COOPER, K. D., AND SIMPSON, L. T. 1997. Value numbering.Software: Practice and Experience 27,6 (June), 701–724.

CHOW, F., CHAN, S., KENNEDY, R., LIU, S.-M., LO, R.,AND TU, P. 1997. A new algorithm for partial redundancy elimination based on SSA form.
In Proceedings of the ACM Conference on Programming Language Design and Implementation (Las Vegas, Nevada, June).ACM SIGPLAN
Notices 32,5 (May), 273–286.

CUTTS, Q. AND HOSKING, A. L. 1997. Analysing, profiling and optimising orthogonal persistence for Java. InProceedings of the Second
International Workshop on Persistence and Java(Half Moon Bay, California, Aug.), M. P. Atkinson and M. J. Jordan, Eds. Sun Microsystems
Laboratories Technical Report 97-63, 107–115.

CUTTS, Q., LENNON, S.,AND HOSKING, A. L. 1998. Reconciling buffer management with persistence optimizations. See Morrison et al. [1998].

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently computing static single assignment form and
the program dependence graph.ACM Trans. Program. Lang. Syst. 13,4 (Oct.), 451–490.

DIWAN , A., MCKINLEY, K. S.,AND MOSS, J. E. B. 1998. Type-based alias analysis. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (Montr´eal, Canada, June).ACM SIGPLAN Notices 33,5 (May), 106–117.

GERLEK, M. P., STOLTZ, E.,AND WOLFE, M. 1995. Beyond induction variables: detecting and classifying sequences using a demand-driven SSA
form. ACM Trans. Program. Lang. Syst. 17,1 (Jan.), 85–122.

GOSLING, J., JOY, B., AND STEELE, G. 1996.The Java Language Specification. Addison-Wesley.

HOSKING, A. L., NYSTROM, N., CUTTS, Q.,AND BRAHNMATH , K. 1998. Optimizing the read and write barriers for orthogonal persistence. See
Morrison et al. [1998].

LARUS, J. R.AND HILFINGER, P. N. 1988. Detecting conflicts between structure accesses. InProceedings of the ACM Conference on Programming
Language Design and Implementation(Atlanta, Georgia, June). 21–34.

L INDHOLM , T. AND YELLIN , F. 1996.The Java Virtual Machine Specification. Addison-Wesley.

MOREL, E. AND RENVOISE, C. 1979. Global optimization by suppression of partial redundancies.Commun. ACM 22,2 (Feb.), 96–103.

MORRISON, R., JORDAN, M., AND ATKINSON, M., Eds. 1998.Proceedings of the Eighth International Workshop on Persistent Object Systems
(Tiburon, California, August 1998). Advances in Persistent Object Systems. Morgan Kaufmann.

MOSS, J. E. B. 1992. Working with persistent objects: To swizzle or not to swizzle.IEEE Trans. Softw. Eng. 18,8 (Aug.), 657–673.

MUCHNICK, S. S. 1997.Advanced Compiler Design and Implementation. Morgan Kaufmann.

NYSTROM, N., HOSKING, A. L., WHITLOCK, D., CUTTS, Q.,AND DIWAN , A. 1998. Partial redundancy elimination for access path expressions.
Available at http://www.cs.purdue.edu/homes/hosking/papers/.

NYSTROM, N. J. 1998. Bytecode level analysis and optimization of java classes. M.S. thesis, Purdue University.

PALSBERG, J. AND SCHWARTZBACH, M. I. 1994.Object-Oriented Type Systems. Wiley.

STOLZ, E., GERLEK, M. P.,AND WOLFE, M. 1994. Extended SSA with factored use-def chains to support optimization and parallelism. In
Proceedings of the 27th Annual Hawaii International Conference on System Sciences(Jan.). 43–52.

TARJAN, R. E. 1972. Depth-first search and linear graph algorithms.SIAM Journal of Computing 1,2 (June), 146–160.

WOLFE, M. 1996.High Performance Compilers for Parallel Computing. Addison-Wesley.

278

